
 

 

 

Abstract – In the last years, several resources have been 
employed to increase torque and power density values in 
electrical machines, especially in those intended for transport 
applications. In this context, the adoption of hairpin conductors 
is spreading thanks to their inherently high fill factor. Their 
main drawback is represented by their sensitivity to high-
frequency phenomena, which can have a significant impact on 
the Joule losses and thus on the overall efficiency.  

While several researches have recently focused on ways to 
model and reduce such high-frequency losses in the slots, i.e. 
within the conductors’ active sides, a few data are available on 
their impact in the end winding regions.  

This work provides an investigation on the AC losses 
occurring in the end conductors of a hairpin winding traction 
motor. The losses are determined through 3D finite element 
simulations for a wide frequency range, and compared against 
those occurring in the active part of the machine.  
 

Index Terms— End Windings, Hairpin, AC Losses, 3D Finite 
Element Model 

I.   INTRODUCTION 

In the last years the research on how to increase torque and 
power density values of electrical machines, especially for 
traction application, has led to a major interest for hairpin 
conductors [1]-[3]. These are pre-formed conductors with a 
nearly rectangular cross section. They present a higher slot fill 
factor than classical stranded round conductors, thus also a 
higher slot thermal conductivity is obtained. These 
characteristics allow to increase the electrical load without 
increasing the machine volume, which usually represents a 
critical constraint for traction applications. In addition, 
differently from random windings with round conductors, the 
position of each conductor within the slots is always known 
and well defined, thus permitting a better modelling and 
evaluation of the temperature map [4] and of the insulation 
stress [5].  

Hairpin conductors manufacturing can be quite laborious, 
but can be highly automated, thus fitting the large scale 
production requirements typical of the automotive sector 
[6],[7].  

However, due to their relatively large cross section, hairpin 
conductors are quite sensitive to AC losses. The majority of 
them are caused by skin and proximity effects, which are 
particularly strong in the machine slots. Depending on their 
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position, slot conductors feature different impedances which 
result in an uneven current density distribution. This, in turn, 
also causes an uneven distribution of the Joule losses, which 
tend to increase from the slot bottom to the air gap. 
Considering the above, several studies have focused on the 
modelling and reduction of AC losses [8]-[11], both through 
analytical and numerical approaches, sometimes also 
corroborated by experimental measurements. In this context, 
recent findings in hairpin technologies have demonstrated that 
the main AC losses reduction techniques include: 

 increasing the number of conductors such that a lower 
cross section and lower conductor current can be adopted. 
This solution usually requires also a higher number of 
machine parallel paths [10], [12]; 

 adoption of variable cross sections, through the use of 
asymmetric or segmented slot conductors [11], [13]. 
These solutions consist of having thinner conductors near 
the air gap and larger ones at the slot bottom. The larger 
conductors are adopted to decrease the overall DC losses, 
while thinner conductors are needed to reduce the impact 
of skin and proximity effects near the slot opening at high 
frequency operations; 

 adoption of different materials than copper, such as 
aluminium [14], [15]. In fact, AC losses also depend on 
the material resistivity. Higher resistivity materials 
increase DC losses, but help in decreasing the frequency 
dependent effects. The adoption of aluminium can be 
interesting also for its lower cost, weight and 
environmental impact, which are all important aspects 
nowadays.  

It is worth mentioning that some of the above solutions 
may complicate the manufacturing process. Increasing the 
number of parallel paths and conductors is not always feasible 
and can increase the manufacturing costs. The adoption of 
segmented conductors also increases the number of 
conductors and can be challenging if more than 2 conductors 
are used to segment an equivalent hairpin layer. Using 
conductors with different cross sections implies the use of I-
pins which, in turn, doubles the number of welding points.  

Hairpin windings have to satisfy some mandatory 
constraints for a proper realization which are strictly linked to 
the winding topology, the number of slots, poles and 
conductors. A proper conductor transposition is mandatory 
every time parallel paths are adopted in order to avoid internal 
current recirculation, which would increase the Joule losses 
and decrease the machine performance. These aspects have 
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led, up to now, to consider only integer slot distributed 
windings, mainly with a full pitch being implemented. Some 
guidelines for appropriate conductor connections are available 
in [10], [16]-[18]. 

