
 

  

 

 

Risk Measures for FNM and CDO2&3 Trades 

 

The purpose of the submitted model is to calculate the risk measures for FirstNofM trade (FNM) 

trades and CDO2&3 trades [1]. They are bucketed credit spread sensitivities for FNM trades; 

bucketed credit spread sensitivities for CDO2&3 trades; default sensitivities and correlation 

sensitivities for CDO2&3 trades.  

 

The submitted new model is a great improvement of the existing risk measures in several aspects: 

 

• The credit spread sensitivity is switched to a bucketed one (CSPDH). In the model, parallel shift 

credit spread sensitivity has been used for many years. However, recent development in the 

market, especially the popularity of longer term trades, makes this measure inaccurate. 

  

• A new method of computing the credit spread sensitivity, namely semi-analytic Monte Carlo 

(MC) sensitivity, is adopted in the submitted model [1,3]. It applied to FNM trades and CDO2&3 

trades. In the computation of risk, now it is known that a default event that passes across the 

maturity in the perturbed scenario has a large contribution. Using a usual bump/revaluation 

approach, it is very hard to model such an event if the perturbation is tiny in the case such as 

computing CSPDH. In the new model, a deterministic part is added to directly address this part 

of contribution to credit spread sensitivities; hence the computational efficiency and precision are 

greatly improved.   

 

• The CSPDH of CDO2&3 trades is the most complicated model in the Oscar/Fritz credit library.  

In the model, a CDO2&3 trade is flattened to a risk equivalent vanilla CDO trade (RE-CDO) and 

then valued within the base correlation framework. When the credit spread of an obligor is 

perturbed, the attachment point of the RE-CDO trade is changed, which can be found through a 

re-flattening process. Using the analytical sensitivity approach as discussed in Refs. [1, 4, 5], the 

computation of CSPDH for a CDO2&3 trade is decomposed into two parts. One is CSPDH for 



 

  

RE-CDO, which is the same as that of a bespoke trade. The other part is CSPDH attributed to 

change of the attachment of RE-CDO. This part is calculated via a Jacobian of the attachment 

point to the credit spread change, in which the analytical MC sensitivity is employed. The first 

part of CSPDH can be tested straightforwardly by switching off re-flattening option and 

benchmarking against the approved bespoke CDO pricing template.  We focus on the second 

part of CSPDH for CDO2&3 trades.  

 

• The default sensitivity model of CDO2&3 trades in the model is basically an internal 

bump/revaluation approach. Compared to the ones for bespoke trades [6], the only difference is 

that the attachment point of RE-CDO is re-flattened in the perturbed scenario for CDO2&3 trades. 

Note that in the old risk measure, there are no re-flattening of the RE-CDO and re-mapping of 

the base correlations in the perturbed scenario. The new method enables us to capture the 

underlying risks more accurately. 

 

• The correlation sensitivities of CDO2&3 trades is the same as the ones with bespoke CDO trades, 

because a perturbation of the base correlation does not have any effect on the attachment of RE-

CDO.  

 

The implementation of the MC risk model was first verified by a full bump and revaluation approach 

using the model and an independent test model. The CSPDH of FNM trades is also tested against the 

semi-closed form valuation model, in the case of the homogeneous loss given defaults (LGD). The 

CSPDH of CDO2&3 trades was tested against an independent test model and a full bump/revaluation 

approach using the model.  The default sensitivity and correlation sensitivity for CDO2&3 trades were 

verified by replicating them using the bespoke CDO template. 

 

The MC convergence of CSPDH was also assessed. It is verified that 500,000 paths and 1,000,000 

paths are adequate for CDO2&3 trades and FNM trades, respectively.   

 

The MC risk model is based on the assumption that the payoff is a continuous function of default 

time. Therefore, certain types of trades are excluded from using this method. For example, the FNM 

trade without accrual can not use this method. A full bump and revaluation approach is used instead.  



 

  

Furthermore, in order to monitor such uncertainties, a monthly benchmark test for all outstanding 

FNM trades will be conducted by GRMMR London.   

