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ABSTRACT 

Cwent conception of information in terms of bits cannot 
 accommodate the holistic nature of perceptual 

information. Category theory, which describes 
mathematical objects in terms of their relations to other 
objects, appears to be resourceful enough  to^ captcue the 
holistic nature of perception and memory. Recognizing the 
potential of category theory, National Brain Research 
Centre, India, has initiated a researcb program to bring. 
category theory and higher dimensional algebra to bear on 
brain research. I will discuss a memory model called 
Form-Addressed Memory that we are developing. [n this 
model, percepts and memories are modeled in terms of 
m o w  EA-tB, an indivisible whole in category theory. 

I will also present the work of various Indian 
scientists: non-classical information theoretic analysis of 
sensory systems, applying stochastic resonance to 
neuroimaging . gnd pattem recognition tools to 
neuroanatomical data, development of federated 
databases,. -and plans for databasing drug metabolism 
pathways and neuroactive drugs fiom Indian traditional 
medicine. 

~ ~ 1. INTRODUCTION 

The goal of neuroscience is to account for various brain 
functions such as perception in terms of neural information 
processing. ~ Successful implementation of this 
neuroinfmtics program critically depends upon the 
theoretical framework with which we think and reason 
about kformation and its processing. Information also 
figures prominently in our answer to the question: 'what 
brain does?' Brain stores and retrieves information. 
Information storage and retrieval are the two faces of the 
coin - memory. Currently we model information in terms 
of bits, which in hrm readily lends itself to the feature list 
model of perceptual information and memory. Though 
p o d  with numerous technological spin-offs, the 
feature list model is incompatible with the holistic, 
contextual, and constructive nature of percepts that has 
been brilliantly illuminated by Gestalt theory in recent 
times [l]. Our percepts are irreducible wholes or forms. 

2 ~~ 

When we read a novel we remember the gist or 
summary of the story, though we may have trouble 
recollecting the exact sequence of sentences and words in 
the novel. Our memories are not photocopies and 
remembering is not reading off &om the photocopy instead 
of the original [2, 31. Our memory of the story is more like 
a form or structure of the story. When we retrieve or 
recollect the information that is in our memory, we are 
representing the form in words just as an artist builds a 
sculpture of an object she has seen earlier in the medium 
of her choice. The relation between the intormation that is 
on the pages and that in our memory is analogous to the 
relation between words and meaning. Even when we 
remember a list of words and reproduce them fiom 
memory, we are not reproducing the exact power spectra 
of the sound. In a sense, words in our memory are the 
meanings of sounds we heard. The notion of memory as 
form or the holistic and constructive nature of memory has 
recently been brought into sharp focus again [4,5]. 

In neural networks information -both the perceptual 
information and information in memory- is represented as 
a feature list and eventually in terms of bits, strings of Os 
and 1s. An example, dog = [l 0 I], where 1 denotes the 
presence of a feature such as 'tail' and 0 denotes the 
absence of a feature. According to this model, we 
recognize a stimulus as  a dog by comparing features in the 
stimulus with the corresponding features in the memory 
one after another i.e., using a hit-wise computation. This 
model is inconsistent with the experimental investigations 
of visual object recognition and scene categorization, 
which clearly show that our visual system is capable of 
recognizing various objects such as animals and flowers 
without necessarily recognizing their features [6, 7, 8, 9, 
101. 

To do justice to all these experimental fmdmgs, we 
need a theoretical method to capture all the relevant 
information about a percept or a memory without breaking 
it into pieces (features) and to represent that information in 
a way that is amenable to computation. Mathematics gives 
us a hint. Mathematical objects such as number or group 
are like percepts in that they are structures or wholes that 
have no intemal contents and all the information ahout 
these structures is in their relations to other structures. For 
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example, all the information that there is to know about 
the number ‘2’ is in its relations to other numbers. 
Category theory, which models this patticular facet of 
mathematics, can provide the necessary tools to develop a 
theory of neural information processing that accords with 
experimental data. 

Category theory describes mathematical objects not 
in terms of their constituent elements but in terms of their 
relations to other objects Ill]. A set that contains a single 
element (singleton set), for example, can be described as a 
set to which there exists only one function from any other 
set. Here we are describing a singleton set not in terms of 
its intemal constituents (elements) but in terms of its 
relations to other sets. Taking a cue from category theory, 
we developed a model of information storage and retrieval 
wherein information is not a list of features, but is a 
unitary whole formally represented as an arrow CA-tB, 
with A and B thought of as endpoints integral to the line 
segment f. We call this memory model Form-Addressed 
Memory to be contrasted with the content-addressable 
memories of neural networks. To facilitate comparison, we 
take the Hopfield model and replace the element-wise 
computations underlying information storage and retrieval 
with operations defined in terms of arrows and their 
composition. 

