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Abstract: Many previous research studies have shown how local and even regional earthquakes can
significantly affect the release of radon in the soil. The aim of this work is to investigate the relationship
between radon measurements and the daily seismic activity rate and develop a methodology that
allows estimating the seismic activity rate using only radon measurements. To carry out this study,
the earthquake catalogue of the Vrancea region (Romania) has been used to estimate the daily seismic
activity rate during a given time period, in which radon measurements were also recorded, from
January 2016 to September 2020. The Vrancea zone represents the most active seismic zone in Europe
and is located on the eastern edge of the strongly bent Carpathian arc. In the case of the radon
measurements, seasonal behaviours and linear trends due to non-seismic factors have been identified
and subsequently removed. The discrete wavelet transform has been used to analyse the radon
signal at two different scales: long and short periods. From the analysis carried out on a long-period
scale, an approximate linear relationship has been obtained between the radon series and the daily
seismic activity rate, which provides insights into the behaviour of the seismic activity in the study
region with only the radon information. In addition, the study reveals certain characteristics that
could be used as precursors of earthquakes at different scales: weeks in the case of the estimated
daily seismic activity rate, and days in the case of the short-period signal obtained by the wavelet
analysis. The results obtained for this region allow us to hope that the analysis of the radon time
series can become an effective complement to the conventional seismic analysis used in operational
earthquake forecasting.

Keywords: radon measurements; Gutenberg–Richter distribution; daily seismic activity rate; discrete
wavelet transform

1. Introduction

The release of radon from natural minerals has been known since the 1920s but its
monitoring has more recently been used as a possible tool for earthquake prediction be-
cause the distribution of the soil–gas radon concentration is closely related to the geological
structure, fracture, nature of rocks, and distribution of sources [1]. Based on radon anoma-
lies observed before earthquakes, most researches [2–4] have indicated that changes in
the radon release rate may be one of the key earthquake precursory phenomena. 222Rn is
believed to emanate from fractures in the rocks and soil, an inherently porous medium [1].
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The main radon isotope 222Rn in groundwater and near-surface air is generated by
the alpha decay of the radium isotope 226Ra as part of the uranium decay chain [5]. 222Rn
has a half-life of 3.8 days. Radon is retained by triple-bonded carbon compounds in the
soil and released when these carbon triple bonds are oxidized to double bonds through
positive hole charge carriers, which are activated by local and regional tectonic stresses.
In addition, these carriers present a high capability to spread over large distances and are
prone to accumulate at the surface [5].

Thus, it is to be expected that local earthquakes and even regional ones can signifi-
cantly affect the activation of these carriers and, therefore, the release of radon in the soil.
As a result, deviations (or anomalies) from the mean (seasonal) radon behaviour can be
related to changes in seismic activity [6]. Regarding the anomalies, it is important to take
into consideration the following issues: (a) the identification of the maximum distance
between the epicentre of an earthquake and the site where the anomaly of radon is ob-
served [6]; (b) the period between the observation of the anomaly and the occurrence of an
earthquake of a given magnitude (precursor time) and the duration of the anomaly after
the earthquake [7]; (c) the magnitude of the upcoming earthquake and the importance of
the tectonic structure of the seismogenic source [6].

In this sense, several research groups have investigated the relationship between the
magnitude M and the distance D between the epicentre of an earthquake and the site of
the observed geophysical or geochemical anomaly. Riggio and Santulin [6] reviewed the
current literature pointing out that a widely used relationship for radon diffusion is that of
Hauksson and Goddard [4]: M = 2.4 log10 D − 0.4, where M is the minimum magnitude
required to obtain a radon anomaly at distance D (km).

Nevinsky et al. [8] developed relationships between magnitude M and distance D
(km) using soil and groundwater radon from recording stations around the Black Sea and
the results were compared with previous relationships using the same stations. Attending
to their results, a distance D ≤ 10 km is needed to obtain a radon anomaly from a mini-
mum magnitude of 2.8 ± 1.0 (mean value from all the formulas analysed) and a distance
D ≤ 70 km from a minimum magnitude of 4.0 ± 0.7. In addition, the formulas indicate that
earthquakes with a minimum magnitude of 5.6 ± 0.9 at a distance D ≤ 1000 km may also
be responsible for anomalies in the radon recording.