A.   Motivation and Aim 

As inferred in the previous section, the majority of the 
studies available in literature have focused on the modelling 
and reduction of AC losses in the active part of machines, 
while few works have dealt with the end winding regions. In 
[19] and [20], the end winding leakage inductances are 
investigated, while in [4] and [21] their cooling is analyzed 
through oil spray. To the authors’ knowledge, only in [22] 
and [23] the total machine Joule losses are analyzed and the 
end windings AC losses are considered separately. The 
results indicate that for a few hundreds of Hertz the end 
winding losses are nearly DC only, while the frequency 
dependent effects can become much more relevant around 
the 1 kHz range. However, a critical analysis on the end 
windings is missing and the impact of AC losses in the 
relevant regions is provided for a few values of the 
frequency. Hence, this work proposes an analysis of the AC 
losses in the end winding regions for a wide frequency range 
and their comparison against losses occurring in the machine 
active part.  

II.   CASE STUDY 

A.   Winding Data 

The analysis is performed taking as a case study the stator 
of an electrical machine designed for traction applications. 
This stator is equipped with a double three-phase (DTP) 
hairpin winding. The main data of the winding are provided 
in Table I, while a 2D representation of one stator pole pitch 
can be seen in Fig. 1. Each slot presents two bigger 
conductors (namely “conductor 2”, see Table I) in the slot 
bottom such that the DC losses can be decreased avoiding an 
exacerbation of the frequency dependent losses. The 
remaining conductors (namely “conductor 1”, see Table I) 
have smaller radial dimensions such that the AC/DC loss 
ratio remains sufficiently low for the considered frequency 

range.  
The preliminary sizing of the conductor dimensions is 

performed according to the theoretical model illustrated in 
[24], and then validated with finite element analysis (FEA). 
Depending on the conductor dimensions, material and 
operating frequency, it is possible to estimate the AC/DC 
loss ratio (Kac) for every winding layer. A brief summary of 
the adopted theoretical assumptions and formulas can be 
found in [15], while more details can be found in [24]. 

The winding dimensions are optimally selected for a 
frequency range going from standstill to ≈850 Hz, with a 
maximum operating frequency of 1 kHz. The conductor 
dimensions should guarantee a low DC resistance and a 
winding average Kac below 2 even at 1 kHz. Figure 2 
illustrates the trend of Kac for each layer Li (with i=1, 2, …, 
6) for the whole frequency range obtained with 2D FEA 
simulations. Kac is a useful parameter to understand the entity 
of the frequency dependent losses, since it quantifies how 
much the losses are higher compared to the DC case. 
However, in some cases it could be beneficial to have a 
slightly higher Kac, but a lower DC resistance. This is in fact 
the case of the first two conductors of the analyzed machine, 
L1 and L2, which are numbered starting from the slot 
bottom. The increasing of the Kac is proportionally lower 
with respect to the reduction of the DC resistance for them.  

B.   3D FEA Model 

While a 2D model is sufficient to calculate the Joule 
losses occurring in the active sides of the machine 
conductors, a 3D model is needed to determine them within 
the end winding regions.  

 
Fig. 1. 2D stator sector of the considered machine. 

Fig. 2. AC/DC loss ratio Kac for each layer as a function of 
frequency. The layer L1 is the one in the slot bottom. 

