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3 SVALDUST

1. Introduction

1.1. What is dust

Dust particles are commonly defined according 
to their size, including clay-sized (<4 μm), silt-
sized (4–62.5 μm) or sand-sized (62.5 μm –2 mm) 
material (UNCCD 2022). Giant dust particles (>75 
μm in diameter) of wind-blown mineral have been 
observed at large (>10 000 km) distances from their 
source, and individual giant Saharan dust particles 
of up to 450 μm in diameter have been sampled 
in air over the Atlantic Ocean at 2 400 and 3 500 
km from the west African coast (van der Does et 
al. 2018). The dust cycle contains sediments that 
travel within the atmosphere mainly by suspension, 
and that can be deposited on land, in lakes, or in 
the ocean (Bullard et al. 2016). The main source 
of these microscopic particles is the ground and 
the lifting energy is provided by the wind; thus the 
usual terminology for these particles is ‘mineral 
dust’ or ‘aeolian dust’. 

The role of aeolian dust for the radiation balance 
of the Earth is size-dependent. Dust has a direct 

cooling effect when particles of size <2 μm are 
transported into the high atmosphere and block 
incoming sunlight (e.g. Claquin et al. 2003). Mineral 
dust deposited and trapped on the cryosphere 
(cryodust; see Lewandowski et al. 2020) can 
impact snow and ice properties, contributing to 
the mass balance of glaciers, lowering their albedo 
(Lambert et al. 2013; Goelles et al. 2017, as well 
as influencing rheological properties of ice (Green 
and Mahajan 2005). Dust records from the ice core 
may illustrate potential changes in dust emissions 
or transportation pathways over long time scales.

Dust loading in the atmosphere has increased by 
25-100% since pre-industrial time (Kok et al. 2021). 
There is an estimated two billion tonnes of dust 
travelling in the atmosphere every year, and double 
this mass if sand and giant particles are included 
(van der Does et al. 2018; Dagsson-Waldhauserova 
et al. 2019). Changes in the emission of high 
latitude dust (HLD) have not yet been estimated, 
but first estimates are that HLD contributes about 
5% to global dust emissions (Bullard et al. 2016; 

Dust types used in this chapter

High Latitude Dust – dust originating from cold 
arid areas of ≥ 50°N and ≥ 40°S with size up to 
100 μm. Northern dust sources are in Alaska, 
Canada, Denmark, Greenland, Iceland, Svalbard, 
Sweden, and Russia and southern dust sources 
are in Antarctica, Patagonia and New Zealand. 

Volcanic dust – dust of volcanic origin which was 
re-suspended/emitted from old to ancient tephra 
deposits in volcanic deserts often located in 
proximity to glaciers. Volcanic dust is mainly driven 
by glaciofluvial processes and by wind-recycled 
tephra sediment transport. It is sometimes 
referred to as dust from the volcaniclastic deserts 
in high latitudes. Volcanic dust is dark in colour 
and has greater radiative forcing impacts than 
mineral dust, especially when deposited on the 
cryosphere where the impacts are similar to those 
of black carbon. 

Glacigenic dust – dust suspended during glacial 
periods, but also refers to contemporary dust 
from cold regions. This term was used before 
HLD was defined. 

Cryodust – natural abiotic particulate matter 
deposited and trapped in glaciers.

Coal dust – dark dust particles from coal mines 
at high latitudes, usually deposited on the 
cryosphere that is in close proximity or downwind 
of the mine.

Light Absorbing Impurities / Light Absorbing 
Particles – the term light-absorbing impurities 
(LAI) refers to impurities (including also other 
than particles, e.g. algae) in snow and ice, while 
the term light absorbing particles (LAP) refers to 
particles in the atmosphere or in snow and ice.
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Meinander et al. 2022). Sand and dust storms, 
including HLD, were identified as a hazard that 
affects 11 of the 17 Sustainable Development 
Goals (UNCCD 2022). 

1.2. General information on dust at 
high latitudes

High-latitude (HL) sites and regions can be sources 
and receptors of dust. In the latter case, dust can 
be both local and long-range transported to the 
receptor sites.

