Introducing Community Guidelines for Sharing Dataset Quality Information

Ge Peng, PhD

Sr. Principal Research Scientist

Earth System Science Center/MSFC IMPACT, University of Alabama in Huntsville, USA International FAIR-DQI Community Guidelines Working Group, Lead Information Quality Cluster of the Earth Science Information Partners (ESIP), Co-Chair

FAIR Points Webinar, 30 Nov 2022 CC-BY-4.0 DOI: https://doi.org/10.5281/zenodo.7314004

In Collaboration With

International FAIR-DQI Community Guidelines Working Group

Ge Peng, Carlo Lacagnina, Ivana Ivánová, Robert R. Downs, Hampapuram Ramapriyan, Anette Ganske, Dave Jones, Lucy Bastin, Lesley Wyborn, Irina Bastrakova, Mingfang Wu, Chung-Lin Shie, David Moroni, Gilles Larnicol, Yaxing Wei, Nancy Ritchey, Sarah Champion, C. Sophie Hou, Ted Habermann, Gary Berg-Cross, Kaylin Bugbee, and Jeanné le Roux

About Peng

Numerical modeler

- o Observations "data"
- o Initial/boundary conditions; Truth

Data scientist

- o Observational data; Model output
- o Analysis: Trend and variability

Scientific steward

- o Data products
- o Evaluation: Product quality; Stewardship maturity

Dr. Ge Peng is currently supported by NASA Grant NNM11AA01A between UAH and MSFC Interagency Implementation and Advanced Concepts Team (**IMPACT**) project.

About IMPACT

Interagency project

- o under NASA Earth Science Data Systems (ESDS) program,
- o managed by Marshall Space Flight Center (MSFC)

Interdisciplinary team

o Domain experts: informatics, science/management/technology, ML, data systems, etc.

Identifying and addressing Earth Science data needs

- O data acquisition and processing (e.g., CSDA, DCD, HLS-2, SNWG),
- O data management and systems (e.g., ADMG, APT, ARC, MAAP),
- O data discovery and visualization (e.g., SDE, VEDA)

About ESIP IQC

ESIP Information Quality Cluster:


- o Cross-domain/agency data professionals
- o Come together to address common data/information quality challenge(s)
- Become authoritative and responsive information resource
 - o Data quality standards and best practices of the Earth Science community
- Facilitate the sharing of experiences and best practices
 - o Collaboration Nationally and internationally
 - o Invited speakers at monthly telecons looking for speakers for next year
 - o Sessions and/or presentations (AGU, EGU, ESIP, RDA, CEOS, OGC, etc.)

About the FAIR-DQI WG

Community Of Practice

Participated by

International Interdisciplinary Domain Experts

- o Data producers (in situ, satellite, model);
- o Stewards (data/science/technology); Experts in informatics, ontology, etc.;
- o Services providers (data/information/infrastructure);
- o Data publishers and users.

3 Continents

- 20+ Affiliations (government, academia, and private sectors)
 - o Data, science and service centers, institutional repositories, companies.

Expert Knowledge

o Whole lifecycle of a dataset

Dataset Quality

Quality of

- data (input and output),
- metadata and documentation,
- software and workflows,
- procedures and processes,
- infrastructure and tools.

Dataset refers to an identifiable collection of data – may contain one or many data files or records in a database in an identical format, having the same variable(s) and product specification(s).

Dataset Quality Information (DQI)

Information about quality or the state of

data, metadata and documentation through the entire lifecycle of a dataset:

- Data acquisition or production,
- Data and information management,
- Data publishing and services,
- Customer support and user engagement.

We Need (Consistently Curated) Quality Information

Decision-making support

- O Data use: Informed decision (e.g., reliability and usability of the dataset);
- Data trust: Establishing the trust between data providers and consumers, policy-makers.

Compliance reporting and open science support

- Consistently curated;
- Readily available and understood by humans and machines.

Support data and information sharing and reuse

- Improved productivity;
- Support new technologies: Interoperable dataset quality information for utilizing Cloud and Machine Learning technologies;
- Reduce access barrier: global access and harmonization of quality information.