TABLE I. WINDING PARAMETERS 

Winding topology 
DTP Full 

Pitch 

Slots 96 

Number of poles 8 

Number of slot conductors 6 

Dimensions of conductor 1 [mm] 2.8 x 1.8 

Dimensions of conductor 2 [mm] 2.8 x 4 

 



 

 

 

First, a winding scheme is hypothesized and then, basing 
on it, the end windings are modelled though the CAD-based 
software Solidworks, where connections and conductor 
transpositions are opportunely built, as it can be seen in Fig. 
3 and Fig. 4. As opposed to 2D FEA electromagnetic 
modelling, 3D FEA simulations are quite laborious and can 
take a huge amount of time, thus some measures and 
assumptions are adopted to speed up the process. These 
include: 
 only 1/8 of the machine is modelled, thus exploiting its 

periodicity as much as possible; 

 since the aim is to study the entity of AC losses in the 
end windings, the active length can be reduced without 
affecting the end winding losses; 

 the rotor influence on AC losses in the machine active 
part is somewhat present, but it is also usually quite 
limited as long as the machine is not highly saturated. 
Hence, being the end windings surrounded by air, the 
rotor can be neglected, allowing to further reduce the 
computation burden. In addition, it allows the adoption 
of the time harmonic simulations rather than transient 
with motion ones, which would require much more time 

to be solved; 

 only the end winding insertion side is modelled. Apart 
from the welding spots, hairpin winding end region sides 
are rather similar, and a similar behavior can be assumed 
in terms of AC losses. However, the insertion side tends 
to be slightly more compact, thus it is the one where a 
slightly higher impact of the proximity losses is 
expected. 

III.   SIMULATION RESULTS 

Two types of FEA simulations are performed in the 2D 
and 3D models: 1) static simulations are carried out to 
evaluate DC losses and 2) time harmonic simulations are 
performed to evaluate AC losses as a function of frequency. 
The frequency range varies from DC to 1500 Hz, which 
covers the whole automotive typical operating range. All the 
simulations are run imposing sinusoidal currents feeding the 
phases, while the conductor material is pure copper with a 
temperature of 120°C. This operating temperature is 
separately estimated using a FEA thermal analysis, whose 
results are out of the scope of this paper, thus they are not 
reported here. The simulations have been performed also for 
two opposite case studies: with low saturation (LS) and with 
high saturation (HS) where the ferromagnetic material has 
been replaced with a lower permeability material.  

The method to isolate the end winding region losses is 
quite straightforward. Once 3D and 2D simulations have 
been performed, the end winding losses, Pew, can be 
estimated using (1) for both static and time harmonic 
simulations. The term P2D represents only the active length 
Joule losses, which can be estimated with both 2D 
simulations or with 3D simulations on a model with only the 
active part.  
 

Pew = P3D-P2D (1) 
 
An important aspect regards the estimation of the end 

winding AC/DC loss ratio Kac. Nearly all the connections are 
between the following layers: layers 1 and 2, layers 3 and 4, 
and layers 5 and 6 as underlined in [16]-[18]. There are a few 
exceptions, provided by the jumpers, which can connect 
layers 2 and 3 or layers 4 and 5, but their number is much 
lower and is kept usually as low as possible. In addition, they 
are not present in correspondence of all the machine poles. In 
the considered machine sector, no jumpers are modelled, thus 
three main types of connection are considered in the end 
winding of the modelled part. For this reason, three different 
Kac can be evaluated, depending on which layers’ connection 
is considered (i.e. L1-L2, L3-L4, L5-L6).  

Figure 5 illustrates the different values of Kac, depending 
on the connected layers for the end winding region, while 
Fig. 6 shows the 2D (active length) counterpart, where the 
average Kac every two layers (ETL) is evaluated for the sake 
of comparison. From the theory illustrated in [15] and [24], it 
is known that the value of Kac for each layer is strictly linked 
mainly to the operating frequency, conductor radial 
dimension and the position of the layer. In Figures 5 and 6, it 

Fig.3. 3D model of the machine sector. Front view. 

 
Fig.4. 3D model on the winding. The mesh is also 

displayed. 



 

 

 

can be seen that, in the end winding region, the impact of the 
layer position is lower but still exists. In fact, the lower Kac 
occurs in both cases for the conductors of L3-L4, which have 
the same dimensions as those of L5-L6.   

