

Table for Lay Public Dissemination

Acronym	SFM-NN
Name of user	Alessandro Antonucci
Title	Structured neural network for socially aware robot navigation.
Objectives (Max 150 words, Calibri 11)	The scope of the research is the development of a light weighted and efficient pedestrian trajectory predictor to be used on-board of mobile robots. The predictor is a novel neural network, namely the Structured Neural Network, where the internal layers are wired according to dynamical equations. The main advantages of this approach are the reduced number of learnable parameters, the possibility to exploit information from the environment in the surrounding of the robot, and a neural network with a behavior that is explainable in physical terms. Preliminary results demonstrated the performance of pedestrian trajectories prediction on short time windows both in simulation and on baseline datasets, in addition a first implementation working on a real robotic platform was developed.
Impact (Max 150 words, Calibri 11)	A growing number of applications involving autonomous mobile robots will require their navigation across environments in which spaces are shared with humans. In order to obtain a robot behavior that is socially acceptable, a reliable human motion predictor is of paramount importance in the context analysis and decisional process of the robot. The particular type of algorithm investigated offers as advantages a better prediction efficiency and a reduced computational load, in order to be efficiently performed in real time by the robot itself. The synergistic use of machine learning techniques and validated heuristic models grants a high adherence of the algorithm's inference to the motion behaviors of people in indoor environments.