2. FORM-ADDRESSED MEMORIES 

We begin with a brief recap of the basic operations of 
memorization and recognition in Hopfield neural networks 
[12]. An object (perceptual information) to be memorized 
is represented as a feature vector Y = 

I;], a matrix with n 
rows and 1 column. an nxl matrix. M ~ O N  W of the 
vector Y is obtained by multiplying the vector Y with its 
transpose YT = 6, yz _ _ _  yo], a Ixn matrix. weight matrix 
w = Y Y ~ ,  an nxn matrix. The ekments of the weight 
matrix wii = y3; denote the Hebbs d e .  If the neural 
network is stimulated with Y after it memorized Y, the 
network recognizes the stimulus as Y. WY = YYTY = Yb 
- - Y, since YTY = Z y: = b, the scalar product of Y with 
itself. Moreover, the weight matrix W satisfies WW = W. 
WW = YYTYYT=YbYT=bW W. 

We now illustrate the methods of developing form- 
addressed memories by replacing the bit-wise 
computations (scalar product) with computations based on 
arrows and their composition. First, we provide a 
mathematical description of the information (percept), the 
vector Y, without referring to its internal contents, the 
elements yi. Such a description may be treated as a holistic 
description. A uxv matrix Z can be represented as 

arrow Z:u-tv. Matrix multiplication is given by 
composition of arrows subject to the condition that two 
arrows can be composed if and only if the target of one 
arrow is same as the source of the second. This intuitively 
corresponds to the idea that two journeys can be composed 
if the destination of the fmt journey is same as the starting 
point of the second. The vector Y is represented as an 
arrow Ya- t l  and its transpose YT as an arrow in the 
opposite direction YT:l-tn. Memorizing Y corresponds 
to composing Y with its opposite P. ~ e m o r y ,  w = 

YoYT:n-tl-tn = n-tn, h e r e  ‘0’ denotes composition of 
arrows. Figure 1 represents the process of memorizing 
percepts diagrammatically. 

Figure 1. Percept Y and memory W of the percept. 

In our model, memory W is an idempotent endomap, 
i.e., WOW = W and YToY = kl - t l ,  an identity arrow 
[13]. Given these properties, we can readily show that if 
we present the information that was memorized i.e., Y as 
stimulus, the memory model will recognize the stimulus as 
Y, i.e., WoY = Y. WoY = n+n+l= n- t l - tn- t l= n-tl 
= Y. Recognition of the stimulus Yn-t l  by the memory 
Wn-tn as Yn-t l  is depicted in the following 
commutative diagram (Fig. 2). Commutative diagrams 
assert the equality of two paths (Y and YoYToY) between 
two points (nand 1). 

n*1 

Figure 2. Recognition without bit-wise computations. 

If we interpret the arrows as functions with sets as 
source and target of the arrows, memorizing information 
corresponds to adding structure i.e., an idempotent 
endomap to a discrete set (Fig. 3). 
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0-0 ? 
rose flower 

Figure 3. Idempotent endomap. 

Let the stimdus information be a discrete set {rose, 
flower} where there is no way to relate one object ‘rose’ to 
the other object ‘flower’. When the stimulus information is 
transferred to memory, then the objects in the memory are 
related to one another. The arrows in Figure 3 can be 
interpreted as ‘is’ [14]. Thus when the stimuli are 
memorized, we have ‘rose is flower’. The fixed points of 
the idempotent endomap (e.g. flower) correspond to the 
mini” energy configurations in neural networks. 

From a neurobiological perspective, synaptic sb ength 
w,~ is simply a concise notation for describing pre- and 
post-synaptic neurons x, and x,. In other words, when we 
say synaptic strength increased, we are simply saying that 
the number of receptm on the post-synaptic neuron or the 
amount of transmitter released by presynaptic neuron has 
increased. Along the same lines, we can think of a means 
to describe weight matrix W i.e., all the synaptic wights 
w,~, wm, etc., as a single object. Our description of weight 
matrix W as an idempotent endomap W:n+n does just 
that. 

The form-addressed memories that we have built are 
a generalization of the current neural network paradigm. In 
form-addressed memories, d i k e  the case of neural 
networks, the information to be stored and retrieved need 
not be a vector. Given the generalized nature of arrows in 
category theory, form-addressed memories can be used to 
compute with higher dimensional information. There is 
abundant data 60m experimental investigations of neural 
information processing underlying perception which 
suggests that higher dimensional objects such as ‘squares’ 
provide a more accurate depiction of neural information 
compared to the current conception in terms of b i h  We 
discuss in detail these issues in our forthcoming paper 
[15]. The main motivation for developing form-addressed 
memories is to enable computations -classification and 
categorization- with these higher dimensional structures 
encountered io neuroscience. 

3. DISCUSSION 

There is a substantial body of category theoretic study of 
cognition by Ebresmann and colleagues, which among 
other things captures the key cognitive studies notion of 
‘whole is greater than the sum of its parts’ in terms of 
colimit [16]. The present note, in a sense, is an invitation 
to category theory addressed to neural network 
community. This line of research can be extended further 

in many directions. We have modeled recognition as a 
one-shot process; we can also model the gradual iterative 
descent to stable states in neural networks using 
categorical shape theory [17]. Given that we represent 
information as arrows, comparison of arrow would 
require 2-dimensional arrows, which would eventually 
lead to n-categories [18]. 

