

Summer science project searching Jodrell Bank pulsar observations for "glitches" to detect starquakes and better understand neutron stars

Summer science project searching Jodrell Bank pulsar observations for "glitches" to detect starquakes and better understand neutron stars

Spoiler: didn't solve this problem in 8 weeks

Summer science project searching Jodrell Bank pulsar observations for "glitches" to detect starquakes and better understand neutron stars

Spoiler: didn't solve this problem in 8 weeks

Summer science project searching Jodrell Bank pulsar observations for "glitches" to detect starquakes and better understand neutron stars

Spoiler: didn't solve this problem in 8 weeks

But I did learn that I love research

Summer science project searching Jodrell
Bank pulsar character Research experience
detect starque should be available to
neutron stars
undergrads

But I did learn that I love research

Spoiler: didn't solve this problem in 8 weeks

How do high-mass stars form?

Young high-mass stars (infrared)

- Much bigger than the sun
- Form faster & have shorter lives
- Really hot & lots of UV
- H, He, and CO (+ some surprises)

Do they have disks?

MPhys thesis
disk rotation
shielded layer
outflows and shocks
disk+shock=disk wind?
Maybe in G76!

45.

76.3829-00.6210

CO

CO

Clongth [n]

[Fe II]

Scientific mentors are the university's most valuable

resource

How do high-mass stars form?

Young high-mass stars (infrared)

- Much bigger than the sun
- Form faster & have shorter lives
- Really hot & lots of UV
- H, He, and CO (+ some surprises)

Do they have disks?

MPhys thesis
disk rotation
shielded layer
outflows and shocks
disk+shock=disk wind?
Maybe in G76!

Design 1.0 CO

2.29 2.30

Vavelength [IT

Age milestones are fake

Scientific mentors are the university's most valuable resource

Inst

How do high-mass stars form?

Young high-mass stars (infrared)

- · Much bigger than the sun
- Form faster & have shorter lives
- Really hot & lots of UV
- H, He, and CO (+ some surprises)

Do they have disks?

CO

MPhys thesis
disk rotation
shielded layer
outflows and shocks
disk+shock=disk wind?
Maybe in G76!

THE GREAT HALL

Age milestones are fake

Scientific mentors are the university's most valuable resource

Inst

Astrobiology Do biological molecules exist in space? Astrobiology and the most volcanic object in the solar system Observing Challenges ACA proposal accepted

Astrochemistry Laboratory Code 691

Natasha Johnson

Perry Gerakines (Associate Chief)

Astrochemistry

Laboratory

Code 691

Natasha Johnson

Perry Gerakines

(Associate Chief)

(Not Tielens)

Laboratory

(Not Tielens)

Laboratory

Astrobiology and the most volcanic object in the solar system

Ingredients for life:

Astrobiology and the most volcanic object in the solar system

Ingredients for life:

water,

heat,

CHNOPS

Astrobiology and the most volcanic object in the solar system

Io: tenuous atmosphere + volcanoes = little chance for life

Astrobiology and the most volcanic object in the solar system

Io: tenuous atmosphere + volcanoes = little chance for life

Astrobiology and the most volcanic object in the solar system

123.

So

Astrobiology and the most volcanic object in the solar system

124.

Astrobiology and the most volcanic object in the solar system

and (tidally heated, water covered) Europa is next door

So

Io's volcanoes can send Sulfur to Europa to help life get started

NASA Postdoctoral Program

Obs

NASA Postdoctoral Program

Volcanoes fill the torus with gas

Ob:

20

Some remains when Io moves on

Obs

Some remains when Io moves on

Ob

Some remains when Io moves on Some dragged forward by ions trapped in Jupiter's magnetic field

Some remains when Io moves on Some dragged forward by ions trapped in Jupiter's magnetic field

Some remains when Io moves on Some dragged forward by ions trapped in Jupiter's magnetic field

Observing Challenges

ACA proposal accepted

A (Jupiter Radii)

me remains when Io moves on me dragged forward by ions pped in Jupiter's magnetic field

Observing Challenges

ACA proposal accepted

Scheduled for Early 2020

Observing Challenges

ACA proposal accepted

Scheduled f

me remains when Io moves on me dragged forward by ions pped in Jupiter's magnetic field

Observing Challenges

ACA proposal accepted

Scheduled f Total Shutdown of ALMA

me remains when Io moves on me dragged forward by ions pped in Jupiter's magnetic field