Like desert dust around the world, HLD also 
consists of various parent materials. Icelandic, 
Alaskan, some Canadian, and some Antarctic 
sources are of volcanic origin with high proportion 
of iron oxides and low proportion of quartz 
compared to low latitude deserts (Bachelder et 
al. 2020; Baldo et al. 2020; Crusius et al. 2021). 
Dust from the other source areas show variable 
amounts of a dual component from sedimentary 
covers and metamorphic complexes (Moroni et al. 
2016, 2018).

It is estimated that HLD contributes 5% to the 
global dust budget and active HLD sources cover 
>1 500 000 km2 (Bullard et al. 2016 Meinander 

et al. 2022). Arctic HLD sources are estimated 
to contribute 1-3% of the global dust with area 
of >1 000 000 km2 (Groot Zwaafting et al. 2016; 
Meinander et al. 2022). It is estimated that during 
years when dust activity in enhanced, about 5.5% 
of the Arctic land areas are active dust sources (>1 
mil. km2, Meinander et al. 2022). The most active 
research has been done in Iceland, Canada, Alaska, 
and Greenland (Crusius et al. 2011; Arnalds et al. 
2016; Bachelder et al. 2020). Model simulations 
by Groot Zwaaftink et al. (2016) showed that dust 
surface concentrations and deposition in the Arctic 
are dominated by the local high-latitude sources, 
due to limited convection and efficiency of removal 
processes. 

1.3. Objectives of this report

The main objectives of this report are as follows:
• to identify and characterise local and long-range 

dust sources in Svalbard
• to summarise available information on dust 

sources in Svalbard and evaluate contributions 
to dust load from long-range transport

• to propose for the future a plan/strategy for 
the collection, treatment, evaluation, and 
harmonisation of new data on the subject

2. Overview of existing knowledge

2.1. Dust sources over Svalbard

Local and long-range sources of dust have been 
recognised in Svalbard, which are quite well 
distinguishable from each other due to the presence 
of specific mineral phases and / or mineralogical 
assemblies. Estimated dust loads in central and 
southern Svalbard from different sources range 
from 4 g up to 4-5 kg per m2 per year (Rymer et al. 
2022). In the Hornsund region the annual aeolian 
accumulation rate was estimated to between 
29-117 g/m2 (Pekala 1980) and 300-400 g/m2 
(Czeppe 1968) and to 2.66-24.56 g/m2 per snow 
season (Kavan et al. 2020). At lower elevations up 
to 300 metres above sea level, local dust is more 
prevalent than dust from long-distance transport.

2.2. Local sources

Svalbard has been recognised as an important 
HLD source with several active hotspots in 
northwestern, central and southern Svalbard 
(Meinander et al. 2022). In Ny-Ålesund local dust 
dominates in the summer–fall period (Moroni et 
al. 2016, 2018), while Hornsund reports local dust 
as early as late spring and throughout the melting 
season (Zwolinski et al. 2013; Kavan et al. 2020; 
Lewandowski et al. 2020; Spolaor et al. 2021). 
Dust storms have been reported in Longyearbyen 
(Dörnbrack et al. 2010; Khan et al. 2017; Kandler et 
al. 2020), in Pyramiden and Ebba Valley (Strzelecki 
and Long 2020; Kavan et al. 2020), as well as at the 
forefield of the Werenskioldbreen glacier (Migała 
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and Sobik 1984). Although it has been shown 
that HLD sources can also be active during winter 
(Dagsson-Waldhauserova et al. 2019; Meinander et 
al. 2022), no evidence of dust emissions occurring 
in this season is reported for Svalbard. 

Periglacial and proglacial areas are the main local 
dust sources in Svalbard (Zwoliński et al. 2013). 
These areas develop at the edge of glaciers or within 
glacial valleys, and they are increasing in size due to 
accelerated glacier ablation. These areas affect the 
narrow coastal or nearshore plains that border the 
entire archipelago. Glacial valleys, instead, develop 
radially from the inland to the coast. They are very 
extensive, quite stable in general and, thus, able to 
supply dust sediments more regularly than coastal 
plains during the year.