Quality Is Complicated!

Quality information – needed but hard to find and/or integrate. Why?

- "Good" quality means different things to different applications
 - o Weather forecast vs climate analysis
- Same quality dimension means different things to different quality aspects
 - o Data completeness vs metadata completeness
- Quality information curation requires cross-domain knowledge integration
 - o Data uncertainty estimates by data producer to metadata specialist

Use Cases for Documenting DQI – Quality Aspects

- When developing a data product, a scientist documents algorithm validation information
 - Scientific Quality
- When generating a data product, a data producer captures product evaluation (data uncertainty) information
 - o Product Quality
- When curating dataset-level metadata, a data steward conveys the data uncertainty information
 - o Stewardship Quality
- A service provider reports the quality information to users
 - o Service Quality

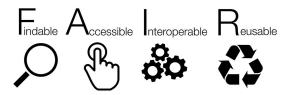
To address the community needs,

We Have Developed

Quality-Attribute Agnostic Guidelines

for making consistently documented quality information readily available to both machine and human end users!

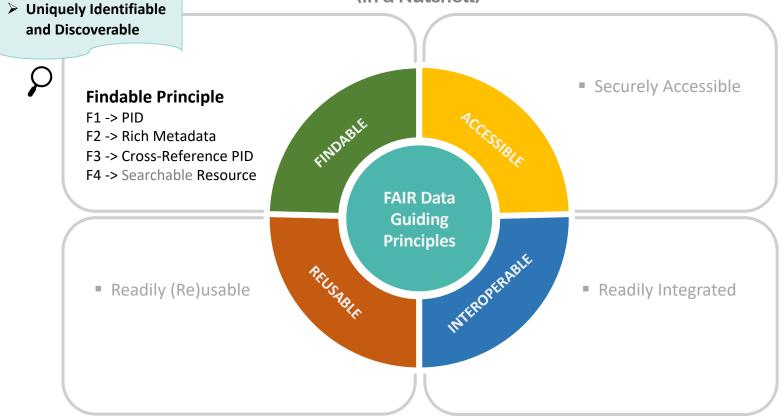
For Improved Sharing and (Re)use



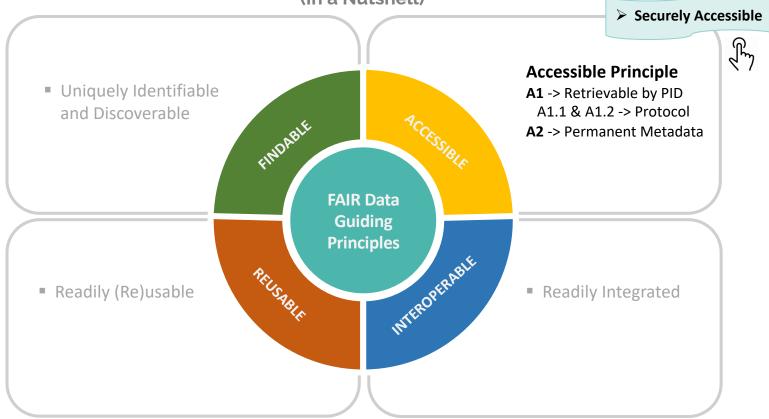
How To Improve Sharing?

