
PREPRINT- 1st December 2022

Deciding Boolean Satisfiability in Polynomial Time
Deciding All SATs in Polynomial Time

Okoh Ufuoma1

1Department of Mathematics and Science, Southern Maritime Academy, Uwheru, Delta, Nigeria

Abstract
The goal of this work is to modify the famous DPLL algorithm to solve all SATs in
polynomial time.
keywords : SAT, satisfiable, P versus NP, algorithm, polynomial time.

1 Introduction
What we commonly call SAT is by many termed Boolean satisfiability problem which imports the question as to whether
a CNF Boolean formula is satisfiable [6]. About 1960, Davis, Putname, Longemann, Loveland, and others investigated
the SAT problem, and their famous algorithm which solve all SATs is called DPLL algorithm [2],[5]. It is the most com-
mon algorithm for deciding SAT in computer science.

The major drawback of the DPLL algorithm is that it runs in exponential time [4]. The goal of this paper is to modify
the DPLL algorithm to solve all SATs in polynomial time [3].

The rest of this work is divided into five sections. Section 2 is concerned with the definitions, notations and laws required
to understand SAT. Section 3 deals with the DPLL algorithm for solving SAT. In Section 4 we modify the DPLL recursive
splitting rule. Section 5 concerns the transformation of the sum of two CNF formulas into a single CNF formula. The
6th section is concerned with a novel polynomial time algorithm for solving SAT.

2 Definitions, Notations and Laws
Boolean Algebra is that branch of Algebra in which the relations of truth values are investigated by representing them
by symbols or letters which may be either 0 or 1. It is customary in this Algebra to use the phrase logical values as
synonymous with truth values and this meaning will be attached to the phrase throughout the present work.

Any letter used to represent an unspecified logical value is termed a Boolean variable. In Boolean algebra, the logical
operations of addition +, multiplication · and negation − are performed on the Boolean variables. A Boolean variable or
its negation is a literal. Any expression built up from Boolean variables, say A, B, C , . . . or A1, A2, A3, . . . and the Boolean
values 0 and 1 is called a Boolean expression. For instance A+ B is a Boolean expression comprising two variables A
and B or two literals A and B.

The logical assumptions which are taken to be true without proof are called Boolean axioms. Theorems used to simplify
Boolean expressions are known as Boolean theorems. Some special axioms and theorems are stated as follows.

1. Addition law:

A1: 0+ 0= 0

A2: 0+ 1= 1

A3: 1+ 0= 1

A4: 1+ 1= 1

2. Multiplication law:

A5: 0 · 0= 0

A6: 0 · 1= 0

A7: 1 · 0= 0

A8: 1 · 1= 1

3. Annulment Law:

Page 1 of 7

PREPRINT- 1st December 2022

T1: 1+ A= 1

T2: A · 0= 0

4. Identity Law:

T3: 0+ A= A

T4: A · 1= A

5. Idempotent Law:

T5: A+ A= A

T6: A · A= A

6. Double Negation Law:

T7: A= A

7. Complement Law:

T8: A+ A= 1

T9: A · A= 0

As in ordinary algebra, the following laws hold in Boolean algebra: commutative and associative laws for addition and
multiplication, distributive laws both for multiplication over addition and for addition over multiplication.

The logical sum of literals on distinct variables is called a clause. A clause with only one literal is referred to as a unit
clause. The literals of a clause can be written in increasing order as in

A1 + A4 + A7

or in alphabetical order as in
B + C + F .

A Boolean formula is a logical expression defined over Boolean variables. A Boolean assignment to a set of Boolean
variables is the set of logica values assigned to the variables in other to evaluate a Boolean formula. A satisfying
Boolean assignment for a Boolean formula is an assignment such that the Boolean formula evaluates to logic 1. If the
Boolean variables associated with a Boolean formula can be assigned logical values such that the formula turns out to
be logic 1, then we say that the formula is satisfiable. If it is not possible to assign such values, then we say that the
formula is unsatisfiable.

We will be interested in Boolean formulas in a certain special form, the conjunctive normal form; it is the generally
accepted norm for SAT solvers because of its simplicity and usefulness. A conjunctive normal form CNF is a multipli-
cation of clauses. A K-CNF is a CNF in which every clause contains at most K literals. If the negation of a literal does
not appear in a CNF formula, we refer to it as a pure literal. The formula

d1 = (A+ B)(A+ B + C)(A+ B + C)

is a 3-CNF Boolean formula with three variables
A, B, C ,

five literals
A, A, B, B, C ,

and three clauses
(A+ B), (A+ B + C), (A+ B + C).

The negation of the literal C does not appear in the formula and so C is a pure literal.

