
Sharp-P and the Birch and Swinnerton-Dyer
conjecture
Frank Vega !Ï

CopSonic, 1471 Route de Saint-Nauphary 82000 Montauban, France

Abstract
Assuming the Birch and Swinnerton-Dyer conjecture, an odd square-free integer n is a congruent
number if and only if the number of triplets of integers (x, y, z) satisfying 2 · x2 + y2 + 8 · z2 = n is
twice the number of triplets satisfying 2 · x2 + y2 + 32 · z2 = n due to Tunnell’s theorem. However, we
show these equations are instances of a variant of counting solutions of the homogeneous Diophantine
equations of degree two which is a #P–complete problem. Deciding whether n is congruent or not is
a problem in NP since congruent numbers could be easily checked by a congruum, because of every
congruent number is a product of a congruum and the square of a rational number. We conjecture
that if P = NP and F P ̸= #P , then the Birch and Swinnerton-Dyer conjecture would be false.

2012 ACM Subject Classification Theory of computation Complexity classes; Theory of computa-
tion Problems, reductions and completeness

Keywords and phrases complexity classes, boolean formula, completeness, polynomial time

1 Introduction

Let {0, 1}∗ be the infinite set of binary strings, we say that a language L1 ⊆ {0, 1}∗ is
polynomial time reducible to a language L2 ⊆ {0, 1}∗, written L1 ≤p L2, if there is a
polynomial time computable function f : {0, 1}∗ → {0, 1}∗ such that for all x ∈ {0, 1}∗:

x ∈ L1 if and only if f(x) ∈ L2.

An important complexity class is NP–complete [5]. If L1 is a language such that L′ ≤p L1
for some L′ ∈ NP–complete, then L1 is NP–hard [2]. Moreover, if L1 ∈ NP , then L1 ∈
NP–complete [2]. A principal NP–complete problem is SAT [5]. An instance of SAT is a
Boolean formula ϕ which is composed of:

1. Boolean variables: x1, x2, . . . , xn;
2. Boolean connectives: Any Boolean function with one or two inputs and one output, such

as ∧(AND), ∨(OR), ⇁(NOT), ⇒(implication), ⇔(if and only if);
3. and parentheses.

A truth assignment for a Boolean formula ϕ is a set of values for the variables in ϕ. A
satisfying truth assignment is a truth assignment that causes ϕ to be evaluated as true. A
Boolean formula with a satisfying truth assignment is satisfiable. The problem SAT asks
whether a given Boolean formula is satisfiable [5]. We define a CNF Boolean formula using
the following terms:

A literal in a Boolean formula is an occurrence of a variable or its negation [2]. A Boolean
formula is in conjunctive normal form, or CNF , if it is expressed as an AND of clauses, each
of which is the OR of one or more literals [2]. A Boolean formula is in 3-conjunctive normal
form or 3CNF , if each clause has exactly three distinct literals [2]. For example, the Boolean
formula:

(x1∨ ⇁ x1∨ ⇁ x2) ∧ (x3 ∨ x2 ∨ x4) ∧ (⇁ x1∨ ⇁ x3∨ ⇁ x4)

is in 3CNF . The first of its three clauses is (x1∨ ⇁ x1∨ ⇁ x2), which contains the three
literals x1, ⇁ x1, and ⇁ x2. In computer science, not-all-equal 3-satisfiability (NAE–3SAT)

mailto:vega.frank@gmail.com
https://uh-cu.academia.edu/FrankVega 
https://orcid.org/0000-0001-8210-4126


2 Sharp-P and the Birch and Swinnerton-Dyer conjecture

is an NP–complete variant of SAT over 3CNF Boolean formulas. NAE–3SAT consists in
knowing whether a Boolean formula ϕ in 3CNF has a truth assignment such that for each
clause at least one literal is true and at least one literal is false [5]. NAE–3SAT remains
NP–complete when all clauses are monotone (meaning that variables are never negated), by
Schaefer’s dichotomy theorem [10].

In computational complexity, the complexity class #P (or Sharp-P) is the set of the
counting problems associated with the decision problems in the set NP [12]. Besides, the
complexity class FP is the set of the function problems associated with the decision problems
in the set P [8]. Whether FP = #P or not is an open problem [8]. A problem is #P–complete
if it is in #P and every #P problem has a Turing reduction or polynomial-time counting
reduction to it. In some cases we use the parsimonious reductions which is a more specific
type of reduction that preserves the exact number of solutions.

The counting version of NAE–3SAT on monotone clauses is #P–complete since to date,
all known NP–complete languages have a defining relation which is #P–complete [7]. We
know that the variant of XOR 2SAT that uses the logic operator ⊕ (XOR) instead of ∨
(OR) within the clauses of 2CNF Boolean formulas can be decided in polynomial time [6, 9].
We announce a variant of its counting version which is in #P–complete.