 

Define a collateral pool of a CDO trade as a set of N reference names, },,2,1{ N= , in which 

each reference name is described by a credit spread curve )(tsi , a recovery rate iR , a default time 

i , and a notional amount iNotl .  Within the current credit derivatives framework a reduced form of 

default probability of a reference name has been implemented and well maintained.  For the thi  

reference name in the collateral pool, the hazard rate curve )(shi  is defined such that the default 

probability between s and s+ds dsshsdsssP iii )(]|[ =+  . With this definition the default 

probability functions built upon the hazard rate are 
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1)(1)( = Default probability, 

(3) )()()( tSthtf iii =  = Default probability density function. 

 

For each credit spread curve, there is a standard term structure defined as jt ={1w, 1m, 3m, 6m, 

1y, 2y, 3y, 4y, 5y, 7y, 10y, 20y}).  The hazard rate is assumed to a stepwise linear function. For the 

thi  obligor, its thj  term is defined as j

ih . 

 

A copula is a mathematical function that combines marginal probability into a joint distribution. For 

N uniform random variables, nN1 U, U,U  , the joint distribution function is defined as 
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which is called the copula function. 

 

The normal copula function is a multi-variate cumulative normal distribution with correlation 

matrix . Applying the normal copula function to the modeling of correlated default events of a 



 

  

collateral asset pool, the uniform random variables are mapped to the default probabilities with 

standard normal distribution. The normal copula function, or the cumulative joint default probability 

for the collateral pool with n assets, can be expressed as 
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where   is the standard cumulative normal distribution function . 

 

As shown in Eq.(5), the normal copula function is actually an N-dimensional integral, which is hard 

to calculate directly if N is large. Instead of directly computing a complicated N-dimensional joint 

default probability, a MC simulation has been proved to be a powerful way of solving the correlated 

defaults problem.  

 

In each MC scenario in order to generate correlated defaults times using normal copula, a series of 

random variables i

N

i

2

i

1 X, ,X ,X   are first generated from an N-dimensional normal distribution with 

correlation matrix .  Within the one factor framework, i

N

i

2

i

1 X, ,X ,X   is generated a combination 

of two random variables.  For the thi obligor in the collateral pool, we assume that its asset process 

follows  
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where iZ , ),2,1( NjZ i

j =  are independent standard normal random variables. The latent 

variable iZ  is shared by all reference names in the collateral pool in the thi  MC scenario. The 

correlation   is a flat constant correlation for all obligors. 

 

For the ith  MC scenario, the default time of the jthobligor is denoted as 

),2,1;,2,1()( NjMiZ ii

j  == , which can be obtained by  
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Where ]1,0[i

ju  is the normal cumulative probability function.  

 

The generated correlated default times, associated with loss given default of each obligor, can then be 

used to price structrued credit derivatives.  Assume the payoff function, either the protection leg or the 

premium leg, is denoted as f . The expected value can be calculated via MC simulation by 

 

(8) 
=

==
M

i

ii

N

iiii ZZZf
M

ZfEEfEV
1

21 ))(,),(),((
1

]][[][  


 

 

Assume the trade has a maturity T . In each MC scenario only the default time before maturity will 

trigger a payoff in Eq.(8). Therefore we are only interested in the default times before T.  There exist 

a value for each obligor 
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Therefore for each obligor we could divide )( ii

j Zu  into regions: smaller than and equal to )( ii

j Zu  or 

larger than )( ii

j Zu . Conditional on the latent variable, the probability of the default time smaller than 

maturity can be expressed as: 
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When a risk factor of the first obligor, denoted as 
1 , is perturbed by a amount of  , the change in the 

expected value can be expressed as 

 

(10) 
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= −  is the scaled default time so that we can force a default before 

maturity for the perturbed obligor. The details about how to achieve this and Eq.(10) can be found in 

Refs. [1,3].  

 

The general comments on the methodology: 

 

1. As shown in Eq. (10), the first part of the right side of the equation is addressed to the 

scenario that the perturbed obligor defaults right after maturity ( +T ) in the base scenario and 

then was brought into the maturity ( −T ) in the perturbed scenario. Note that this part is 

somehow deterministic, especially for FNM trades. As test results shown in Section 2, the 

add-on of this part indeed increase the precision significantly. In a normal CSPDH and 1bps 

shock to each node, we need up to 50MM paths to reasonably model such maturity effect. 