Fig. 7 provides a comparison in terms of the average Kac 
between the end windings and the active part. Fig.7 can be 
useful to provide a comprehensive overview of the entity of 
AC losses in the entire end region. It can be seen that, for the 
maximum frequency of 1500 Hz and LS, a value of 1.26 is 
nearly obtained. However, in the range from 0 to 900 Hz, the 
average value is always below 1.1 and with a value of only 
1.05 at 650 Hz. In the active part it has a value of 2.9, 1.9 and 
1.23 respectively at 1500 Hz, 1000 Hz and 500 Hz. It can be 
noted also that the Kac curves during conditions of HS are 
always similar to the ones of LS, but slightly lower values 
are obtained. In fact, the maximum average Kac is 1.2 at 1.5 
kHz for the end winding region and 2.61 for the active one. 
Thus, the core saturation has also some influence on the end 
winding region and determines a reduction of the AC losses 
as in the active part, even if the impact seems quite limited.  

While the obtained results are strictly related to the 
specific design of the considered case study, the findings 
suggest that the end winding losses can be at first 

approximated as frequency-independent for a considerable 
frequency range with an acceptable error. In fact, for the 
considered worst case scenario (LS), Kac in the end winding 
region exceeds 1.1 only when Kac approaches 1.7 in the 
active part, which occurs above 900 Hz. For higher values, 
this approximation could start to be unacceptable, as it can be 
seen also in Fig. 8. Fig. 8 illustrates the current density map 
for the conductors of a single slot at the maximum evaluated 
frequency of 1500 Hz and LS. It can be noted that the values 
are significantly higher in the active part, however the 
current displacement is still visible also in the end winding 
due to the relatively high frequency. In particular, as 
quantified in Fig. 5, the higher values are obtained in the 
conductors of the layers 5 and 6.  

Further details can be provided by Fig. 9 and Fig.10, 
where the current density and the flux density are plotted as a 
function of the radial position for two locations: in the 
middle of the active part and the at the beginning of the end 
winding region, at a distance of only 2 mm from the active 
part. Quite similar results are obtained for both LS and HS, 
thus only the curves for LS are shown. It can be noted that, in 
the first part of the end winding region, where the border 
effects are high, the current density distribution is still 
pronounced, even if much lower peak values are obtained 
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with respect to the active region. Fig. 10 is instead useful to 
understand better the previous results. The |B| curve has in 
fact the same trend for the active part and the end winding 
region, with the main difference that in the end region it is 
flatter. The value of |B| is directly linked to the proximity 
effects, which are stronger where there is a higher a value, 
while the Kac depends mainly on the proximity effects and 
conductor radial dimensions. For this reason, in the end 
winding L3-4 experiments again lower values with respect to 
the L5-6 since they have the same dimensions, but are still 
subjected to different |B|. On the other hand, L1-2 has a 
higher Kac due to its much bigger radial dimension, which 
has proportionally a higher impact when the |B| distribution 
is more even. 

IV.   CONCLUSION 

This work focused on the analysis of the AC losses 
occurring in the end winding regions of a hairpin winding 
machine through 3D FEA simulations. The modelling 
approach and the main assumptions to reduce the 
computation burden for the 3D analysis were illustrated in 
detail, given their relevance for the sake of this research. The 
AC/DC loss ratio Kac was evaluated for the different layer 
connections in the end windings, and its average value was 
compared also with the one occurring in the active part for a 
wide frequency range (up to 1.5 kHz). It was observed that 
the layers involved in one of the connections still have some 
influence on Kac also in the end windings, though with a 
much lower impact than in the active part of the machine. 
Additionally, it was proven that the end winding region 
exhibits low values of Kac for several hundreds of hertz, 
allowing to approximate the losses as pure DC with a 
relatively low error (<10 %), while this approximation is no 
longer reasonable when approaching 1 kHz.  

Future work will focus on analyzing other machine 
topologies and/or other end winding shapes, with the aim of 
generalizing the approach and of providing design 
recommendations related to the end conductors of hairpin 
windings. Some prototypes will be also built to validate the 
developed FEA models and the main findings of this paper.  
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