

Constraints on the physical origin of disk winds in Black Hole X-ray binaries thanks to Athena

Pierre-Olivier Petrucci (co-PI) on behalf of the Athena A&A Special Issue proposal team

D. Kazanas (co-PI), **S. Datta, K. Fukumura**, S. Chakravorty, T. Waters, M. Parra, E. Behar, S. Bianchi, M. Clavel, I. Contopoulos, C. Done, J. Ferreira, T. Kallman, G. Matt, G. Ponti, D. Proga, C. Shrader, R. Tomaru, P. Tzanavaris, J. Wilms

Exploring the Hot and Energetic Universe: 3rd scientific¹ conference dedicated to the Athena X-ray observatory

First discoveries of narrow absorption features (Fe XXV, Fe XXVI) with ASCA (e.g., GROJ1655–40 Ueda et al. 1998, Yamaoka et al. 2001; GRS 1915+105, Model of the state of the

• Measured energy shift < a few 1% (up to a few 1000 km/s)
</p>

- Absence of P Cyg profile: the absorber does not flow isotropically
- Lack of any orbital phase dependence of the features (e.g., Yamaoka et al. 2001; Boirin & Parmar 2003) except during dips: the absorber is close to the compact object

 Overwhelming presence of X-ray absorption features in high inclined systems in « soft state » (e.g., Ponti et al. 2012, Diaz Trigo & Boirin 2016, Parra et al. in prep.)

equatorial geometry with opening angles of few tens of degrees

6

→ ubiquitous (?)

Are Hot and Cold winds the same component?

Disk Winds: Launching processes Thermally driven

Compton Heated Wind (Begelman et al. 1983)

$$T_{IC} = \frac{\int EF_E(E)dE}{4k\int F_E(E)dE} \sim 10^{6-8} K$$

here escape when: $V_{\perp}(T_{LC}) = \left(\frac{2kT_{IC}}{2kT_{IC}}\right)^{1/2} V_{\perp}(R) = \left(\frac{2GM_{BH}}{2K}\right)^{1/2}$

• Disc atmosphere escape when: $V_{th}(T_{IC}) = \left(\frac{2\kappa T_{IC}}{m_p}\right) > V_{esc}(R) = \left(\frac{2\kappa T_{BH}}{R}\right)$

i.e. when
$$R > R_{IC} = \frac{GM_{BH}m_p}{kT_{IC}} \sim 10^{5-6}R_g$$

Black hole

Wind

Disk

hot atmosphere

(Credits: R. Tomaru)

X-ray

 \Rightarrow Simulations show that $R > 0.1 R_{IC}$ is already enough

 \rightarrow requires large disk

 \rightarrow small range in velocities

(e.g. Woods et al. 1996; Done et al. 2008; Dyda et al. 2017; Tumaru et al. 2019)

Disk Winds: Launching processes MHD driven

 The same mechanisms that produce jets from disk (e.g. Blandfold & Payne 1982) can apply for Winds

• Key parameter: the magnetization $\mu = \frac{P_{mag}}{P_{mag}}$

→ JET: high μ → powerful radio emission, high speed, no absorption features

→ WIND: low μ → weak radio emission, low speed, absorption features

 \rightarrow MHD wind can be produced wherever $\mu > 0$

 \rightarrow Wide range in velocity, depending on the wind radial extension

(e.g. Chakravorty et al. 2016, 2022; Fukumura et al. 2017, 2021)

But... both processes could (should?) be present (e.g., Everett 2005; Neilsen & Homan 2012; Waters & Proga 2018)

Disk Winds: Thermal Stability

The revolution of X-ray High Spectral Resolution

Large number of counts needed...

 \Rightarrow Counts > several 10³ in the 6-8 keV range to constraints lines of < 10 eV

Large number of counts needed...

 \Rightarrow Counts > several 10³ in the 6-8 keV range to constraints lines of < 10 eV

- Op to now, both types of processes manage to reproduce the main characteristics (density, velocity,...) of the observed absorption features (e.g., Fukumura et al. 2017; Chakravorty et al. 2016, Tomaru et al. 2019)
- The difference in the velocity profiles is expected to produce different line profiles (Fukumura et al. 2021, Chakravorty et al. 2022, Tomaru et al. 2022)
 - MHD wind: $v_{los}(R) \propto R^{-1/2}$ Thermal wind: $v_{los}(R)$ a few 100 km/s

- Op to now, both types of processes manage to reproduce the main characteristics (density, velocity,...) of the observed absorption features (e.g., Fukumura et al. 2017; Chakravorty et al. 2016, Tomaru et al. 2019)
- The difference in the velocity profiles is expected to produce different line profiles (Fukumura et al. 2021, Chakravorty et al. 2022, Tomaru et al. 2022)

- Up to now, both types of processes manage to reproduce the main characteristics (density, velocity,...) of the observed absorption features (e.g., Fukumura et al. 2017; Chakravorty et al. 2016, Tomaru et al. 2019)
- The difference in the velocity profiles is expected to produce different line profiles (Fukumura et al. 2021, Chakravorty et al. 2022, Tomaru et al. 2022)

- Up to now, both types of processes manage to reproduce the main characteristics (density, velocity,...) of the observed absorption features (e.g., Fukumura et al. 2017; Chakravorty et al. 2016, Tomaru et al. 2019)
- The difference in the velocity profiles is expected to produce different line profiles (Fukumura et al. 2021, Chakravorty et al. 2022, Tomaru et al. 2022)

- Up to now, both types of processes manage to reproduce the main characteristics (density, velocity,...) of the observed absorption features (e.g., Fukumura et al. 2017; Chakravorty et al. 2016, Tomaru et al. 2019)
- The difference in the velocity profiles is expected to produce different line profiles (Fukumura et al. 2021, Chakravorty et al. 2022, Tomaru et al. 2022)

LOS inclination angle

Disk Extension

Wind Density

Disk Magnetization

• In case an MHD wind is present, the wind properties (density, velocities,...) along the LOS will depend on the magnetisation

Conclusions

- Disk winds in XrB certainly play a crucial role in the evolution of these systems.
- High Spectral Resolution Missions (XRISM/Athena) will provide crucial constraints on:
 - ✓ Launching process (MHD vs Thermal)
 - ✓ Wind properties (inclination, density distribution, ...)
 - ✓ Disk magnetisation
 - ✓ X-ray wind detection in hard states?
 ✓ ...

Thanks!