Observing Challenges

ACA proposal accepted

Scheduled f Total Shutdown of ALMA

v (anhirer kadil)

me remains when Io moves on me dragged forward by ions pped in Jupiter's magnetic field

Observing Challenges

ACA proposal accepted

Scheduled f Total shutdown of ALMA

Unfortunately, angular scales change leally fast

A (Jupiter Radii)

me remains when Io moves on me dragged forward by ions pped in Jupiter's magnetic field

Observing Challenges

ACA proposal accepted

Scheduled f Total Shutdown of ALMA

Unfortunately, angular scales change leally fast

Most fields and spectral windows badly affected by Jupiter photobomb

me remains when Io moves on me dragged forward by ions pped in Jupiter's magnetic field

Observing Challenges

ACA proposal accepted

Scheduled f Total Shutdown of ALMA

Unfortunat

Most fields Jupiter phc ales change leally fast windows badly affected by

Observing Challenges

ACA proposal accepted

Scheduled f Total Shutdown of ALMA

Observed in summer 2021

Unfortunat WOMAN YELLS ATJUSTICE

Most fields

Jupiter pho

ales change leally fast

windows badly affected by

6 months attempting to "fix" the mosaics (Thanks Allegro ARC!) and hoping to find anything in one of the spectral windows

Observing Challenges

ACA proposal accepted

Scheduled f. Total Shutdown of ALMA

Observed in summer 2021

Unfortunat WOMAN YELLS ATJUSTICE

Most fields

Jupiter pho

ales change leally fast

windows badly affected by

6 months attempting to "fix" the mosaics (Thanks Allegro ARC!) and hoping to find anything in one of the spectral windows

One detection: SO_2 (104.239 GHz)

Observing Challenges

ACA proposal accepted

Scheduled f Total Shutdown of ALMA

Unfortunat WOMANYELLS AT JUPITER

Most fields

Jupiter pho

ales change leally fast

windows badly affected by

6 months attempting to "fix" the mosaics (Thanks Allegro ARC!) and hoping to find anything in one of the spectral windows

One detection: SO_2 (104.239 GHz)

Observing Challenges

ACA proposal accepted

Updated April 2, 2020. Scheduled f Total Shutdown of ALMA

Most fields

Jupiter pho

ales change leally fast

windows badly affected by

6 months attempting to "fix" the mosaics (Thanks Allegro ARC!) and hoping to find anything in one of the spectral windows

One detection: SO_2 (104.239 GHz)

Peak flux 289 mJy (~7sig) line width ~0.7km/s

Observing Challenges

ACA proposal accepted

Updated April 2, 2020. Scheduled f Total Shutdown of ALMA

Most fields

Jupiter pho

ales change leally fast

windows badly affected by

6 months attempting to "fix" the mosaics (Thanks Allegro ARC!) and hoping to find anything in one of the spectral windows

One detection: SO_2 (104.239 GHz)

Peak flux 289 mJy (~7sig) line width ~0.7km/s

Possibly just beam diluted SO₂ atmosphere

Observing Challenges

ACA proposal accepted

Updated April 2, 2020. Scheduled f Total Shutdown of ALMA

Most fields

Jupiter pho

ales change leally fast

windows badly affected by

6 months attempting to "fix" the mosaics (Thanks Allegro ARC!) and hoping to find anything in one of the spectral windows

One detection: SO_2 (104.239 GHz)

Peak flux 289 mJy (~7sig) line width ~0.7km/s

Possibly just beam diluted SO₂ atmosphere

Roth et al. 2020 (NOEMA Io atmosphere obs)

A (Jupiter Radii)

me remains when Io moves on me dragged forward by ions pped in Jupiter's magnetic field

Observing Challenges

ACA proposal accepted

Updated April 2, 2020. Scheduled f Total Shutdown of ALMA

Unfortunat WOMAN YELLS ATJUPITER

Most fields

Jupiter pho

ales change leally fast

windows badly affected by

6 months attempting to "fix" the

Allegro ARC!) and hoping to fin Not every experiment the spectral windows

One detection: SO_2 (104.239 GF

Peak flux 289 mJy (~7sig) line width ~0.7km/s

Possibly just beam diluted SO₂ atmosphere

Roth et al. 2020 (NOEMA Io atmosphere obs)