The mineralogical assemblage and the mineral 
chemistry of local dust (Moroni et al. 2016, 2018; 
Lewandowski et al. 2020) clearly reflect the 
geological features of the sites, marked by the 
presence of different sedimentary units overlying 
diverse metamorphic complexes, and small 
magmatic units (Dallmann 2015). 

The presence and production of anthropogenically-
derived dust on Svalbard is also evident from 

observational studies of dust collected in proximity 
to coal mines near Longyearbyen and Svea, which 
were active at the time of the studies (Aamaas et 
al. 2011; Khan et al. 2017). Up to 4863 ng/g of coal 
dust was found near Mine 7 in Longyearbyen and 
in Svea while the mines were active, and has been 
shown to reduce spectral albedo of surface snow 
by up to 84% directly next to the mine and up to 
55% within 0.5 km downwind of the mine (Khan 
et al. 2017). These coal dust deposits are visible 
dark scars along the otherwise pristine landscape 
(Figure 1). 

2.3. Long-range sources 

Long-range transport to Spitsbergen involves dust 
from high- to low-latitude regions. According to 
global transport model simulations (Groot Zwaaftink 
et al. 2016; Figure 2), the largest contribution to 
Svalbard comes from Africa, Asia and, above all, 
Eurasia, while the contribution from Iceland, North 
America and, especially, from Greenland is much 
smaller. In addition, dust from remote sources 
shows a marked seasonal trend with highs in late 
winter/spring and lows in summer/autumn.

Results from field observations confirm some of the 
model results. In particular, Crocchianti et al. (2021) 

Figure 1. Mine 7 near Longyearbyen (Breinosa mountain). Note the dark coal dust deposits on surface snow. Photo: Alia 
Khan
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have identified HL sources for the dust reaching 
Ny-Ålesund to be Eurasia, Greenland, Arctic-Alaska 
and Iceland. In addition, the mineralogy and the 
mineral chemistry of dust with respect to the parent 
soils made it possible to distinguish the local dust 
fraction from those of Iceland, Siberia and Alaska 
(Moroni et al. 2016, 2018, 2020). The presence of 
Saharan dust, including giant quartz particles, and 
Asian dust is documented over the Arctic (Groot 
Zwaafting et al. 2016; Varga et al. 2021), but not 
directly in Svalbard. In a study comparing dust 
deposition at Pyramiden and Hornsund, Kavan 
et al. (2020) showed that dust deposited at high 
altitudes is dominated by long-range transport.

2.4. Dust impact on the atmosphere

Dust is an important air pollutant with severe 
impacts on human health, visibility, and traffic 
safety (Querol et al. 2019; Monteiro et al. 
2022). It can cause extreme particulate matter 
concentrations (PM10) up to 50 000 µg/m3 (1000x 
higher the health limit) as measured for example 
in Iceland and elsewhere (Querol et al. 2019). 
PM10 concentrations >1 000 µg/m3 have been 
reported during dust storms from several locations 
in high latitudes, including populated areas (Arnalds 
et al. 2016; Bachelder et al. 2020; Butwin et al. 

2020). Aeolian transport of 11 tonnes of dust 
over a one-metre transect was measured during 
an extreme wind erosion event in Iceland in 2010 
and evaluated as one of the most extreme wind 
erosion events measured on Earth (Arnalds et al. 
2013). Experiments and observations have shown 
that HLD such as that from Iceland has impacts 
on atmospheric chemistry (Urupina et al. 2019; 
Romanias et al. 2020). HLD uptake of gases (both 
greenhouse gases with their precursors and gases 
controlling global warming) has been investigated 
in the laboratory and during in situ observations. 
Icelandic dust particles efficiently scavenge SO2 and 
NO2 to form sulphites/sulphates and nitrous acid. 
Dust is also an important agent in cloud formation 
as dust particles serve as ice nucleating particles 
(INPs) and cloud condensation nuclei, allowing ice 
and liquid droplet formation. HLD and particularly 
Icelandic and Svalbard dusts are efficient INPs and 
significant INP contributors in the Arctic, having 
impact on the mid- to high-latitude mixed phase 
clouds (Sanchez-Marroquin et al. 2020; Tobo et al. 
2019; Meinander et al. 2022; Rinaldi et al. 2021). 
Th high ice nucleating ability of HLD is likely due to 
its origin in glacial valleys rich in primary minerals 
(olivenes, pyroxenes, feldspars, and amphiboles) 
and less rich in clays compared to low latitude 
dust. Increased INP concentrations can lead to a 

Figure 2. Simulated annual wet and dry deposition of dust (g/m2) in the Arctic originating from different source regions 
averaged for the period 2010-2012. Reprinted from Groot Zwaafting et al. 2016, with permission of the authors.
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reduction in supercooled water and a decrease 
in shortwave reflectivity of clouds to produce a 
positive climate feedback.

