

 This would lead to a suppression of the FCO₂ when the impact of the wind is accounted for in the ΔpCO₂ showing that the bulk flux formula may not be robust enough to account for high frequency variability in the ΔpCO₂.

- The process of air-sea CO_2 flux (FCO₂) is governed by a bulk formulation which constitute of the wind driven gas transfer velocity (k_w), the solubility constant (k_o) and the gradient between the partial pressure of CO_2 in the ocean and in the atmosphere (ΔpCO_2).
- The K_w , calculated here using a quadratic parameterization (Wanninkhof, 2014), is governed by complex boundary layer processes which are largely controlled by the **wind speed**. In high wind speed regime, such as in the sub-Antarctic Zone (SAZ), strong surface ocean turbulence occurs which encourages bubble entrainment causing K_w to have a strong impact on the magnitude of FCO₂.
- The K_o varies with the temperature and salinity of seawater and is calculated using an integrated van't Hoff formula (Weiss, 1974).
- In the SAZ, the pCO_{2sea} is smaller than the pCO_{2air} leading to a negative ΔpCO_2 (ingassing) throughout the year, which intensifies in summer and weakens in winter.

Conclusions

Wind burst associated with storm events in the SAZ during late-winter and spring led to a brief weakening of the ΔpCO₂ which caused FCO₂ ingassing to weaken despite the high wind stress during each

event.

Data

- High-resolution Wave Glider observation from the third Southern Ocean Seasonal Cycle Experiment (SOSCEx-III) was used in this study.
- **Study period:** 14th August 2015 to 8th February 2016

42.9°5

43.1°S

• **Temporal resolution**: Hourly

 Pseudo-mooring sampling pattern:

> 8.3°E 8.5°E 8.7°E Longitude

Results and Discussion

How is the ΔpCO_2 responding to each wind burst event?

- A total of **22** storm events were identified for the study period, out of which **3** occurred in Winter, **8** in Spring and **11** in Summer.
- The response of the ΔpCO_2 to each storm event in Winter, Spring and 7 out of 11 Summer events showed the rapid **weakening of the \Delta pCO_2** with varying magnitude (Figs. 1-4d).
- This weakening is likely due to the entrainment of DIC caused by a deepening of the mixed layer depth from storm momentum dissipation.
- 4 out of 11 storms events in Summer however showed the opposite pattern whereby an **increase in the** ΔpCO_2 was observed during a wind burst.
- We speculate that this increase could be due to the simultaneous consumption of DIC by the biology during entrainment.

Summer storm events showed both a **weakening** and **enhancing** ΔpCO_2 pattern for each wind burst which led to the respective **weakening** and **enhancement** of the FCO₂ **ingassing** linked with high wind stress.

How is this

impacting the

 FCO_2 ?

Winter

For winter storm events, accounting the impact of the wind burst on the ΔpCO_2 showed a **suppression** of about **6.67 %** in the mean FCO₂ of each event (Fig. 2d&e).

Spring

For spring storm events, accounting the impact of wind burst on the ΔpCO_2 showed a **suppression** ranging between **10.8 % to 34.8%** in the mean FCO₂ of each event (Fig. 3d&e).

Observed $FCO_2 = K_w K_o \Delta pCO_{2-observed}$

Experimental FCO₂ = K_w K_o \Delta pCO_{2-start}*

Difference = Observed FCO₂ – Experimental FCO₂

 $\Delta pCO_{2-start}^*$ = value at the start of storm event (dashed line) to simulate no impact of wind burst on the ΔpCO_2

1982 to 2016 sea-air CO₂ flux [mol C m⁻² yr⁻¹]

(Gregor et al. 2019)

Fig. 2: Timeseries of the (a) K_w , (b) K_o , (c) ΔpCO_2 (d) FCO_2 and (e) difference between the observed and experimental FCO_2 for the duration of a strong **winter** storm event (max wind stress of 0.682 Nm⁻²).

Summer

The mean FCO_2 of summer storm events showed two different response when the synoptic feedback in ΔpCO_2 to each wind burst was accounted for. • 7/11 storms which showed a weakening in the ΔpCO_2 indicated a **4.1 % to 20.2 %** *suppression* of the mean FCO_2 of each event (not shown).

• 4/11 storms which showed an increase in the ΔpCO_2 indicated an **enhancement** of **3.2 % to 26.4%** of the mean FCO_2 of each event (Fig. 4d&e).

Fig. 3: Timeseries of the (a) K_w , (b) K_o , (c) ΔpCO_2 (d) FCO_2 and (e) difference between the observed and experimental FCO_2 for the duration of a strong **spring** storm event (max wind stress of 0.669 Nm⁻²).

Fig. 4: Timeseries of the (a) K_w , (b) K_o , (c) ΔpCO_2 (d) FCO_2 and (e) difference between the observed and experimental FCO_2 for the duration of a strong **summer** storm event (max wind stress of 0.749 Nm⁻²).