▶ Definition 1. #Monotone Exact XOR 2SAT (#EX2SAT)
INSTANCE: A Boolean formula φ in 2CNF with monotone clauses between logic operators

⊕ and a positive integer K.
ANSWER: Count the number of truth assignments in φ such that in each truth assignment

there are exactly K satisfied clauses.

▶ Theorem 2. #EX2SAT ∈ #P–complete.

A homogeneous Diophantine equation is a Diophantine equation that is defined by a
polynomial whose nonzero terms all have the same degree [3]. The degree of a term is the
sum of the exponents of the variables that appear in it, and thus is a non-negative integer [3].
From general homogeneous Diophantine equations of degree two, we can reject an instance
when there is no solution reducing the equation modulo p. We define another counting
problem:

▶ Definition 3. #ZERO-ONE Homogeneous Diophantine Equation (#HDE)
INSTANCE: A homogeneous Diophantine equation of degree two P (x1, x2, . . . , xn) = B

with the unknowns x1, x2, . . . , xn and a positive integer B.
ANSWER: Count the number of solutions u1, u2, . . . , un on {0, 1}n where we have

P (x1, x2, . . . , xn) = B.

▶ Theorem 4. #HDE ∈ #P–complete.

We generalize this problem.

▶ Definition 5. #Bounded Homogeneous Diophantine Equation (#BHDE)
INSTANCE: A homogeneous Diophantine equation of degree two P (x1, x2, . . . , xn) = B

with the unknowns x1, x2, . . . , xn and two positive integers B, M .
ANSWER: Count the number of solutions u1, u2, . . . , un on non-negative integers lesser

than M such that P (x1, x2, . . . , xn) = B.

▶ Theorem 6. #BHDE ∈ #P–complete.

Proof. This is trivial since we can make a parsimonious reduction from (P (x1, x2, . . . , xn), B)
in #HDE to (P (x1, x2, . . . , xn), B, 2) in #BHDE (i.e. using M = 2). Due to #HDE is in
#P–complete, then #BHDE is in #P–hard. Finally, we know that #BHDE is in #P. ◀



F. Vega 3

Assuming the Birch and Swinnerton-Dyer conjecture, an odd square-free integer n is
a congruent number if and only if the number of triplets of integers (x, y, z) satisfying
2 · x2 + y2 + 8 · z2 = n is twice the number of triplets satisfying 2 · x2 + y2 + 32 · z2 = n due
to Tunnell’s theorem [11]. Deciding whether n is congruent or not is a problem in NP since
congruent numbers could be easily checked by a congruum since every congruent number is
a product of a congruum and the square of a rational number [1]. Certainly, every congruum
is in the form of 4 · m · n · (m2 − n2) (with m > n), where m and n are two distinct positive
integers [4]. Thus, we state our finally conjecture:

▶ Conjecture 7. Under the assumption that P = NP and FP ̸= #P, then the Birch and
Swinnerton-Dyer conjecture would be false.

Proof. Under the assumption that P = NP , we know that deciding whether an odd square-
free integer n is congruent or not can be done in polynomial time since this problem is in NP .
On the other hand, for a given n, counting the numbers of solutions of 2 · x2 + y2 + 8 · z2 = n

and 2 · x2 + y2 + 32 · z2 = n can be calculated by exhaustively searching through x, y, z in the
range −

√
n, . . . ,

√
n. Note that, the solutions with negative values in x, y, z can be generated

by the equivalent non-negative values. For example, if there is a solution in (ux, uy, uz),
then (−ux, uy, uz) is also a solution when ux ≠ 0 and so on. Hence, we can multiply the
number of non-negative solutions by 8 and be able to obtain all the possible number of
solutions for these equations. After that, we must subtract the exceeded amount of those
non-negative triplets of integers (x, y, z) that contain a single or double zeros (subtracting
once or two times, respectively) where the remaining values can be positive. We know the
amount of triplets of integers (x, y, z) which contains a zero and the remaining values can be
positive is not exponential and so, we could find them and count them in polynomial time
under the assumption that P = NP . However, the instances 2 · x2 + y2 + 8 · z2 = n and
2 · x2 + y2 + 32 · z2 = n belong to the #P–complete problem #BHDE just using B = M = n

when we consider only the non-negative values on the triplets. Since FP ̸= #P, then the
problem #BHDE cannot be solved in polynomial time. We don’t know specifically whether
counting the number of non-negative integer solutions of the instances 2 · x2 + y2 + 8 · z2 = n

and 2 · x2 + y2 + 32 · z2 = n cannot be solved in polynomial time as well. If that would be
the case, then we might obtain a contradiction and therefore, the Birch and Swinnerton-Dyer
conjecture would be false by reductio ad absurdum. ◀