Page 2 of 7

PREPRINT- 1st December 2022

3 Deciding SAT by DPLL Algorithm
The DPLL algorithm is the most popular complete satisfiability (SAT) solver. While its worst case complexity is expo-
nential, three rules are applied to speed-up the decision process [1].

1. Unit Propagation Rule. This rule states that one can set the value of the only unassigned literal of a unit clause in
such a way that the clause is satisfied.

2. Pure Literal Rule. The pure literal rule states that if an unassigned literal appears while its negation does not, we
can set the value of the literal to 1.

3. Splitting Rule. This states that one should choose an assignment of 1 or 0 for a Boolean variable in a formula,
simplify the formula based on that choice, then recursively check the satisfiability of the simplified formula. If the
simplified formula is satisfiable, the original formula is satisfiable, otherwise, the same recursive check is done
assuming the opposite logical value.

We furnish an instance of the way in which DPLL algorithm is used to solve SAT.

Example 1. Use the DPLL approach to decide the satisfiability of

φ = (A+ B + C)(A+ B + C)(A+ B + C)(A+ B + C).

Unit propagation is not possible as there are no unit clauses. Pure literal rule is not applicable as there is no literals that
occur only positively or only negatively. We apply the splitting rule by selecting some literal, say A. We put A= 0 and
propagate. This results in

φA=0 = (1+ B + C)(0+ B + C)(0+ B + C)(0+ B + C)

which becomes
φA=0 = (B + C)(B + C)(B + C).

Unit propagation and pure literal are still not applicable. Apply splitting rule for the next literal B. Set B = 0 and
propagate:

φA=0,B=0= (1+ C)(0+ C)(0+ C).

which becomes
φA=0,B=0= (C)(C).

This formula consists of two unit clauses and so it is possible to apply unit propagation, which results in

φA=0,B=0= 0.

Since φA=0,B=0= 0, we backtrack, set B = 1 and propagate:

φA=0,B=1= (0+ C)(1+ C)(1+ C)

which results in
φA=0,B=1= (C).

We apply unit propagation or the pure literal rule and conclude that this formula and hence the original formula is
satisfiable.

4 Modification of the Splitting Rule of DPLL
Based on the DPLL splitting rule already mentioned, we choose a literal say Ak from the initial CNF formula dk consisting
of the variables Ak, Ak+1, . . . , An and assign the logic value 1 to it. The resulting CNF formula is denoted [dk]Ak=1. Notice
the use of the square brackets around dk. In fact, the notation

[dk]Ak=1

indicates that the logic value 1 is to be substituted for the variable Ak in the CNF formula dk. We check if [dk]Ak=1 is
satisfiable; if this is the case, the initial CNF formula dk is satisfiable; otherwise, we do the same check, assuming the
opposite logical value 0. Thus, we see that by the DPLL spliting rule, the initial CNF formula dk is split into two simpler
CNF formulas, [dk]Ak=1 and [dk]Ak=0. Hence, the original or initial formula dk is satisfiable if either [dk]Ak=1 or [dk]Ak=1
or both are satisfiable.

Page 3 of 7

PREPRINT- 1st December 2022

In set theory, the set that consists of all elements belonging to either set A or set B or both is called the union of A and B,
denoted as A+B. Thus the statement either [dk]Ak=1 or [dk]Ak=1 or both are satisfiable implies the new Booleam formula

dk+1 = [dk]Ak=1 + [dk]Ak=0 (1)

is satisfiable. It follows that if dk+1 is satisfiable, then dk is satisfiable, and if dk+1 is unsatisfiable, then dk is unsatisfiable.
Thus the problem of satisfying dk is equivalent to the problem of satisfying dk+1. Since the number of variables of dk+1
is smaller than that of the variables of dk by one, deciding the satisfiability of dk+1 will be easier than deciding the
satisfiability of dk.

In the following insatance we show how to derived the new formula d2 from the original CNF formula d1.

Example 2. Given the CNF formula
d1 = (A1 + A2)(A1 + A3)(A2 + A3)

find dk+1.

Letting A1 = 1 gives
[d1]A1=1 = (1+ A2)(1+ A3)(A2 + A3)

which becomes
[d1]A1=1 = (A2 + A3).

Setting A1 = 0 gives
[d1]A1=0 = (0+ A2)(0+ A3)(A2 + A3)

which becomes
[d1]A1=0 = (A2)(A3)(A2 + A3).

Hence, we get
d2 = [d1]A1=1 + [d1]A1=0

= (A2 + A3) + A2 A3(A2 + A3).

The recursive formula dk+1 is the sum of two CNF formulas. If it can be transformed to a CNF formula, we will be able to
recursively reduce the number of variables of dk easily and continuously until the satisfiability of dk becomes decidable,
employing the unit propagation and pure literal rules. The next section will be devoted to a method of transforming
the sum of two CNF formulas into a single CNF formula.