More recently, Papachristodoulou et al. [9] applied the relation RE ≤ 1.5 × 100.43M in
northwestern Greece to constrain the earthquake catalogue that could generate soil radon
anomalies at the monitoring site. Concretely, RE is the distance between the epicentre and
the measuring site.

The application of any of these relations allows making a selection of the used cat-
alogue events and can give information on the area affected by the deformation process
that precedes an earthquake of a given magnitude, defining the distance at which a radon
anomaly is attributable to a given earthquake might be detectable.

According to these studies, strong earthquakes may be correlated with radon anoma-
lies within a large distance from the epicentre to the location of the radon station. However,
in the case of persistent low-amplitude seismicity, the possible correspondence with radon
anomalies is more ambiguous. This may explain why it is so difficult to relate a specific
radon anomaly with a given earthquake. Radon recordings contain information on radon
anomalies due to many earthquakes (seismic activity) in the area of influence determined
by the distance D (which increases with the size of the earthquake). Therefore, these radon
anomalies will be recorded in the station for larger magnitudes, but they will be incomplete
for lower magnitudes because many of those smaller earthquakes will be outside of the
area of distance D.

On the other hand, the literature indicates that the precursor time used to be between
2 days and 3 weeks before the occurrence of an earthquake, although anomalies occurring
45 days before the occurrence of large earthquakes [10] and even 485 days before the
occurrence of a 7.2 magnitude in China [1] have been reported. In conclusion, neither the
start nor the end of a radon anomaly seems to be directly related to the origin time of the
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imminent earthquake, although often an earthquake occurs within a month of an increase
in radon emissions and the anomaly can continue after the event.

Regarding the connection between the magnitude of the upcoming earthquake and the
corresponding radon anomaly, Walia et al. [11] proposed two linear relationships between
the logarithm of the product of radon anomaly and epicentral distance and the magnitude
of the earthquakes due to the different behaviours of small earthquakes (M ≤ 3.5) and
moderate to large earthquake (M > 3.5).

In this way, different rules to identify earthquakes relating to radon signals have been
proposed by several researchers [3,8,12–16]. Most of them are based on the detection of
radon anomalies, defined as a positive deviation that exceeds the mean radon level by
more than twice the standard deviation.

However, according to Cicerone et al. [1], although there is a very wide range of
earthquake magnitudes for which anomalous radon precursors have been reported, there is
still no consensus on a direct relationship between the radon anomalies and the magnitude
of the upcoming earthquake. Most of the observed radon changes (50% to 100% change
relative to the background radon level) are for earthquakes greater than magnitude 4.0
and usually, the reported change is an increase in the radon concentration prior to the
earthquake [1].

From the previous discussions, we assume the hypothesis that changes in the radon
release rate are not produced by a single large earthquake, but are a cumulative effect
due to the seismicity in the area of influence of the recording station. This cumulative
radon anomaly behaviour might be assumed to be similar to the Gutenberg–Richter (GR)
distribution of seismicity [17,18] in the influence area of the station, also showing a magni-
tude of completeness related to the size of the area of influence and the fact that the radon
anomalies due to small magnitudes at a long distance from the stations are not recorded.

From the viewpoint of operational earthquake forecasting (OEF), a time-dependent
probabilistic seismic hazard analysis (TD-PSHA), based not only on the temporal changes
of the seismicity but also on the temporal changes of the radon measurements in a seismic
region, will increase the accuracy of the results. The frequency of earthquakes generated by
any seismic source defines the earthquake recurrence model usually used in probabilistic
seismic hazard analysis (PSHA). Gutenberg and Richter [17,18] proposed the simplest and
widely used earthquake recurrence relationship as given in Equation (1).

log10(λM) = a− b·M (1)

where λM is defined as the total number of earthquakes with a magnitude larger than M
for the period covered by the earthquake catalogue; a and b are the GR parameters. The
number of events with a magnitude larger than M can be provided for shorter periods (for
example, per year or day). In this case, λM is also known as the annual or daily seismic
activity rate. The computation of the seismic activity rate is needed when PSHA is obtaining
the likelihood of at least one event of magnitude higher than M within a time interval t
(usually one year for conventional PSHA and one day for TD-PSHA). This probability,
named the probability of exceedance, is calculated using Equation (2), assuming that the
occurrence of earthquakes follows a Poisson distribution.