2.5. Dust impact on the cryosphere

The cryosphere is an important part of the climate 
system and small changes in surface properties can 
have large radiative impacts. Dust deposition has a 
great effect on the cryosphere because it lowers 
the surface albedo and therefore influences the 
surface energy balance and melt rates. A mainly 
local source of HLD is fine sediment from glacier 
forefields. Glaciers produce this glacial flour which 
gets airborne due to katabatic winds in areas with 
limited vegetation cover. Due to glacier retreat, 
more land surface is exposed to wind and therefore 
dust emissions are likely to increase (Bullard 
2013). Light-absorbing HLD particles can induce 

snow optical characteristics that impact Arctic 
amplification and cryosphere melt via radiative 
feedback (Boy et al. 2019; Meinander et al. 2022). 

Snow and ice darkening due to the deposition of 
light-absorbing particles is a global phenomenon 
with regional characteristics (Di Mauro et al. 2021). 
The impact of dust on the optical properties of 
snow and ice strongly depends on the nature and 
size of mineral particles (Skiles et al. 2018; Shi et 
al. 2022) and also snow and ice properties, such as 
grain size and snow age (Warren and Wiscombe 
1980). Most of the radiative impact of dust on 
snow occurs at wavelengths below 600 nm, and it 
is possible to analyse this effect by measuring the 
spectral reflectance of snow and ice (Di Mauro et 
al. 2015, 2017; Khan et al. 2017). Black carbon has 
instead a rather flat absorption spectrum. 

3. Methods 

The methods reported here are part of long-term 
monitoring activities continuously performed 
in observatory labs (e.g. Gruvebadet, Zeppelin, 
Hornsund), and during short-term fieldwork 
campaigns (e.g. balloon experiments, snow/
ice sampling on glaciers). Sampling, sample 
treatment and analysis appear to be quite varied 
and heterogeneous, and this has often made data 
integration and comparison quite complex.

3.1. Sample collection and treatment

Dust sampling is part of both long-term and short-
term monitoring activities. Dust sampling has been 
performed in air, ice/firn and snow. Dust sources 
such as bare soils and sedimentary deposits have 
been also sampled in some cases. Sampling site 
locations are presented in Figure 3, while aerosol, 
snow and ice/firn sampling techniques commonly 
employed in Svalbard are reported in appendix 1.

3.2. Continuous measurements

Long-term HLD atmospheric observations (ground 
and balloon-borne) have been conducted in Iceland, 

Canada and Antarctica (Thorsteinsson et al. 2011; 
Dagsson-Waldhauserova et al. 2014a,b; Arnalds 
et al. 2016; Kavan et al. 2020; Bachelder et al. 
2020; Butwin et al. 2020). The analysis of aerosol 
chemical composition is a useful approach to 
quantify aerosol dust. Sharma et al. (2019) studied 
dust variability at Alert through the analysis of 
aluminium and calcium aerosol concentration from 
1980 until 2013. Higher dust contributions were 
observed in late summer – early fall and during 
spring. The most common instruments to measure 
dust in situ are particle counters, able to measure 
particle number concentration in specific size 
ranges. Examples of particle counters are Optical 
Particle Counter (OPC 3330, EDM365, 22 or 31 
size bins PM0.25–32), Dusttrak DRX 8533EP (4 
size bins PM1-10), Light Aerosol Optical Counter 
(LOAC, 19 size bins PM0.2–100), and Thermo 
EMS Andersen FH 62 I-R instrument and Grimm 
EDM 365. Dust concentration is generally derived 
as the concentration of particle number or mass in 
the coarse size range (above 1 or 2.5 micrometers). 
Song et al. (2021) investigated dust occurrence in 
Svalbard through cluster analysis of particle size 
distribution and aerosol bulk chemical composition 
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at Gruvebadet. Dust-dominated aerosol was 
characterised by coarse particles (volume size 
distribution peaking at 3 µm and 12-14 µm) and 
an average calcium to sodium ion ratio of 1.8. Dust 
was observed mainly from June to October. Finally, 
the analysis of aerosol optical properties allows the 
identification of dust transport episodes, because 
dust particles are generally characterised by small 
scattering Angstrom exponents and might show 
large absorption Angstrom exponents (Russell et 
al. 2010; Costabile et al. 2013).