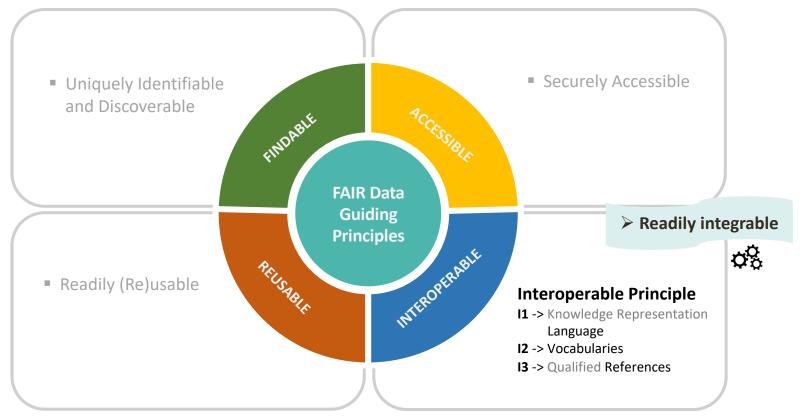
Adopting FAIR Guiding Principles

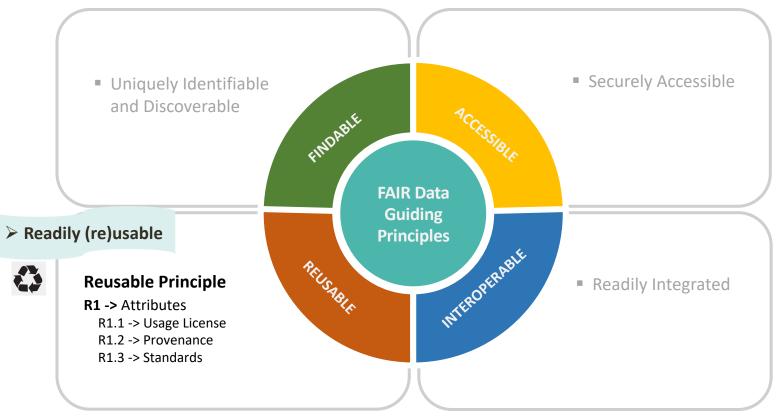
(Wilkinson et al. 2016)



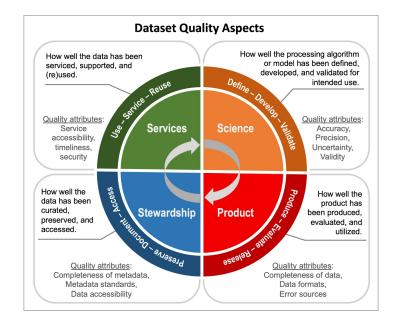
(Image by SandyaPundir. CC BY-SA 4.0)




(In a Nutshell)



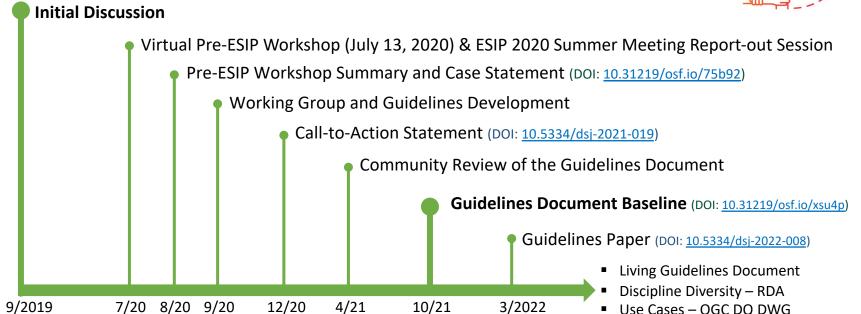
(In a Nutshell)


(In a Nutshell)

Practical Guidance on Consistently Reporting Quality Information

International FAIR-DQI Community Guidelines

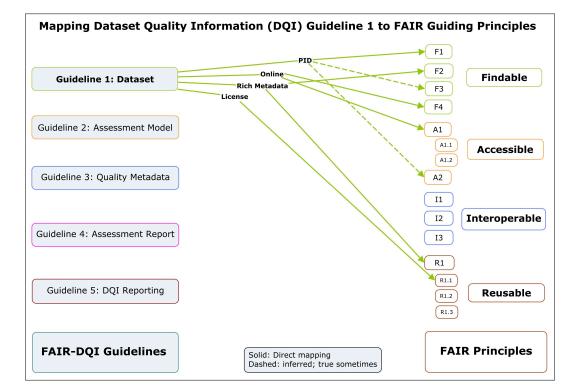
(Peng et al. 2022. DSJ. DOI: 10.5334/dsj-2022-008)