P(M) = 1− e−t·λM (2)

Thus, using the mean annual (or daily) exceedance rate of earthquakes, the probability
density function of earthquake recurrence, the probability density function of source-to-site
distance, and the probability of exceedance, a given ground motion value conditioned to
the magnitude and distance (i.e., the PSHA or TD-PSHA) are computed using the classical
Cornell [19] approach.

Therefore, if a direct relationship is established between the radon anomalies in a
given seismic region and the temporal changes in the daily seismic activity rate in that area,
the TD-PSHA could be computed for any site of interest providing a forecast of the daily
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probability of exceedance of a given ground motion, which can later be converted to the
daily probability of exceedance of a fixed-loss ratio. These results would be very valuable
for the current OEF systems.

The aim of this work is to investigate the relationship between radon anomalies and the
daily seismic activity rate and develop a methodology that allows estimating the seismic
activity rate using only radon measurements. To carry out this study, the earthquake
catalogue of the Vrancea region (Romania) has been used to estimate the daily seismic
activity rate during a given period, in which radon measurements were also recorded, and
obtain a correlation model between both variables.

Previous to any correlation, seasonal periodicities as well as linear trends, which might
be due to other non-seismic factors such as meteorological ones (e.g., temperature, pressure,
etc.), have been removed [20,21]. After that, the discrete wavelet transform has been used
to analyse the radon signal on two different scales: long and short periods.

Additionally, the study carried out reveals certain characteristics that could be used as
precursors of earthquakes at different scales: weeks/months in the case of the estimated
daily seismic activity rate, and days/weeks in the case of the short-period signal obtained
by the wavelet analysis.

The surveying of radon concentration is not only used in earthquake forecasts but also
in fracture trace and environment monitoring and is the subject of many environmental
programs, especially because radon is considered a natural hazard and the main contributor
to lung cancer second to smoking. Thus, earthquake forecasts should benefit from the
existence of radon-monitoring networks all over the world, even if their main purpose is
different from the seismic ones.

This paper is structured as follow: The area under study and the data recordings are
presented in Section 2. After that, a brief description of the different methods used in the
analysis of the time series is introduced in Section 3. The paper continues with the analysis
and discussion of the results (Section 4) and the main conclusions (Section 5).

2. Seismic Settings and Data Acquisition

The Vrancea zone represents one of the most active seismic zones in Europe and is
located on the eastern edge of the strongly bent Carpathian arc. The curvature of the
Carpathian Mountains is characterised by many faults and intermediate-deep earthquakes.
The area has been monitored to highlight the phenomena that precede intensive seismic
periods for a short-term forecast. The monitoring equipment has been located according to
the geological features of the location (Figure 1). Every station sends information to the
NIEP centre (National Institute for Earth Physics from Romania) automatically. Radon
monitoring occurs indoors in the air near the ground using Radon Scout PLUS sensors,
produced by SARAD, at a sampling rate of 3 h. The seismicity in the area is characterised by
shallow seismicity with moderate earthquakes (Mw < 5.6) together with intermediate-depth
activity featuring strong earthquakes (Figure 1). More information about the deployed
monitoring network can be found in [22].
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parameters for the first days of the radon measurements, the seismic catalogue starts sev-
eral months before the starting day of the radon measurements. Hence, the seismicity 
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tween 1.2 and 5.5 and depths from 1.0 to 196 km. There is a mean of 30 events by month. 
Most of the earthquakes have magnitudes greater than 2.5. Most of the events have a 
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Figure 1. Seismicity in the Vrancea region (Romania) from July 2015 to August 2020. The SHARE
intermediate-deep seismic zone [23,24] and the location of the radon stations are also represented.