Long term measurements of aerosol chemical 
composition, particle size distribution, and aerosol 
optical properties have been routinely performed 
at the Zeppelin Observatory (78.9071 N - 11.8867 
E, 474 m a.s.l.) and at the Gruvebadet Atmospheric 
Laboratory (78.918 N - 11.895 E, 61 m a.s.l.) since 
2010. A complete list of analytical techniques used 
to characterise and quantify dust in the aerosol 
phase is reported in the chapter ‘HERMOSA’ of this 

report (Koziol et al. 2023).

The Polish Polar Station in Hornsund, together 
with NASA, has been conducting Aerosol Optical 
Depth (AOD) monitoring since 2004. A CE318 
(Cimel’s Sun Sky Multispectral Photometer) is used 
for this purpose. Automatic measurements are 
taken during the polar day, usually from April to 
September. Later, the device is sent to NASA for 
review and calibration. The data obtained goes to 
the AERONET (Aerosol Robotic Network) database 
maintained by NASA.

From October 2009 to 2017, measurements were 
made with a ground-based bistatic lidar system with 
multilevel elastic and Raman scattering. It allowed 
regular vertical soundings of the troposphere and 
lower stratosphere over the Polish Polar Station in 
Hornsund (77.00°N, 15.55°E, 10 m above sea level; 
Karasiński et al. 2014). The Nd:YAG laser generated 
three wavelengths simultaneously, i.e. 1064 nm; 

Figure 3. Sampling site locations: 1 – Woodfjorden; 2 – Gruvebadet; 3-7 – Ny-Ålesund; 8 – Pyramiden; 9 – Breinosa; 
10-11 – Recherchebreen; 12-13 – Storbreen; 14-15 – Hornbreen; 16-21 – Werenskioldbreen; 22 – Hansbreen; 23 – 
Ariekammen. Coordinate Reference System: WGS84 / UTM 33N. Map made based on the NPI S100 Topographic Raster 
Data for Svalbard. © Norwegian Polar Institute.
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532 nm and 355 nm. Automatic measurements of 
PM10 and PM2.5 particulate matter are planned to 
be launched in Hornsund in the near future.

3.3. Field campaigns

Field spectral reflectance measurements of 
dust deposited on snow, such as with field 
spectrometers, are necessary to quantify the 
impacts of dust on snow albedo, as well as to 
develop indices that can be used to map dust on 
snow from space (Khan et al. 2017; Di Mauro et 
al. 2015). More research is needed to continue to 
develop indices specific to the dust sources found 
in Svalbard beyond the local coal dust, which 
absorbs broadly in the visible wavelengths (Khan 
et al. 2017), as well as to monitor dust impacts on 
the local cryosphere. 

Dust measurement campaigns in the Hornsund area 
have so far taken place irregularly. Measurements 
have been conducted in late June/early July (Kavan 
et al. 2020) or in spring (Lewandowski et al. 2020). 
In the first case, snow was taken in the vertical 
profile of the Ariekammen slope to determine the 
amount and mineral composition of dust. In the 
second case, the focus was on shallow firn-ice cores. 
In both cases, efforts were made to determine the 
impact of local and long-distance transport on 
dust delivery to the Svalbard archipelago. Different 
analytical methods were used. The results obtained 
confirmed the greater contribution of dust of local 
origin. Attention was drawn to the need for further 
research to confirm the results obtained. 

Other studies conducted seasonally in the 
Hornsund area include AOD measurements using 
solar photometers. Since the focus of this chapter 
is on mineral dust, we refer the reader to Koziol et 
al. 2023.

