Sharp-P and the Birch and Swinnerton-Dyer conjecture

Frank Vega ☑��

CopSonic, 1471 Route de Saint-Nauphary 82000 Montauban, France

Abstract

Assuming the Birch and Swinnerton-Dyer conjecture, an odd square-free integer n is a congruent number if and only if the number of triplets of integers (x,y,z) satisfying $2 \cdot x^2 + y^2 + 8 \cdot z^2 = n$ is twice the number of triplets satisfying $2 \cdot x^2 + y^2 + 32 \cdot z^2 = n$ due to Tunnell's theorem. However, we show these equations are instances of a variant of counting solutions of the homogeneous Diophantine equations of degree two which is a #P-complete problem. Deciding whether n is congruent or not is a problem in NP since congruent numbers could be easily checked by a congruum, because of every congruent number is a product of a congruum and the square of a rational number. We conjecture that if P = NP and $FP \neq \#P$, then the Birch and Swinnerton-Dyer conjecture would be false.

2012 ACM Subject Classification Theory of computation Complexity classes; Theory of computation Problems, reductions and completeness

Keywords and phrases complexity classes, boolean formula, completeness, polynomial time

1 Introduction

Let $\{0,1\}^*$ be the infinite set of binary strings, we say that a language $L_1 \subseteq \{0,1\}^*$ is polynomial time reducible to a language $L_2 \subseteq \{0,1\}^*$, written $L_1 \leq_p L_2$, if there is a polynomial time computable function $f: \{0,1\}^* \to \{0,1\}^*$ such that for all $x \in \{0,1\}^*$:

$$x \in L_1$$
 if and only if $f(x) \in L_2$.

An important complexity class is NP-complete [5]. If L_1 is a language such that $L' \leq_p L_1$ for some $L' \in NP$ -complete, then L_1 is NP-hard [2]. Moreover, if $L_1 \in NP$, then $L_1 \in NP$ -complete [2]. A principal NP-complete problem is SAT [5]. An instance of SAT is a Boolean formula ϕ which is composed of:

- 1. Boolean variables: x_1, x_2, \ldots, x_n ;
- 2. Boolean connectives: Any Boolean function with one or two inputs and one output, such as \land (AND), \lor (OR), \rightarrow (NOT), \Rightarrow (implication), \Leftrightarrow (if and only if);
- **3.** and parentheses.

A truth assignment for a Boolean formula ϕ is a set of values for the variables in ϕ . A satisfying truth assignment is a truth assignment that causes ϕ to be evaluated as true. A Boolean formula with a satisfying truth assignment is satisfiable. The problem SAT asks whether a given Boolean formula is satisfiable [5]. We define a CNF Boolean formula using the following terms:

A literal in a Boolean formula is an occurrence of a variable or its negation [2]. A Boolean formula is in conjunctive normal form, or CNF, if it is expressed as an AND of clauses, each of which is the OR of one or more literals [2]. A Boolean formula is in 3-conjunctive normal form or 3CNF, if each clause has exactly three distinct literals [2]. For example, the Boolean formula:

$$(x_1 \lor \neg x_1 \lor \neg x_2) \land (x_3 \lor x_2 \lor x_4) \land (\neg x_1 \lor \neg x_3 \lor \neg x_4)$$

is in 3CNF. The first of its three clauses is $(x_1 \lor \neg x_1 \lor \neg x_2)$, which contains the three literals $x_1, \neg x_1$, and $\neg x_2$. In computer science, not-all-equal 3-satisfiability (NAE-3SAT)

is an NP-complete variant of SAT over 3CNF Boolean formulas. NAE-3SAT consists in knowing whether a Boolean formula ϕ in 3CNF has a truth assignment such that for each clause at least one literal is true and at least one literal is false [5]. NAE-3SAT remains NP-complete when all clauses are monotone (meaning that variables are never negated), by Schaefer's dichotomy theorem [10].

In computational complexity, the complexity class #P (or Sharp-P) is the set of the counting problems associated with the decision problems in the set NP [12]. Besides, the complexity class FP is the set of the function problems associated with the decision problems in the set P [8]. Whether FP = #P or not is an open problem [8]. A problem is #P-complete if it is in #P and every #P problem has a Turing reduction or polynomial-time counting reduction to it. In some cases we use the parsimonious reductions which is a more specific type of reduction that preserves the exact number of solutions.