For the present study, the measurements taken at the BISRd station have been used, as
it is located in the most central part of the Vrancea zone and covers a longer period of time
without gaps, spikes, or corrupted data. The station is installed inside a place made with
brick walls. In Figure 2, radon, temperature, pressure, and relative humidity measurements
are shown for the BISRd station for the period between 31 December 2015 and 30 June
2020. Additionally, the earthquakes registered during this period are also shown. As can
be observed, seismicity in this region occurs almost daily.

According to Figures 1 and 2, a seismic catalogue covering the whole period in which
there are radon recordings has been selected. To assure a correct computation of the GR
parameters for the first days of the radon measurements, the seismic catalogue starts several
months before the starting day of the radon measurements. Hence, the seismicity from
1 July 2015 to 30 September 2020 is used to analyse the correlations between the seismic
activity rate and the radon activity. The catalogue is part of the official NIEP catalogue that
can be downloaded from http://www.infp.ro/index.php?i=romplus (accessed on 29 April
2022) and it contains 2158 events with a moment magnitude range (∆Mw) between 1.2 and
5.5 and depths from 1.0 to 196 km. There is a mean of 30 events by month. Most of the
earthquakes have magnitudes greater than 2.5. Most of the events have a depth greater
than 50 km, i.e., 39% are shallow seismicity (1 to 50 km) and 61% are intermediate-deep
seismicity (below 50 km depth).

As it can be seen in Figure 1, the earthquakes are found within a maximum distance
of 45 km from the BISRd station. Thus, by applying the relationship proposed by Pa-
pachristodoulou et al. [9] (i.e., RE ≤ 1.5 × 100.43M), the radon station should record all the
radon anomalies due to earthquakes with a magnitude M > 3.5. Hence, the magnitude of
completeness for the radon anomalies should be around this minimum value.

http://www.infp.ro/index.php?i=romplus
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3. Methods
3.1. Discrete Wavelet Transform (DWT)

The discrete wavelet transform (DWT) can be described as a sub-band coding scheme [25]
where the signal is iteratively divided into low and high frequencies by applying two
quadrature filters plus downsampling. Thus, the signal is decomposed into a finite number
of scales or levels. The high-pass filter, known as the wavelet filter, is derived from a
basic function called the mother wavelet, meanwhile, the low-pass filter is known as the
scaling filter.

The coefficients obtained from the low-pass filters represent the approximation of the
signal at different scales. On the other side, the resulting signals from high-pass filters
are known as wavelet or detail coefficients and provide the details of the input signal at
different scales or resolutions.

In this way, any signal can be analysed at different time-frequency resolutions by
properly selecting the approximation and wavelet coefficients. The contribution of one or
several of these coefficients to the original signal can be analysed by zeroing the rest of the
coefficients and then reconstructing the signal through the inverse transform. Therefore, a
wavelet band-pass filter can be accomplished (e.g., [26,27]).

In the present work, the input time series is split into two signals. The low-frequency
behaviour is extracted by selecting the approximation coefficients of the maximum scale.
Meanwhile, the high-frequency components or details are obtained with the contribution
of all the other wavelet coefficients.

More details of the discrete wavelet analysis can be found in [28–30].

3.2. Cross-Wavelet Transform (XWT) and Wavelet Coherence (WTC)

The cross-wavelet transform (XWT) and the wavelet transform coherence (WTC) allow
investigating relationships between two signals along time and frequency and determining
common behaviours between them.

The study of interrelation between pairs of time-domain signals can be performed
by the application of the XWT, which is defined as the product of the respective wavelet
transforms. As a result, the cross-wavelet power and the local relative phase between both
signals in the time–frequency space are obtained.

In the other way, the WTC analyses the coherence and phase lag between two time
series as a function of both time and frequency. The higher the coherence between the
signals, the higher the relation in terms of frequency and phase. Areas with high common
power between signals are identified.

More details about the XWT and WTC can be found in [31,32].

