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Introduction 

Harmful algae blooms (HABs) are characterized by a massive proliferation of 

phytoplankton organisms, which provide a myriad of adverse effects such as large-scale 

marine mortality, economic impacts in coastal regions and consequences to aquaculture 

industries. Climate change has affected HAB frequency and severity on a global scale. In 

this scenario, machine learning may be an invaluable tool in helping society adapt to the 

effects of climate change through reliable HAB monitoring and early detection. 

Plankton data sets are usually imbalanced and reflect natural differences within the 

environment. For minority classes, there may not be enough data to properly represent 

this variability, preventing AI models from gaining a full understanding of these classes 

(Kerr et al., 2020). The present work employs state-of-the-art Deep Learning (DL) 

models to support HAB monitoring applications within the Atlantic area.  

 

Materials and Methods 

A unified benchmark database covering publicly available phytoplankton images has 

been built through a data integration pipeline (Guterres et al., 2021) considering target 

phytoplankton genera from Integrated Multi-Trophic Aquaculture (IMTA) farms from 

Brazil, South Africa and Scotland. Classic convolutional neural networks architectures 

are trained for phytoplankton classification. Best individual models serve as a baseline 

for investigating state-of-the-art methods for class imbalance classification of target 

phytoplankton organisms. The following approaches have been evaluated to best support 

climate resilient solutions on HAB monitoring: 

● Two-phase Learning (2PL) combines the Random Under Sampling technique with 

transfer learning. The model is first pre-trained using threshold data and then fine-

tuned using original unbalanced datasets (Buda et al., 2018). 

● Dynamic Sampling (DS) dynamically changes the class distribution of the training 

samples. Initially, the number of samples of each class equals the average number of 

samples. For every other iteration, the number of samples of each class is calculated 

based on the F1-Score from the previous training round (Johnson et al., 2019).  

● Threshold Moving may be implemented on already trained models to improve 

classification results.  It adjusts the decision threshold of a classifier during the test 

phase. Considering neural networks estimate Bayesian a posteriori probability, the 

output y for class i implicitly corresponds to                  
             

    
 for 

a given datapoint x. The correct class probabilities can be obtained by dividing the 

network output for each class by its estimated prior probability (Buda et al., 2018). 

● Deep collaborative models (ensemble) may harness the limited understanding of 

individual models to provide a collective and more accurate classification specially 

for minority classes. It is a heterogeneous ensemble of DL models which grants a 

substantial performance improvement regarding other state-of-the-art approaches 

(Buda et al., 2018). 

 



Results and Discussions 

MobileNetV2 was selected as baseline model for further DL modeling since they 

provided best results among other architectures (NasNet, Resnet and VGG16). They are 

also targeted towards embedded and resource constrained environments. Table 1 depicts 

performance results within state-of-the-art approaches for phytoplankton classification. 

Table 1 - Performance results within state-of-the-art methods for classification of target 

phytoplankton genera in IMTA applications. 

 Method Recall Precision F1-Score Model Size 

None (Baseline) 0.75 0.78 0.75 29.1MB 

DS 0.88 0.77 0.82 23MB 

2PL 0.84 0.91 0.87 54.8MB 

Ensemble (DS + 2PL) 0.87 0.94 0.89 50MB 

Threshold Moving (Ensemble) 0.88 0.94 0.91 50MB 

All investigated methods have improved classification performance compared to the 

baseline architecture. Collaborative deep learning model showed promising results. It 

enabled the combination of other state-of-the-art approaches towards reliable 

phytoplankton and HAB monitoring. Threshold moving has provided outstanding 

performance compared to other investigated approaches.  

Conclusions 

The present work investigated state-of-the-art approaches to class imbalance 

classification, considering target phytoplankton organisms within the Atlantic area. Deep 

collaborative models and threshold moving may be key methods towards climate 

resilient solutions for HAB monitoring since they can be employed upon latest DL 

models and architectures. 
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