5 Transforming Sum of CNFs to a Single CNF
I shall here invent a technique for transforming the sum of two CNF formulas to a Single CNF formula.

Theorem 1. Let f1, f2, . . . , fp and g1, g2, . . . , gn be Boolean formulas. Then

f1 f2 · · · fp + g1 g2 · · · gq = (f1 + g1)(f1 + g2) · · · (f1 + gq)(f2 + g1)(f2 + g2) · · · (f2 + gq) · · · (fp + g1)(fm + g2) · · · (fp + gq).

For what purpose were all mathematical theorems before they can be employed in mathematics but to convince, in
terms not to be misunderstood, the readers of their soundness. A mathematical proposition then would be vain without
the demonstration of its validity. Hence, I shall prove this novel theorem to convince the reader of its truth.

Proof.

f1 f2 · · · fp + g1 g2 · · · gq = f1 f2 · · · fp + g1 g2 · · · gq

= f1 f2 · · · fp g1 g2 · · · gq

= (f1 + f2 + · · ·+ fp)(g1 + g2 + · · ·+ gq)

= f1(g1 + g2 + · · ·+ gq) + f2(g1 + g2 + · · ·+ gq) + · · · fp(g1 + g2 + · · ·+ gq)

= f1 g1 + f1 g2 + · · ·+ f1 gq + f2 g1 + f2 g2 + · · ·+ f2 gq + · · ·+ fp g1 + fp g2+· · ·+ fp gq

= (f1 + g1)(f1 + g2) · · · (f1 + gq)(f2 + g1)(f2 + g2) · · · (f2 + gq) · · · (fp + g1)(fp + g2) · · · (fp + gq).

Page 4 of 7

PREPRINT- 1st December 2022

With this transformation theorem, the Boolean formula dk+1, the sum of the two CNF formulas, [dk]Ak=1 and [dk]Ak=0,
can be transformed into a single CNF formula. We proffer an instance to show how it may be applied.

Example 3. Transform the sum of CNF formulas

d2 = (A2 + A3)(A3 + A4) + A2(A3 + A4)(A2 + A3 + A4)

into a single CNF formula.

By the Transformation Theorem 1, we have

d2 = (A2 + A3 + A2)(A2 + A3 + A3 + A4)(A2 + A3 + A2 + A3 + A4) + (A3 + A4 + A2)(A3 + A4 + A3 + A4)(A3 + A4 + A2 + A3 + A4)

= (A2 + A3)(A2 + A3 + A4)(A2 + A3 + A4)

= (A2 + A3)(A2 + A3 + A4).

6 Polynomial-time Algorithm for Deciding SAT
We will now look at a new polynomial-time algorithm for solving SAT. This algorithm involves the continuous reduction
of the original or initial CNF Boolean formula into a smaller and smaller CNF Boolean formulas until logic 1 or 0
emerges.
Given the CNF Boolean formula

d1 = F(A1, A2, . . . , An)

take the following steps to decide the satisfiability of d1.

1. Set k = 1.

2. Set dk+1 = [dk]Ak=1 + [dk]Ak=0.

3. Express dk+1 in CNF using Theorem 1.

4. If dk+1 = 0, print “d1 is unsatisfiable”and stop.

5. If dk+1 = 1, print “d1 is satisfiable ”. Otherwise, go to step 6.

6. Set k = k+ 1 and return to step 1.

6.1 Time Complexity of the Algorithm for Deciding SAT
First, we notice that two operations of substitution are required for generating the formula dk+1, namely [dk]Ak=1
and [dk]Ak=0.

Let
[dk]Ak=1 = f1 f2 · · · fp

and
[dk]Ak=1 = g1 g2 · · · gq

where f1, f2, · · · , fp are the p clauses of the CNF formula obtained by setting Ak = 1 in the CNF formula dk and
g1, g2, · · · , gq are the q clauses of the CNF formula obtained by setting Ak = 0 in the CNF formula dk. Then

dk+1 = f1 f2 · · · fp + g1 g2 · · · gq.

To transform dk+1 to a single CNF formula using Theorem 1, the maximum number of possible combinations fi+g j
for i = 1 to p and j = 1 to q is pq. Thus, there will be at most pq + 2 operations for any given variable. Since
there are m variables, we say that there are at most m(pq+2) operations. Consequently, the algorithm proposed
in this work requires at most O(n3) operations. Thus the algorithm is said to have polynomial time complexity.

Page 5 of 7

PREPRINT- 1st December 2022

6.2 Instances of SAT
In what follows we proffer instances of the way in which the new procedure proposed can be employed.

Example 4. Decide the satisfiability of the Boolean formula

d1 = (A1 + A2)(A1 + A3)(A2 + A3).

We begin with the recurring formula
dk+1 = [dk]Ak=1 + [dk]Ak=0.