3.3. Short-Time Correlation Analysis (STC)

Correlation analysis is a statistical method used to assess the relationship between two
different signals. It can be quantified through the Pearson correlation coefficient, which
takes an absolute value between 0 (no correlation) and 1 (perfect correlation). If both signals
are well-correlated, a linear regression analysis can be carried out in order to estimate the
mathematical equation that relates both signals.

In the case of stationary signals, the correlation analysis works correctly. However, for
non-stationary signals and especially for relatively long time series, the correlation analysis
does not provide clear insights into the possible relationship.

In this work, a new approach is proposed and implemented in order to study the
possible correlations along the time.

For this, the signals are analysed day by day, applying a time window centred on the
selected day and estimating the best correlation coefficients. For each day, any possible
lag that may exist between both windows is also taken into account. Thus, the window
applied to one of the signals is centered on the selected day, dselect; in the other time
series, 2 × lag + 1 windows are analysed, whose centres will go from the dselect − lag to the
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dselect + lag. Once the windows that provide the best correlation coefficient for the selected
day have been determined, the best linear fit is obtained.

At the end of the time series analysis, the slopes and y-intercepts associated with the
best linear fit obtained for each of the days are averaged. For this calculation, only the days
with a correlation coefficient higher than 0.9 will be used.

3.4. Similarity Analysis

In order to evaluate the obtained results, three different metrics are used to investigate
the resemblance or deviation between the expected and the predicted signals. Concretely,
the root mean square error (RMSE), the correlation coefficient (R2), and the similarity
coefficient (S) will be applied for every time window of analysis (see Section 3.3).

The RMSE is used to measure the degree of the standard deviation between the
observed and the predicted signals. The smaller the RMSE value, the closer the prediction
values to the observation values.

The value of R2 reflects the linear correlation between the prediction and the observa-
tion time series. Its value ranges between 0 and 1. For the correlation coefficient, less than
0.3 is considered no correlation, and 0.3 to 0.8 is considered a weak correlation [33].

Finally, the similarity coefficient between two signals is a measurement of the con-
sistency of the respective time series. It takes a value between zero and one and it is
equal to one only if the waveforms of both signals are completely the same in shape and
amplitude [34]. In practice, the value will reach its maximum.

4. Results and Discussions
4.1. Seismic Activity Rate

The seismic activity rate is computed using the methodology proposed by Gulia et al. [35].
Following this methodology, a continuous GR parameter time series is obtained from
devoid artifacts [36,37]. A fixed number of events (100 events) is chosen for each window of
analysis and they are moved through the catalogue event by event, thus exploring the full
range of variability in the data [35]. The correct assessment of the completeness magnitude
is critical for the correct estimation of the GR parameters; therefore, the maximum curvature
method is used [36]. The GR parameters are usually plotted at the beginning, middle, or
end of the time window that they represent. Following Tormann et al. [36], the values are
assigned to the end of the time window as it is the most sensible to physically understand
the resolved signals.

The software ZMAP [38,39] is used for computing the temporal evolution of the GR
parameters, a and b, whose values allow computing the temporal evolution of the seismic
activity rate (λM) for a given threshold magnitude (M). Finally, λM is resampled in such a
way that it has a value per day, which provides the daily seismic activity rate.

Thus, in the present work, the continuous GR parameter time series, a and b, have
been computed from the Vrancea full catalogue (from July 2015 to September 2020) using
the methodology explained earlier (Figure 3a). Subsequently, these values have been used
to obtain log10(λM) for different threshold magnitudes, M (Figure 3b).

In Figure 3b, it can be observed how the curves obtained for the different magnitudes
follow a similar behaviour. As the magnitude decreases, the mean value of log10(λM)
changes and its range of variation becomes smaller and smaller, reaching a practically flat
curve for M ≥ 3.0.
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A linear regression analysis between the curve obtained for M > 6.0 and the other
curves, provides the mathematical expression that relates them. In this way, once the daily
seismic activity rate is obtained for M > 6.0, i.e., log10(λ6.0), it can be estimated for any
other magnitude by applying Equation (3):

log10(λM) = f1(M)· log10(λ6.0) + f2(M) (3)

where f1(M) and f2(M) are the slope and the y-intercept, respectively, of the linear fitting.
These values are different for each magnitude, hence their dependence on the variable M
is indicated.