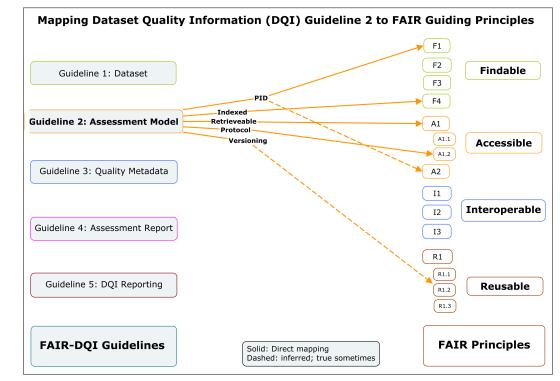
Guidelines Development

Co-organized by

- ESIP Information Quality Cluster (IQC);
- BSC Evaluation and Quality Control (EQC) Team;
- AU/NZ Data Quality Interest Group (DQIG).



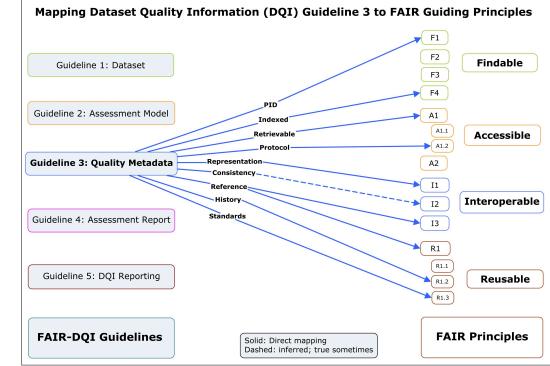
- Guideline 1: Describing Dataset
 - > Ensure the dataset is findable, accessible and reusable
- Guideline 2: Utilizing a quality assessment model
 - Ensure the assessment model is structured, findable, accessible and reusable
- Guideline 3: Documenting the assessment method and results (dataset metadata)
 - Ensure the quality information is findable, interoperable and reusable (*machine end users*)
- Guideline 4: Documenting the assessment method and results (human-readable document)
 - Ensure the quality information is findable, accessible, citable and reusable (*human end users*)
- Guideline 5: Reporting the dataset quality information
 - Ensure the information is online, findable and readily (re)usable


Guideline 1: Describe Dataset

- Title,
- Persistent identifier (PID) resolvable to a comprehensive landing page,
- Version,
- Data producer,
- Publication/update date,
- Publisher,
- Date accessed,
- Usage license.
- Ensure the dataset is findable, accessible, and reusable

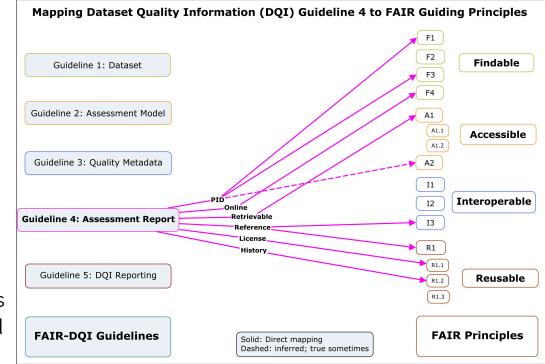
Guideline 2: Utilize a quality assessment model

- Structured (1, ..., N dimensions),
- Versioned,
- Publicly available with a unique, resolvable PID,
- Registered or indexed in a searchable resource,
- Retrievable using a standardized protocol.
- Ensure the assessment model is structured, findable, accessible and reusable

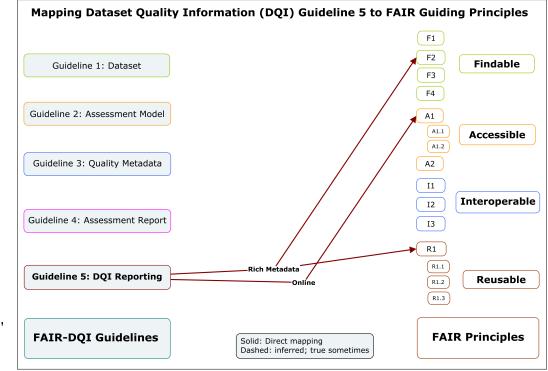


Guideline 3: Capture the quality attribute, assessment method and results in dataset-level metadata record