3.4. Source identification: 
analytical methods

An inventory of solid phases in ice or snow can be 
indicative for localisation of source rocks, at least 
for their most general classification. The dating of 
radioactive minerals found in dust further constrains 
sourcing area to orogens formed at the given time. 

For instance, Lewandowski et al. (2020) used the 
Electron MicroProbe (EMP) for U-Th-Pb chemical 
dating of monazite grains, and magnetic methods 
for identification of magnetically active minerals, 
found in an ice core from southern Spitsbergen. 

To distinguish between different HLD sources the 
geochemical features of HLD can be treated by 
means of potential source contribution function 
analysis (Crocchianti et al. 2021). Soil dust 
from potential source areas can also be used in 
resuspension chambers to segregate the aeolian 
part (less than 10 µm) onto filters for successive 
analysis (Bertinetti et al. 2022).

3.5. Source identification: Back-
trajectories modelling and sand/
dust forecast

Atmospheric dust in the Arctic originates from 
resuspension of soil dust from high latitude local 
sources, as well as from long-range transport 
events. The origin of aerosol particles in the Arctic 
has been investigated by tracing back air mass origin 
using Lagrangian back trajectory models, including 
HYSPLIT and LAGRANTO models (Stohl 2006).

Based on HYSPLIT back trajectories, Tobo et 
al. (2019) observed that air masses that spent 
a relatively long time over the Svalbard region 
in summer 2016 were enriched in larger mineral 
particles, indicating a significant contribution 
of local sources to the observed atmospheric 
dust. The contribution of local and long distance 
dust sources to the Svalbard aerosol loading was 
reported by Crocchianti et al. (2021) in spring and 
summer 2015, as well. 

Young et al. (2016) studied dust particles over the 
European Arctic in spring 2013 during the ACCACIA 
campaign. Local snow excluded the impact of local 
dust sources and the HYSPLIT back trajectories 
indicated that air masses passed over North 
America and northern Europe at high altitudes 
before reaching Svalbard. Such observations 
suggested that dust originated from lower latitudes, 
potentially Asia, and was transported through the 
free troposphere with weak cloud scavenging. 
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4. Contributions to interdisciplinarity

1 https://community.wmo.int/activity-areas/gaw/science-for-services/sds-was
2 https://dust.aemet.es/
3 https://maps.unccd.int/sds/

The study of dust is intrinsically interdisciplinarity. 
In fact, dust is produced in the lithosphere, travels 
in the atmosphere and it can be deposited on the 
cryosphere and biosphere, and it can alter the 
hydrosphere. Our chapter helps in putting the 
role of dust in Svalbard in the right perspective. 
We hereafter discuss possible interactions among 
spheres that involve dust transport and impact.

By accelerating the melt of snow and ice, dust is 
potentially able to change the surface hydrology of 
glaciers and snowfields in Svalbard. These particular 
interactions have not been explored in detail, 
neither with observational data nor with modelling. 
Snow dynamical models such as Crocus are able 
to assimilate dust flux from the atmosphere and 
estimate the reduction of snow season length 
due to dust (Di Mauro et al. 2019). Furthermore, 
dust can be involved in complex interactions on 
the surface of melting glaciers. For example, it 
can enhance the development of organic material 
on ice and further induce surface melting of the 
glaciers (Di Mauro et al. 2021).

The contribution from bioaerosols (e.g. Conen et 
al. 2016; Baloh et al. 2021) on the ice nucleating 
ability of windblown dust and on cryoconite state 
and development has been recognised. Bioaerosol 
includes bacteria, fungi, pollen and terrestrial/
marine organics amongst others (Kanji et al. 
2017). The source(s) and nature of such particles 

are at present poorly studied and understood, 
and this is a point to call for interdisciplinarity 
in the characterisation of bioparticles and their 
interaction with both the atmosphere and the 
cryosphere. Combined bio-geochemical bio-
physical characterisation of aerosol and dust in 
Svalbard may be the starting point for widespread 
activity (as for disciplines and research groups 
involved) regarding both the cryosphere and the 
atmosphere in their interaction with bioparticles 
and bioaerosols. 