In Figure 4, the f1(M) and f2(M) values obtained for different magnitudes are shown.
It can be observed how the slope and the y-intercept estimated for the different magnitudes
between 3.0 and 6.0 follow a linear behaviour, at least from 3.5 onwards.
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A linear regression analysis of these values returns the following relations Equation (4):

f1(M) = 0.35·M− 1.11f2(M) = 0.24·M− 1.44 (4)

Attending to the results shown in Figures 3b and 4, the magnitude of completeness
might be established around 3.5.
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4.2. Meteorological Effects

Several authors [9,20,21,40–45] have pointed out the importance of removing the
effects of meteorological parameters, as temperature can feature multiple seasonality on
the radon temporal series.

In Figure 2, the time series of radon, temperature, pressure, and relative humidity
are shown. At first sight, the temperature series is the one that presents a clear seasonal
behaviour.

Initially, the relationship between the radon measurements and the local climate
variables has been measured with the Pearson’s correlation coefficient. However, long
non-stationary time series such as these are unlikely to obtain good results when they are
compared as a whole.

Alternatively, the XWT and WTC have been used to explore the possible interde-
pendencies between these variables (Figure 5). The XWT and the WTC between pairs of
signals have been implemented with software provided by Grinsted et al. [31], available as
a MATLAB software package. The statistical significance level of the WTC is determined
by Monte Carlo methods [46]. Edge effects caused by discontinuities at endpoints are
evaluated by the Cone of Influence (COI) [47].

In Figure 5, the periodicity at the 365-day band is identified when performing the
XWT and WTC. The spectral strength and coherence range from dark blue (weak) to yellow
(strong). For all the plots, the cone of influence (curved lines) determines the area where the
edge effects cannot be ignored. The border distortion is usually caused by insufficient data
points both at the beginning and end of finite-duration signals. The edge effect increases
with scale and reduces the effective length of the analysed data series.

Thus, the results obtained with the XWT show how the radon is well correlated with
the other three variables (temperature, pressure and relative humidity) for periods of
365 days.

From the point of view of the coherence between the signals, the WTC shows also its
maximum amplitude at the 365-day nark, especially when we relate radon to temperature
or pressure, with coherence values higher than 0.8.

In the case of the radon–temperature relation, it has been frequently observed in other
works [48–51]. In the present study, the XWT and WTC plots show how the direction
of the arrows remains constant throughout the 1-year period, which indicates that the
phase difference between these radon and temperature variables is constant, or almost
constant, over time. It is important to note that this phase difference is dependent on the
sites’ locations and therefore strongly controlled by local factors [52].

Thus, the occurrence of the 1-year cycle in the radon and other environmental mea-
surements suggests that these observations could be related in some way to a common
causative factor.

From the previous analysis, it can be deduced that the radon series includes oscillations
of 1-year periods, which are due to other external factors, but cannot be attributed to the
seismicity of the area. Therefore, it is crucial to eliminate this seasonal behavior beforehand.

In the present work, the 1-year oscillations, as well as any possible linear trends, have
been identified by using cubic-spline interpolation [27]. In Figure 6, the radon anomaly
that corresponds to the subtraction of the seasonal behaviour from the radon time series
is shown.
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Figure 5. XWT and WTC performed in pair of signals: Radon—temperature; radon—pressure; and
radon—relative humidity. The bottom axis is time. Spectral strength is shown by colours ranging
from blue (weak) to yellow (strong). The central vertical axis indicates periodicities (days). The
relative phase relationship is shown as arrows (with in-phase pointing right, anti-phase pointing
left, and one signal leading the other by 90◦ pointing straight down) and can be also interpreted as a
lead/lag of one signal in relation to the other.
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4.3. Data Preprocessing

The radon anomaly has been studied at two different scale ranges through the
DWT application.
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Concretely, the DWT has been applied to the radon signal (obtained from Section 4.2)
and the daily seismic activity rate (obtained from Section 4.1). As the wavelet mother, the
Daubechies 10 has been selected, which experimentally has been considered appropriate
for the study of other microclimatic signals [53]. A maximum level of decomposition equal
to 6 has been selected.