 Including versioning and history of the assessments


using a framework or schema

- Semantically and structurally consistent,
- Following community standards:
 - o Compliant with Guideline 2
- Ensure the quality information is findable, accessible, interoperable and reusable by machine end-users


Guideline 4: Describe the assessment method, workflow, and results in a human-readable quality report

- Using a template published with PID, findable & accessible,
- Published with PID, open license & the report history,
- Linking the report PID to the dataset-level metadata record.
- Ensure the quality information is findable, accessible, citable and reusable by human end-users

Guideline 5: Report/disseminate the dataset quality information in an organized way via a web interface with a comprehensive description of:

- Dataset (Guideline 1),
- Assessed quality attribute /dimension,
- Assessment method and process,
- How to understand and use the information.
- Ensure the information is online, described, understandable and readily usable

Takeaways

- Dataset quality is more than just data quality
- Quality information should be documented throughout the entire dataset lifecycle
- FAIR Principles can help with enhancing the sharing of dataset quality information (DQI)
- FAIR-DQI guidelines can help get started on documenting and reporting DQI

Call-to-action statement (Peng et al. 2020): <u>10.5334/dsj-2021-019</u> Guidelines document (Peng et al. 2021): <u>10.31219/osf.io/xsu4p</u> Guidelines paper (Peng et al. 2022): <u>10.5334/dsj-2022-008</u>

Thank You!

Let me know your quality use case and/or feedback on the guidelines

₩ ge.peng<u>@uah.edu</u>

ge-peng-37543230

Additional Slides

FAIR Questions

You've assessed the FAIRness of your data holding! THEN WHAT?

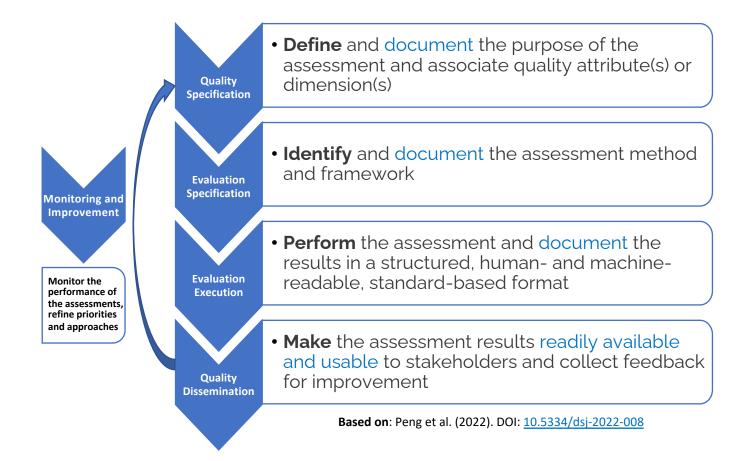
How would your end-users:

- Know what you have assessed?
- Understand and (re)use your methods/approaches?
- Get your assessment results?
- Readily integrate the FAIRness information across tools?

Utilizing the Guidelines From the FAIRness Assessment Perspective

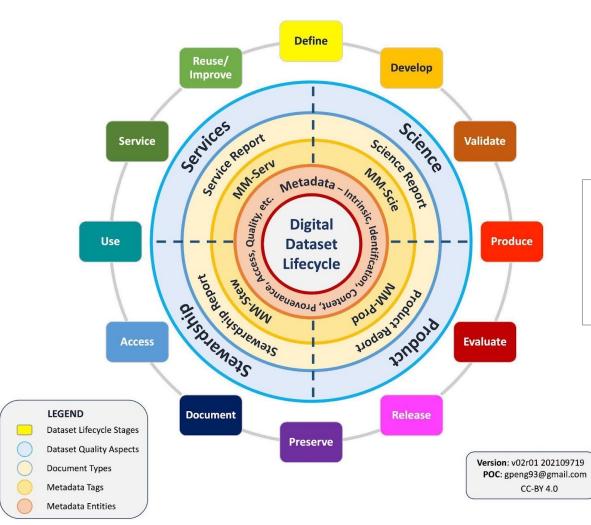
- Describe the dataset/data holding to be assessed -> Guideline 1
- Select a FAIRness assessment model -> Guideline 2
- Document the quality attribute(s), method and results in a structured, searchable, machine-actionable metadata record -> Guideline 3
- Document the quality attribute(s), method, process and results in a structured, findable, citable, human-readable report -> Guideline 4
- Describe and disseminate the FAIRness information online -> Guideline 5