The counting version of NAE–3SAT on monotone clauses is #P–complete since to date, all known NP–complete languages have a defining relation which is #P–complete [7]. We know that the variant of XOR 2SAT that uses the logic operator \oplus (XOR) instead of \vee (OR) within the clauses of 2CNF Boolean formulas can be decided in polynomial time [6, 9]. We announce a variant of its counting version which is in #P–complete.

▶ Definition 1. #Monotone Exact XOR 2SAT (#EX2SAT)

INSTANCE: A Boolean formula φ in 2CNF with monotone clauses between logic operators \oplus and a positive integer K.

ANSWER: Count the number of truth assignments in φ such that in each truth assignment there are exactly K satisfied clauses.

▶ Theorem 2. $\#EX2SAT \in \#P\text{-}complete$.

A homogeneous Diophantine equation is a Diophantine equation that is defined by a polynomial whose nonzero terms all have the same degree [3]. The degree of a term is the sum of the exponents of the variables that appear in it, and thus is a non-negative integer [3]. From general homogeneous Diophantine equations of degree two, we can reject an instance when there is no solution reducing the equation modulo p. We define another counting problem:

▶ Definition 3. #ZERO-ONE Homogeneous Diophantine Equation (#HDE)

INSTANCE: A homogeneous Diophantine equation of degree two $P(x_1, x_2, ..., x_n) = B$ with the unknowns $x_1, x_2, ..., x_n$ and a positive integer B.

ANSWER: Count the number of solutions u_1, u_2, \ldots, u_n on $\{0,1\}^n$ where we have $P(x_1, x_2, \ldots, x_n) = B$.

▶ Theorem 4. $\#HDE \in \#P\text{-}complete$.

We generalize this problem.

▶ Definition 5. #Modulo Homogeneous Diophantine Equation (#MHDE)

INSTANCE: A homogeneous Diophantine equation of degree two $P(x_1, x_2, ..., x_n) = B$ with the unknowns $x_1, x_2, ..., x_n$ and two positive integers B, M.

ANSWER: Count the number of solutions $u_1 \mod M$, $u_2 \mod M$, ..., $u_n \mod M$ on non-negative integers evaluated with modulo M such that $P(x_1, x_2, ..., x_n) = B$.

▶ Theorem 6. $\#MHDE \in \#P\text{-}complete$.

Proof. This is trivial since we can make a parsimonious reduction from $(P(x_1, x_2, ..., x_n), B)$ in #HDE to $(P(x_1, x_2, ..., x_n), B, 2)$ in #MHDE (i.e. using M = 2). Due to #HDE is in #P-complete, then #MHDE is in #P-hard. Finally, we know that #MHDE is in #P.

F. Vega 3

Assuming the Birch and Swinnerton-Dyer conjecture, an odd square-free integer n is a congruent number if and only if the number of triplets of integers (x,y,z) satisfying $2 \cdot x^2 + y^2 + 8 \cdot z^2 = n$ is twice the number of triplets satisfying $2 \cdot x^2 + y^2 + 32 \cdot z^2 = n$ due to Tunnell's theorem [11]. Deciding whether n is congruent or not is a problem in NP since congruent numbers could be easily checked by a congruum since every congruent number is a product of a congruum and the square of a rational number [1]. Certainly, every congruum is in the form of $4 \cdot m \cdot n \cdot (m^2 - n^2)$ (with m > n), where m and n are two distinct positive integers [4]. Thus, we state our finally conjecture:

▶ Conjecture 7. Under the assumption that P = NP and $FP \neq \#P$, then the Birch and Swinnerton-Dyer conjecture would be false.