On the one hand, the signals corresponding to the approximation coefficients have
been selected, which implies the study of periodicities over 64 days (maximum level, 6).
These signals will be used to study the relationship between the radon anomaly and the
daily seismic activity rate.

On the other hand, the sum of the wavelet coefficients of the radon anomaly has also
been selected to investigate small periodicities below 64 days. In this case, deviations from
the mean value might be related to incoming earthquakes.

The DWT analysis has been carried out using the software provided by Galiana-
Merino et al. [27]. In Figure 7, the obtained approximation coefficients are shown.
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Figure 7. Approximation coefficients from the DWT analysis: (a) Radon anomaly and (b) daily
seismic activity rate (M > 6.0).

4.4. Radon and Seismic Activity Rate Relation

The STC approach explained in Section 3.3 has been applied to the approximation
coefficients in order to investigate possible correlations between radon and the daily seismic
activity rate.

For each window of analysis, the best linear adjustment is calculated. After that, the
median value (slope and y-intercept) is selected for the whole time series. It is not intended
to indicate that there is a direct linear relationship between both variables. The objective is
to be able to roughly estimate the behaviours (rise and fall intervals, peaks and troughs) of
the daily seismic activity rate from the radon measurements.

In order to study the robustness of the proposed approach, the STC analysis has been
applied to 100 2-year intervals, arbitrarily selected from the entire series. In Figure 8,
the comparison between the expected daily seismic activity rate, i.e., log10(λM), and the
predicted one from the radon anomaly, i.e., E

[
log10(λM)

]
, is shown.
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Figure 8. Comparison between the expected log10(λM) (blue line); the 100 predicted curves from the
2-year interval analysis (orange lines); and the predicted curve using the median values, E

[
log10(λM)

]
,

(red line). The grey shaded areas indicate intervals with higher similarity.

The orange curves are the predicted signals obtained from the analysis of the 100
2-year intervals arbitrarily selected. As observed, they present a very low dispersion
around the median value (red curve), which is indicative of the robustness of the obtained
results for these time series.

The grey shaded areas try to draw attention to the time intervals in which the predicted
curve follows the expected behaviour (increasing/decreasing intervals, peaks and troughs).

Thus, the approximate relationship between both variables using the median values
of the slope and the y-intercept is expressed for the site under study as Equation (5):

E
[
log10(λM)

]
= 0.0388

m3

Bq
∆·Rn− 2.4634 (5)

where ∆Rn corresponds to the approximation coefficients obtained in Section 4.3 for the
radon anomaly. For the study site, this relation provides insights into the behaviour of the
daily seismic activity rate from the radon measurements. We must remember that this is
not an exact relationship between both signals as a radon anomaly might be affected by
other additional factors.

As explained in Section 3.4, three different metrics have been used to evaluate the
performance of the STC approach: the correlation coefficient, the similarity coefficient, and
the root mean square error. In Figure 9, the results estimated for each day of analysis are
shown. In this case, the complete time series have been analysed.

In the case of R2, values higher than 0.8 indicate a very good correlation. As for S,
the closer the value to 1, the greater the degree of similarity. Finally, the value of RMSE
is recommended to be below 0.5. Attending to these considerations, the curves shown in
Figure 9 have been plotted in red for those intervals in which these criteria are met.

In the case of the RMSE values, it can be seen that the largest deviations from the
expected results occur mainly at the beginning and end of the time series, which might be
associated with some border effects due to the lack of previous (or subsequent) data.

Important deviations also appear around the interval from 30 June 2019 to 31 December
2019, especially for the R2 and RMSE values. In this time interval, the radon signal presents
a peak of relatively large amplitude compared to the other peaks, which must be due to
other as-yet-unknown external factors.

Regarding the S value, it is important to highlight how it remains above 0.9 for all the
time series.
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4.5. Application to Forecasting Studies

From the analysis carried out in the previous section, we can observe that the behaviour
of the daily seismic activity rate can be estimated roughly using radon measurements.
Applying Equations (3)–(5), the correlation between radon anomaly and the daily seismic
activity rate can be estimated for any magnitude above the magnitude of completeness.
Once estimated log10(λM), the probability of exceedance can also be obtained.