> Ensure:


- The FAIRness assessment processing is transparent;
- The quality attributes, assessment method, process and results are
 - o Documented, findable, machine-actionable, human-readable, and reusable;
 - Available online, comprehensively described, easily understandable and readily (re)usable.

Backup Slides

Basic Workflow of Curating and Disseminating DQI

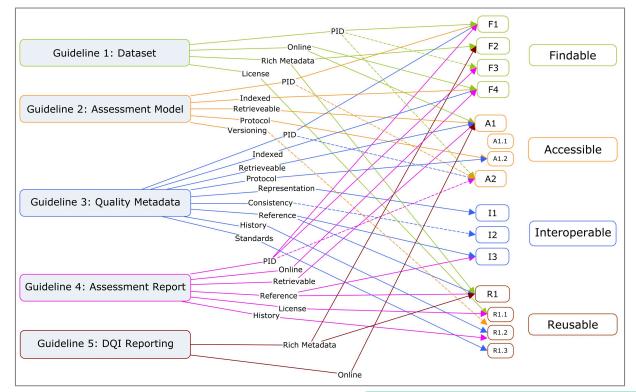


Examples of dataset quality assessment models and their compliance with Guideline 2

Assessment Model	Scientific Data Stewardship Maturity Matrix (Peng et al. 2015)	Stewardship Maturity Matrix for Climate Data (Peng et al. 2019b)	FAIR Data Maturity Model (RDA FAIR Data Maturity Model Working Group 2020)	Metadata Quality Framework (Bugbee et al. 2021)	Data Quality Analyses and Quality Control Framework (Woo and Gourcuff 2021)
Quality Entity (i.e., attribute, aspect, or dimension)	Stewardship	Stewardship	FAIRness	Metadata	Data
2.1 - Publicly Available	Yes	Yes	Yes	Yes	Yes
2.1 - Unique PID	DOI	DOI	DOI	DOI	DOI
2.2 - Indexed	Data Science Journal	Figshare	Zenodo	Data Science Journal	Integrated Marine Observing System Catalog
2.3 - Retrievable Using free, open, standard-based Protocol	Yes	Yes	Yes	Yes	Yes

Examples of representing quality entities, assessment models and assessment results in machine-readable quality metadata and their compliance with Guideline 3

Quality Metadata Framework	NOAA <i>OneStop</i> DSMM Quality Metadata (Peng et al. 2019a)	AtMoDat Maturity Indicator (Heydebreck et al. 2020)	MetadataFromGeodata (Wagner et al. 2021)
Quality Entity	Stewardship	Any Quality Entity	Data and Metadata
3.1 - Semantically and Structurally Consistent	Yes	Yes	Yes
3.1 - Metadata Framework/Schema	International	Domain	Domain
3.2 - Quality Entity Description	Yes	Yes	Yes
3.3 - Assessment Method/structure Description	Yes	Yes	Partly (contains evaluation of quality description and not description of quality assessment)
3.4 - Assessment Results Description	Yes	Yes	Yes
3.5 - Versioning and the history of the assessments	Yes	Versioning	Creation/Last Update Dates



Schematic diagram of dataset lifecycle stages, quality aspects and associated documentation types and metadata tags (MM-*), and metadata entities. **Source**: Peng et al. (2021). DOI: <u>10.31219/osf.io/xsu4p</u>

Mapping the FAIR-DQI Guidelines to the FAIR Principles

FAIR-DQI Guidelines

FAIR Principles

Based on: Peng et al. (2022). DOI: <u>10.5334/dsj-2022-008</u>

Solid lines: direct mapping Dashed lines: inferred; true sometimes