Putting k = 1, we have
d2 = [d1]A1=1 + [d1]A1=0

= (A2 + A3) + (A2)(A3)(A2 + A3)

= (A2 + A3 + A2)(A2 + A3 + A3)(A2 + A3 + A2 + A3)

= (A2 + A3).

Next, putting k = 2, we get
d3 = [d2]A2=1 + [d2]A2=0

= (A3) + (1)
= 1.

The fact that d3 = 1 suggests that d2 and hence d1 are satisfiable.

Example 5. Decide the satisfiability of the Boolean formula

d1 = (A1 + A3)(A1 + A2 + A3)(A1 + A2 + A3)(A1 + A3)(A1 + A3).

We begin with the recurring formula
dk+1 = [dk]Ak=1 + [dk]Ak=0.

Setting k = 1 gives
d2 = [d1]A1=1 + [d1]A1=0

= (A3)(A3) + (A2 + A3)(A2 + A3)(A3)

= (A3)(A2 + A3)(A2 + A3).

Next, letting k = 2, we obtain
d3 = [d2]A2=1 + [d2]A2=0

= (A3)(A3) + (A3)(A3)
= 0.

The logical value of d3, as we have seen, is 0. This means that the CNF Boolean formula d3 is unsatisfiable. The
implication of this is that the original CNF Boolean formula d1 is unsatisfiable.

Example 6. Decide the satisfiability of the Boolean formula

d1 = (A1 + A2 + A3)(A1 + A2 + A3)(A2 + A4)(A2 + A4 + A5)(A3 + A4 + A6)(A4 + A5 + A7)(A4 + A8).

We begin with the recurring formula
dk+1 = [dk]Ak=1 + [dk]Ak=0.

Letting k = 1 gives

d2 = [d1]A1=1 + [d1]A1=0

= [(A2 + A3) + (A2 + A3)](A2 + A4)(A2 + A4 + A5)(A3 + A4 + A6)(A4 + A5 + A7)(A4 + A8)

= (A2 + A4)(A2 + A4 + A5)(A3 + A4 + A6)(A4 + A5 + A7)(A4 + A8).

Letting k = 2, we have

d3 = [d2]A2=1 + [d2]A2=0

= [(A4 + A5) + (A4)](A3 + A4 + A6)(A4 + A5 + A7)(A4 + A8)

= (A4 + A5)(A3 + A4 + A6)(A4 + A5 + A7)(A4 + A8).

Page 6 of 7

PREPRINT- 1st December 2022

Putting k = 3, we have
d4 = [d3]A3=1 + [d3]A3=0

= [(A4 + A6) + (1)](A4 + A5)(A4 + A5 + A7)(A4 + A8)

= (A4 + A5)(A4 + A5 + A7)(A4 + A8).

Setting k = 4, we have
d5 = [d4]A4=1 + [d4]A4=0

= (A5 + A7)(A8) + (A5)(1)
= (A5 + A8).

Letting k = 5, we have
d6 = [d5]A5=1 + [d5]A5=0

= (1) + (A8)
= 1.

Since the logical value of d6 is 1, we infer that the original CNF Boolean formula d1 is satisfiable.

Instances of this algorithm might be multiplied to any extent. But we must stop here for our limit reminds us that
we must be brief.

References
[1] Aaronson S. and Wigderson A., Algebrization: a new barrier in complexity theory, in STOC, 2008, pp. 731–740

[2] Aho, Alfred V.; Hopcroft, John E.; Ullman, Jeffrey D. (1974). The Design and Analysis of Computer Algorithms. Addison-Wesley.
Theorem 10.4.

[3] Baker T. P., Gill J, and Solovay R., Relativizations of the P=?NP question, SIAM Journal on Computing 4:4,431-442, 1975

[4] Cook S. A., The complexity of theorem proving procedures, Proceedings of the 3rd Annual ACM Symposium on Theory of Computing,
151-158, 1971.

[5] Davis M., Logemann G. , and Loveland D., Communications of the ACM 5, 394–397 (1962).

[6] Mironov, Ilya; Zhang, Lintao (2006). Biere, Armin; Gomes, Carla P. (eds.). "Applications of SAT Solvers to Cryptanalysis of Hash
Functions". Theory and Applications of Satisfiability Testing — SAT 2006. Lecture Notes in Computer Science. Springer. Mathematics
Handbook for Science and Engineering, Springer, New York, 2006, 5th ed.

Page 7 of 7

	Introduction
	Definitions, Notations and Laws
	Deciding SAT by DPLL Algorithm
	Modification of the Splitting Rule of DPLL
	Transforming Sum of CNFs to a Single CNF
	Polynomial-time Algorithm for Deciding SAT
	Time Complexity of the Algorithm for Deciding SAT
	Instances of SAT