Each day, a radon series of 2 years prior to the current day could be analysed and an
estimate of the possible daily seismic activity rate could be made. Thus, increases in the
seismicity of the analysed site could be detected through radon measurements.

In Figure 10, the estimated daily seismic activity rate (Figure 10b) is compared with
the sequence of earthquakes of magnitudes greater than 4.5 that occurred in the Vrancea
region (Figure 10a). Considering the seismicity in the region under study (Figure 2a), we
can see that most of the registered earthquakes have a magnitude below 4.5 and occur daily.
Thus, in order to identify some characteristics in the seismic activity rate that might be
indicative of incoming stronger earthquakes (according to the magnitudes in the area), we
have chosen 4.5 as the magnitude threshold since above it there are only a dozen events in
the analysed period.
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If we compare the estimated log10(λM) with the sequence of earthquakes of mag-
nitudes greater than 4.5 that occurred in the Vrancea region, then we can observe how
earthquakes of magnitudes M ≥ 4.5 have been preceded by increases in seismicity and
local maximums, detected sometimes several weeks/months prior (see vertical orange
arrows). Thus, it might be used as an input for a possible design of a forecasting system for
the region.

In Figure 10c, the sum of the wavelet coefficients of the radon anomaly are also shown
(see Section 4.3). In addition, two dashed red lines are included, which indicate ±2 the
standard deviation. According to other authors (e.g., [3,8,12–15]), a positive deviation
that exceeds the mean radon level by more than twice the standard deviation might be
indicative of incoming earthquakes. In the present study some deviations of this type can
be observed that occur a few days/weeks before some of the earthquakes with magnitudes
above 5.0 (see green shadow areas).

As a conclusion, both types of information could be used as input for computing the
TD-PSHA in the region under study. Concretely, when computing the TD-PSHA, a logic
tree can be drawn in such a way that a branch represents the computation of λM using
conventional methods and other branches using the radon measurements, allowing a better
representation of the uncertainties when providing OEF metrics (hazard gain, loss gain)
to stakeholders.

5. Conclusions

In this work, the relationship between the radon time series and the daily seismic
activity rate has been investigated and a new methodology that allows estimating in
advance the seismic activity rate using only radon measurements has been developed.
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The study carried out is based on the fact that daily radon release is related to the
cumulative effect of daily seismicity in the area of influence of the recording station, and
not only to the effect that a single earthquake can produce.

The proposed methodology has been tested in the Vrancea region (Romania). The
earthquake catalogue used comprises a given period in which radon measurements were
also available, that is, from January 2016 to September 2020.

The daily seismic activity rate for a given threshold magnitude has been computed
using the temporal evolution of the GR parameters, a and b, which were previously
estimated following the methodology of Gulia et al. [35].

The relationship between radon and other climate variables has been also studied by
wavelet analysis. Periodicities of 365 days have been identified and subsequently removed
from the radon time series. After that, the DWT has been applied to split the radon signal
into two components: approximation coefficients (long periods) and the sum of the wavelet
coefficients (short periods). A short-time correlation analysis has been subsequently applied
to the approximation coefficients of the radon signal and the daily seismic activity rate,
obtaining a linear relationship between both variables. Although there are other external
factors that can affect the radon signal, this linear approximation allows an estimation
of the daily seismic activity rate from only the radon series and provides insights into a
possible increase/decrease in seismic activity in the region under study.

Finally, the comparison of the estimated daily seismic activity rate and the wavelet
coefficients of the radon signal with the sequence of earthquakes with a magnitude higher
than 4.5, reveals certain characteristics of both signals that could be used as precursors
of earthquakes at different scales: weeks/months in the case of the seismic activity, and
days/weeks in the case of the wavelet coefficients.

The forecasting of the daily seismic activity rate from radon anomalies could become
an important tool for the development of new time-dependent probabilistic seismic hazard
analyses. In any case, additional studies should be carried out for other regions and
radon stations.
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