 

2. The second part of the right side of Eq.(10) is attributed to the default event of the perturbed 

obligor that falls within the maturity. Note that, because the default time is rescaled such that 

a default event is forced to occur before maturity in every perturbed MC path, the volatility 

in CSPDH is suppressed greatly. 

 

3. In order to make Eq.(10) work, the payoff function f has to be continuous function of default 

times. Therefore certain types of trades of trade are excluded from using this analytic MC 

sensitivity. For example, the FNM trade without accrual.  

 

4. If the valuation date is prior to the trade start date, a similar effect to that at the maturity can 

be found. Contrary to the maturity, a default event that happens right after the start date can 

be kicked out of the pay off in the perturbed scenario. This effect is discussed in the original 

paper [3] but not implemented in the model. Therefore, a limitation is added to prevent the 

model being used in the case that the valuation date is prior to the trade start date.  



 

  

 

The credit spread sensitivity is defined as the change of MTM when the credit spread curve of an 

obligor is shocked by a small amount. Assume the credit spread curve of the jt  node of the ith 

obligor is perturbed by a small amount , the credit spread sensitivity can be expressed as 
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Within the current modeling framework, the credit spread sensitivities are all computed via 

Jacobians [4, 5, 6].  Suppose we have calculated the sensitivity of base tranche value of protection 

and Val01 with respect the change of all hazard rate nodes. The sensitivities with respect to the 

credit spread curves can then be expressed as 
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The Jacobian
j

i
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 can be calculated using the single name CDS valuation model. 

 

Within the current pricing framework (ref. https://finpricing.com/lib/FiBond.html), the FNM trade is 

calculated via MC simulation and a compound correlation approach. Therefore the MTM can be 

expressed as 

 

(12) 01valsvalpMTM −=  

 

Where valp and 01val  are the values for the protection leg and premium leg, respectively. s  is the 

traded spread. The information of how to calculate these two legs can be found in Ref. [1]. Using 

Eq.(10), we can work out the analytic MC sensitivity for a FNM trade. 

 

The credit spread sensitivity for a CDO2&3 trade is the most complicated model in the Oscar/Fritz 

credit library. As we can find in Ref. [7], a CDO2&3 trade is valued by finding a flattened RE-CDO.  

https://finpricing.com/lib/FiBond.html


 

  

Assume that a RE-CDO trade has an attachment point A and detachment point D. Just like a regular 

bespoke CDO, the credit spread sensitivity can be expressed as 
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When the credit spread of an obligor is changed, the attachment point of the RE-CDO will change, if 

we run a re-flattening. In order words, we need to calculate the Jacobian with respect to the 

attachment point. Taking attachment point value of protection as the example, the Jacobian can be 

written as 
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Note that the first two parts in Eq.(14) are the same as that for a bespoke trade. Within the current 

analytic sensitivity modeling framework, the third part reflects the contribution of the changed 

attachment point in the perturbed scenario. Note that all the components in Eq. (14), except for 
j

ih

A




, 

can be computed within the analytic sensitivity framework for bespoke CDO.  

 

The computation of
j

ih

A




 has to use the CDO2&3 mapping model, in which a Monte Carlo simulation 

for a CDO2&3  trade and a semi-closed form valuation model for RE-CDO are involved.  In the 

model, the attachment point of RE-CDO is found such that MTM of both a CDO2&3 trade and its 

RE-CDO matches at compound correlation of 0.2.  

 



 

  

Mathematically, 
j

ih

A
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
 can be calculated by 
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Now we see that the semi-analytic MC sensitivity has to be used to calculate 

j

ih

CDOMTM



= )2.0,( 2 
 via Eq.(10).  

 

The default sensitivity is a kind of stress tests matching situations in which a credit default event has 

occurred or is perceived to be imminent. Within the current market standard modeling framework, a 

loss given default ( iii NotlRLGD −= )1(  for the ith obligor) is claimed in the event of default. The 

principal of most junior tranche is reduced by iLGD  and the ith obligor is excluded from the 

collateral pool.  

 

By definition, the default sensitivity for the ith obligor in a CDO2&3 trade can be expressed as 
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When calculating
i

new CDOREMTM
−

− )( , the CDO2&3 trade has a loss with the amount of iLGD   

and adjusted a new attachment point and detachment point in the child pools, where the perturbed 

obligor belongs to.  

 