To investigate and understand the life cycle of 
dust, measurements can be coupled with modelling 
approaches on emission, long-range transport 
and deposition. Models can also have capacity 
to indicate where more direct observations are 
needed (Meinander et al. 2022). The World 
Meteorological Organisation Sand and Dust Storm 
Warning Advisory and Assessment System (WMO 
SDS-WAS) monitors and predicts dust storms from 
the world’s major deserts1,2. High latitude sources 
have recently been included in the SDS-WAS dust 
forecasts for the first time. Svalbard dust sources 
have been identified also in the SDS Source Base-
Map developed by the secretariat of the United 
Nations Convention to Combat Desertification, in 
collaboration with UN Environment Programme 
and the WMO3. Models could be developed to 
predict albedo changes due to dust deposition from 
northern circumpolar dust sources.

https://community.wmo.int/activity-areas/gaw/science-for-services/sds-was
https://dust.aemet.es/
https://maps.unccd.int/sds/
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5. Unanswered questions

Hereafter we list a series of unanswered questions 
that arose during the writing of this SVALDUST 
Chapter.

1. What is the impact of dust on the cryosphere 
in Svalbard? And how does dust influence the 
melting of Svalbard’s glaciers?

2. Is dust able to trigger a bio-albedo feedback, 
mediated by dark photosynthetic organisms?

3. What are the interactions between black carbon 
and dust both in the atmosphere and the 
cryosphere?

4. Are radionuclides present in the aeolian dust, 
and, if so, what is their concentration?

5. Can dust be a vector/medium transporting 
micro/nanobiotic organisms on a cross-regional 
scale?

6. Recommendations for the future

1. Identify and characterise new dust sources in 
Svalbard, e.g. those caused by permafrost thaw 
or related to human activities (e.g. road dust).

2. Intensify and/or regularise (=make systematic) 
the observation and remote detection of dust 
emission/uplift and dust storm events in Svalbard 
by means of adequate monitoring systems 
(such as those already in use in other HL dust 
sources/regions such as Iceland), installed at 
different sites, starting from the localities (such 
as Adventdalen valley near Longyearbyen) where 
these phenomena have already been observed.

3. Further investigation, by continuous/direct 
measurements and devoted campaigns, of 
the influence of local sources in the lower 

troposphere and long-range transport at higher 
altitudes.

4. Establish an inventory of the long-range dust 
sources by source profiling in order to cooperate 
with the modellers for quantification of the dust 
load from different sources.

5. Disentangle the relative contribution of black 
carbon and dust on snow and ice albedo 
reduction in Svalbard. Furthermore, a detailed 
study on the possible mechanism promoting 
bio-albedo feedbacks (i.e. biological reduction 
of snow/ice albedo) should be conducted in 
Svalbard, and then results should be compared 
with those presented for the so called ‘dark 
zone’ of the Greenland Ice Sheet.

7. Data availability

Data availability is presented in appendix 2.
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Appendix 1: Aerosol, snow and ice/firn sampling techniques 
commonly employed in Svalbard 

Aerosol 

Time resolution From a few hours up to 7 days, depending on the analytical technique employed

Size fractionation Bulk aerosol samples (PM10 and TSP -Total Suspended Particulate matter sampling 
head) or size segregated samples (impactors)

Sampling substrate Different filter substrates according to specific analytical needs (i.e. quartz for organics, 
teflon for trace elements, polycarbonate for Scanning Electron Microscopy (SEM), 
cellulose for microbial population)

Snow and ice/firn

Sampling depth Surface snow layer up to 10 cm; snow in a vertical profile (snow pits, snow cores) to the 
ground or to the glacier ice; shallow ice/firn cores (1-2 m).

Sampling techniques Bulk samples collected manually or with ice core drilling equipment. Samples should be 
collected according to the protocol given by Gallet et al. (2018)

Sample preparation Mineral fractions in the ice and snow samples are extracted by filtering the meltwater. 
Filters with mineral residuum are dried and divided into parts, each part being subjected 
to different analytical methods.