2 Proof of Theorem 2

Proof. Take a Boolean formula ϕ in 3CNF with n variables and m clauses when all clauses
are monotone. Iterate for each clause ci = (a ∨ b ∨ c) and create the conjunctive normal form
formula

di = (a ⊕ ai) ∧ (b ⊕ bi) ∧ (c ⊕ ci) ∧ (ai ⊕ bi) ∧ (ai ⊕ ci) ∧ (bi ⊕ ci)

where ai, bi, ci are new variables linked to the clause ci in ϕ. Note that, the clause ci has
exactly at least one true literal and at least one false literal if and only if di has exactly one
unsatisfied clause. We notice that the value of positive literals a, b, c coincide in ci and di,
which means that those values are linked one-to-one in both directions. Finally, we obtain a
new formula

φ = d1 ∧ d2 ∧ d3 ∧ . . . ∧ dm

where there is not any repeated clause. In this way, we made a parsimonious reduction
from ϕ in #Monotone NAE–3SAT to (φ, 5 · m) in #EX2SAT . As we mentioned before,



4 Sharp-P and the Birch and Swinnerton-Dyer conjecture

#Monotone NAE–3SAT is in #P–complete and thus, #EX2SAT is in #P–hard. Moreover,
we know that #EX2SAT is in #P. ◀

3 Proof of Theorem 4

Proof. Take a Boolean formula φ in XOR 2CNF with n variables and m clauses when all
clauses are monotone and a positive integer K. Iterate for each clause ci = (a ⊕ b) and create
the Homogeneous Diophantine Equation of degree two

P (xa, xb) = x2
a − 2 · xa · xb + x2

b

where xa, xb are variables linked to the positive literals a, b in the Boolean formula φ. When
the literals a, b are evaluated in {false, true}, then we assign the respective values {0, 1} to
the variables xa, xb (1 if it is true and 0 otherwise). Note that, the clause ci is satisfied if
and only if P (xa, xb) = 1. We notice that ci is unsatisfied if and only if P (xa, xb) = 0, so the
corresponding and translated values are linked one-to-one in both directions. Finally, we
obtain a polynomial

P (x1, x2, . . . , xn) = P (xa, xb) + P (xc, xd) + . . . + P (xe, xf )

that is a Homogeneous Diophantine Equation of degree two. Indeed, K satisfied clauses in
φ correspond to K distinct small pieces of Homogeneous Diophantine Equation of degree
two P (xi, xj) which are equal to 1. In this way, we made a parsimonious reduction from
(φ, K) in #EX2SAT to (P (x1, x2, . . . , xn), K) in #HDE. Since we obtain that #EX2SAT

is in #P–complete, then #HDE is in #P–hard. Furthermore, we know that #HDE is in
#P. ◀

References
1 Keith Conrad. The congruent number problem. The Harvard College Mathematics Review,

2(2):58–74, 2008.
2 Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, and Clifford Stein. Introduction to

Algorithms. The MIT Press, 3rd edition, 2009.
3 David A Cox, John Little, and Donal O’shea. Using algebraic geometry, volume 185. Springer

Science & Business Media, 2006.
4 David Darling. The universal book of mathematics from Abracadabra to Zeno’s paradoxes.

John Wiley & Sons, Inc., 2004.
5 Michael R Garey and David S Johnson. Computers and Intractability: A Guide to the Theory

of NP-Completeness. San Francisco: W. H. Freeman and Company, 1 edition, 1979.
6 Neil D Jones, Y Edmund Lien, and William T Laaser. New problems complete for nondetermin-

istic log space. Mathematical systems theory, 10(1):1–17, 1976. doi:10.1007/BF01683259.
7 Noam Livne. A note on #P-completeness of NP-witnessing relations. Information processing

letters, 109(5):259–261, 2009. doi:10.1016/j.ipl.2008.10.009.
8 Christos H Papadimitriou. Computational complexity. Addison-Wesley, 1994.
9 Omer Reingold. Undirected connectivity in log-space. Journal of the ACM (JACM), 55(4):1–24,

2008. doi:10.1145/1391289.1391291.
10 Thomas J Schaefer. The complexity of satisfiability problems. In Proceedings of the tenth

annual ACM symposium on Theory of computing, pages 216–226, 1978.
11 Jerrold B Tunnell. A classical Diophantine problem and modular forms of weight 3/2.

Inventiones mathematicae, 72(2):323–334, 1983. doi:10.1007/BF01389327.
12 Leslie G Valiant. The complexity of computing the permanent. Theoretical computer science,

8(2):189–201, 1979. doi:10.1016/0304-3975(79)90044-6.

https://doi.org/10.1007/BF01683259
https://doi.org/10.1016/j.ipl.2008.10.009
https://doi.org/10.1145/1391289.1391291
https://doi.org/10.1007/BF01389327
https://doi.org/10.1016/0304-3975(79)90044-6

	1 Introduction
	2 Proof of Theorem 2
	3 Proof of Theorem 4

