Fig. 3: Timeseries of the (a) K_w , (b) K_o , (c) ΔpCO_2 (d) FCO_2 and (e) difference between the observed and experimental $FCO₂$ for the duration of a strong **spring** storm event (max wind stress of 0.669 Nm-2).

Study area

sub-Antarctic Zone

Polar Upwelling Zone

- High-resolution Wave Glider observation from the third Southern Ocean Seasonal Cycle Experiment (SOSCEx-III) was used in this study.
- **Study period:** 14th August 2015 to 8th February 2016

42.9°S

43.1°S

This would lead to a suppression of the $FCO₂$ when the impact of the wind is accounted for in the ∆pCO₂ showing that the bulk flux formula may not be robust enough to account for high frequency variability in the $\Delta pCO₂$.

For spring storm events, accounting the impact of wind burst on the ∆pCO2 showed a *suppression* ranging between **10.8 % to 34.8%** in the mean $FCO₂$ of each event (Fig. 3d&e).

Observed FCO₂ = K_w K_o ΔpCO_{2-observed}

 $\text{Experimental FCO}_2 = \text{K}_{w} \text{ K}_{o} \Delta p \text{CO}_{2\text{-start}}^*$

Difference = Observed FCO₂ - Experimental FCO₂

 $ΔpCO_{2-star}[*] = value at the start of storm event (dashed line) to simulate no impact of wind$ **burst on the ∆pCO₂**

The mean $FCO₂$ of summer storm events showed two different response when the synoptic feedback in $\Delta pCO₂$ to each wind burst was accounted for. • 7/11 storms which showed a weakening in the ΔpCO_2 indicated a 4.1 % to 20.2 % suppression of the mean FCO₂ of each event (not shown).

• 4/11 storms which showed an increase in the ∆pCO2 indicated an *enhancement* of **3.2** % to 26.4% of the mean $FCO₂$ of each event (Fig. 4d&e).

Data

Conclusions

Results and Discussion

- The process of air-sea $CO₂$ flux (FCO₂) is governed by a bulk formulation which constitute of the wind driven gas transfer velocity (k_w) , the solubility constant (k_o) and the gradient between the partial pressure of $CO₂$ in the ocean and in the atmosphere $(\Delta pCO₂)$.
- The **Kw**, calculated here using a quadratic parameterization (Wanninkhof, 2014), is governed by complex boundary layer processes which are largely controlled by the **wind speed**. In high wind speed regime, such as in the sub-Antarctic Zone (SAZ), strong surface ocean turbulence occurs which encourages bubble entrainment causing K_w to have a strong impact on the magnitude of FCO_2 .
- The K_0 varies with the temperature and salinity of seawater and is calculated using an integrated van't Hoff formula (Weiss, 1974).
- In the SAZ, the pCO_{2sea} is smaller than the pCO_{2air} leading to a negative $\Delta pCO₂$ (ingassing) throughout the year, which intensifies in summer and weakens in winter.

(Gregor et al. 2019)

L6 sea-air CO₂ flux [mol C m⁻² yr⁻¹]

For winter storm events, accounting the impact of the wind burst on the ∆pCO2 showed a *suppression* of about **6.67** % in the mean $FCO₂$ of each event (Fig. 2d&e).

> **Fig. 2:** Timeseries of the (a) K_w , (b) K_o , (c) ΔpCO_2 (d) FCO_2 and (e) difference between the observed and experimental $FCO₂$ for the duration of a strong **winter** storm event (max wind stress of 0.682 Nm-2).

Fig. 4: Timeseries of the (a) K_w , (b) K_o , (c) ΔpCO_2 (d) FCO_2 and (e) difference between the observed and experimental $FCO₂$ for the duration of a strong **summer** storm event (max wind stress of 0.749 Nm-2).

Spring

Summer

How is the **∆pCO₂ responding to each wind burst event?**

 $8.3^{\circ}E$ $8.5^{\circ}E$ $\overline{\mathbf{8.7}^{\circ} \mathsf{E}}$ Longitude

Wind burst associated with storm events in the SAZ during late-winter and spring led to a brief **weakening** of the **∆pCO**₂ which caused **FCO**₂ ingassing to **weaken despite** the **high wind stress** during each

Summer storm events showed both a **weakening** and **enhancing ∆pCO2** pattern for each wind burst which led to the respective **weakening** and **enhancement** of the FCO₂ ingassing linked with **high wind stress**.

- A total of **22** storm events were identified for the study period, out of which **3** occurred in Winter, **8** in Spring and **11** in Summer.
- The response of the ΔpCO_2 to each storm event in Winter, Spring and 7 out of 11 Summer events showed the rapid **weakening of the ∆pCO**₂ with varying magnitude (Figs. 1-4d).
- o This weakening is likely due to the entrainment of DIC caused by a deepening of the mixed layer depth from storm momentum dissipation.
- 4 out of 11 storms events in Summer however showed the opposite pattern whereby an **increase in the ∆pCO2** was observed during a wind burst.
- o We speculate that this increase could be due to the simultaneous consumption of DIC by the biology during entrainment.

How is this

impacting the

FCO₂?

Latitude

• Temporal resolution: Hourly

• **Pseudo-mooring sampling pattern:**