Reference:
Gallet J-C, Björkman MP, Larose C, Luks B, Martma T, Zdanowicz C (2018) Protocols and recommendations 
for the measurement of snow physical properties, and sampling of snow for black carbon, water isotopes, 
major ions and microorganisms. Norwegian Polar Institute Brief Report 046, 27 pp. http://hdl.handle.
net/11250/2486183

http://hdl.handle.net/11250/2486183
http://hdl.handle.net/11250/2486183
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Appendix 2: Availability of data referenced in this chapter

Dataset Parameter Period Location Metadata access (URL) Dataset provider

High Latitude Dust 
deposited on snow

Sediment con-
centration

June-
July 

2019

Ariekammen 
and Pyramiden

https://doi.org/10.5281/
zenodo.6790469 

Jan Kavan (Masaryk 
University), jan.kavan.
cb@gmail.com

Aerosol chemical 
speciation 

Concentration 
of Na+, Cl-, 
NH4+, nssK, 
nssSO4, C org, 
EC and BC

July 
2015

Gruvebadet, 
Ny-Ålesund

https://doi.org/10.1594/
PANGAEA.908250 

Beatrice Moroni, 
University of Perugia, 
Italy (UNIPG), 
b.moroni@tiscali.it 

Aerosol chemical 
speciation 

concentration 
of metals

July 
2015

Gruvebadet, 
Ny-Ålesund

https://doi.org/10.1594/
PANGAEA.908251 

Beatrice Moroni, 
University of Perugia, 
Italy (UNIPG), 
b.moroni@tiscali.it 

Percent mass 
fraction of aerosol 
particles from SEM 
observations 

mass fraction 
of aerosol 
particles 

July 
2015

Gruvebadet, 
Ny-Ålesund

https://doi.org/10.1594/
PANGAEA.908276 

Beatrice Moroni, 
University of Perugia, 
Italy (UNIPG), 
b.moroni@tiscali.it 

Aerosol optical 
properties 

aerosol optical 
properties

July 
2015

Gruvebadet, 
Ny-Ålesund

https://doi.org/10.1594/
PANGAEA.908239 

David Cappelletti, 
niversity of Perugia, 
Italy (UNIPG), david.
cappelletti@unipg.it 

Aerosol size 
distribution 

aerosol size 
distribution

July 
2015

Gruvebadet, 
Ny-Ålesund

https://doi.org/10.1594/
PANGAEA.90818 

Beatrice Moroni, 
University of Perugia, 
Italy (UNIPG), 
b.moroni@tiscali.it 

Aerosol size 
distribution 

aerosol size 
distribution

July 
2015

Zeppelin 
Observatory, 
Ny-Ålesund

https://doi.org/10.1594/
PANGAEA.908186

Beatrice Moroni, 
University of Perugia, 
Italy (UNIPG), 
b.moroni@tiscali.it 

Results of the 
geochemical and 
magnetic studies 
on cryodust from 
glacial cores of 
southern Spitsbergen 
(Svalbard, Norway)

Sample 
specification; 
Chemical 
dating; 
Magnetic slope 
correction; 
Magnetic 
susceptibillity

April 
2018

Recherchebreen, 
Hornbreen  
(Flatbreen), 
Storbreen,  
Werenskiold-
breen,  
Hansbreen

https://doi.org/10.5281/
zenodo.6801558 

Adam Nawrot, 
Institute of 
Geophysics, Polish 
Academy of Sciences 
(IG PAS), anawrot@igf.
edu.pl

https://doi.org/10.5281/zenodo.6790469
https://doi.org/10.5281/zenodo.6790469
mailto:jan.kavan.cb@gmail.com
mailto:jan.kavan.cb@gmail.com
https://doi.org/10.1594/PANGAEA.908250
https://doi.org/10.1594/PANGAEA.908250
mailto:b.moroni@tiscali.it
https://doi.org/10.1594/PANGAEA.908251
https://doi.org/10.1594/PANGAEA.908251
mailto:b.moroni@tiscali.it
https://doi.org/10.1594/PANGAEA.908276
https://doi.org/10.1594/PANGAEA.908276
mailto:b.moroni@tiscali.it
https://doi.org/10.1594/PANGAEA.908239
https://doi.org/10.1594/PANGAEA.908239
mailto:david.cappelletti@unipg.it
mailto:david.cappelletti@unipg.it
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