Form-addressed memories bring out a key principle 
of neural information processing. In general terms, neural 
information processing is ‘unification of opposites’. In the 
case of our memory model, neural information processing 
underlying memorization of a percept consists of 
composing the percept (an arrow, A+B) with its opposite 
(B+A). In neural networks, when we memorize a feature 
vector, we are composing (multiplying) the vector with its 
opposite (transpose). Thus the ‘dog’ in our memory is not 
an average of the ‘dogs’ we perceived, but is a composite 
of the percept ‘dog’ with its opposite. We will illustrate 
with an analogy. Consider a face of a coin, say, head. If we 
compare percept to head, then memory of the percept is 
the coin formed by composing or putting together head 
(percept) with tail (opposite percept). Memory, thus, is a 
completion of perceptual experience. This principle also 
applies to the neural information processing underlying 
perception, and clarifies what exactly we mean when we - 
say ‘visual perception is a creative process’ [19]. 
Beginning with Harthe’s discovery of contrast sensitive 
neurons to the relatively recent work of Hubel and Wiesel, 
we know that neurons detect change or contrast or 
boundaries [I, 201. If edges or borders is the only sensory 
information available to the brain, then how do we see 
surfaces? Our perceptual world is not that of outlines. 
What is the nature of neural information processing that 
the brain applies to sensation to generate percepts. Here 
again brain takes sensation (change or contours) and 
composes with its opposite (constant or surface) to give 
rise to the percept of visual objects with their smooth 
surfaces and well-defmed boundaries (e.g. computer in 
6ont of you). The notion that brain constructs percepts by 
composing sensation with its opposite is consistent with 
the cment conceptualiition of visual processing in terms 
of boundary and surface systems [Zl ,  22, 231. A key 
difference being instead of thinking of brain as filling-in 
point-by-point inside the outlines to obtain the percept, 
which cannot accommodate the recent work on 
afterimages [24], we suggest that brain, given sensation, 
constructs the opposite of sensation and composes it with 
sensation to generate the percept To sum up, the neural 
information processing that transforms sensation into 
percept and percept into memory consists of creation and 
unification of opposites (Fig. 4). 
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Sensation + S e n s + t i o n w  

Figure 4. Creation and rmification of opposites. 

In addition to the memories of perceptual 
information that we have modeled, we have memories of 
sensation, concepts, and emotions [3,25,26,27]. From an 
empirical standPoin< sensation, percepts, concepts, and 
emotions are clearly different fiom one another, but it has 
not been possible to formally distinguish them. Percepts 
and concepts are all represented as feature lists [28]. In 
ow manuscript alluded to earlier [15], we argue that 
sensory, perceptual, conceptual, and emotional 
information constitute a hierarchy corresponding to that of 
points, lines, surfaces and solids, respectively. To 
calculate with these formal cognitive objects, the algebra 
of points (set theory) is not good enough. We need higher 
dimensional algebra - algebra of lines (or category theory), 
algebra of squares, cubes and so on [29]. Now that we 
have a formal description of the process of memorization 
independent of the nature of information that is being 
memorized, we can explicitly model memorization of 
sensation, percepts, concepts, and emotions vdde 
preserving their distinctions in the model. 

It has long been recognized that the unit of learning 
and memory is a pattem [30]. Nevertheless the current 
neural network computations of pattern recognition, in 
view of the fact that they are based on computing scalar 
product or hamming distance between strings of Os and Is, 
are not really recognizing pattems. They are bit- 
recognition algorithm. In other words, pattem as a unit 
distinct fkom bits does never enter into the present-day 
neural network computations. Our representation of 
pattem as an arrow and pattern recognition via 
composition of arrows is a true pattem recognition 
algorithm. Our model readily lends itself to the 
development of gist-recognition systems and memory 
devices that can read a story and present a summary of the 
story, though much work remains to be done. 

A d e f w  characteristic of neural information 
processing is its contextual nature [I]. This contextual 
mode of brain function is particularly problematic to 
capture in terms of the current set-theoretic reductionist 
conception of the world. According to set theory, any 
object is completely determined by its elements, its 
contents. Whereas contextuality means ‘what an object is’ 
is determined by ‘where it is’ and not by ‘what it contains’. 
For example, consider the meaning of the word ‘banks’ in 

the following two sentences: ‘all banks are closed today’ 
vs. ‘we walked along the banks of Charles river.’ The 
meaning of the word ‘banks’ is not determined by its 
contents but by its relations to other words. Within the 
h e w o r k  of set theory we cannot provide a scientific 
account of contextdty since context is that which is left 
unaccounted for when we model any given object as a 
collection of elements or set. Fortunately, category theory, 
which recognized that a mathematical object’s relations to 
other objects exhaustively spell out all the information 
about the given object, has developed methods to give a 
rigorous scientific account of contextuality or relational 
description of objects in the domain of mathematics. The 
similarity, h m  the perspective of context, between 
mathematical objects and cognitive objects such as 
percept, memory, and concept led us to put forth 
mathematics (as viewed fiom category theory) as a 
metaphor for brain to replace the currently popular 
computer metaphor. 
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