Proof. Under the assumption that P = NP, we know that deciding whether an odd squarefree integer n is congruent or not can be done in polynomial time since this problem is in NP. On the other hand, for a given n, counting the numbers of solutions of $2 \cdot x^2 + y^2 + 8 \cdot z^2 = n$ and $2 \cdot x^2 + y^2 + 32 \cdot z^2 = n$ can be calculated by exhaustively searching through x, y, z in the range $-\sqrt{n}, \ldots, \sqrt{n}$. Note that, the solutions with negative values in x, y, z can be generated by the equivalent non-negative values. For example, if there is a solution in (u_x, u_y, u_z) , then $(-u_x, u_y, u_z)$ is also a solution when $u_x \neq 0$ and so on. Hence, we can multiply the number of non-negative solutions by 8 and be able to obtain all the possible number of solutions for these equations. After that, we must subtract the exceeded amount of those non-negative triplets of integers (x, y, z) that contain a single or double zeros (once or two times, respectively) where the remaining values can be positive. We know the amount of triplets of integers (x, y, z) which contains a zero and the remaining values can be positive is not exponential and so, we could find them and count them in polynomial time under the assumption that P = NP. However, the instances $2 \cdot x^2 + y^2 + 8 \cdot z^2 = n$ and $2 \cdot x^2 + y^2 + 32 \cdot z^2 = n$ belong to the #P-complete problem #MHDE just using B = n and $M = \lceil \sqrt{n} \rceil$, where $\lceil \ldots \rceil$ is the ceiling function when we consider only the non-negative values on the triplets. Since $FP \neq \#P$, then the problem #MHDE cannot be solved in polynomial time. We don't know specifically whether counting the number of non-negative integer solutions of the instances $2 \cdot x^2 + y^2 + 8 \cdot z^2 = n$ and $2 \cdot x^2 + y^2 + 32 \cdot z^2 = n$ cannot be solved in polynomial time as well. If that would be the case, then we might obtain a contradiction and therefore, the Birch and Swinnerton-Dyer conjecture would be false by reductio ad absurdum.

2 Proof of Theorem 2

Proof. Take a Boolean formula ϕ in 3CNF with n variables and m clauses when all clauses are monotone. Iterate for each clause $c_i = (a \lor b \lor c)$ and create the conjunctive normal form formula

$$d_i = (a \oplus a_i) \land (b \oplus b_i) \land (c \oplus c_i) \land (a_i \oplus b_i) \land (a_i \oplus c_i) \land (b_i \oplus c_i)$$

where a_i, b_i, c_i are new variables linked to the clause c_i in ϕ . Note that, the clause c_i has exactly at least one true literal and at least one false literal if and only if d_i has exactly one unsatisfied clause. We notice that the value of positive literals a, b, c coincide in c_i and d_i , which means that those values are linked one-to-one in both directions. Finally, we obtain a new formula

$$\varphi = d_1 \wedge d_2 \wedge d_3 \wedge \ldots \wedge d_m$$

where there is not any repeated clause. In this way, we made a parsimonious reduction from ϕ in $\#Monotone\ NAE-3SAT$ to $(\varphi,5\cdot m)$ in #EX2SAT. As we mentioned before,

4 Sharp-P and the Birch and Swinnerton-Dyer conjecture

#Monotone NAE-3SAT is in #P-complete and thus, #EX2SAT is in #P-hard. Moreover, we know that #EX2SAT is in #P.

3 Proof of Theorem 4

Proof. Take a Boolean formula φ in $XOR\ 2CNF$ with n variables and m clauses when all clauses are monotone and a positive integer K. Iterate for each clause $c_i = (a \oplus b)$ and create the Homogeneous Diophantine Equation of degree two

$$P(x_a, x_b) = x_a^2 - 2 \cdot x_a \cdot x_b + x_b^2$$

where x_a, x_b are variables linked to the positive literals a, b in the Boolean formula φ . When the literals a, b are evaluated in $\{false, true\}$, then we assign the respective values $\{0, 1\}$ to the variables x_a, x_b (1 if it is true and 0 otherwise). Note that, the clause c_i is satisfied if and only if $P(x_a, x_b) = 1$. We notice that c_i is unsatisfied if and only if $P(x_a, x_b) = 0$, so the corresponding and translated values are linked one-to-one in both directions. Finally, we obtain a polynomial

$$P(x_1, x_2, \dots, x_n) = P(x_a, x_b) + P(x_c, x_d) + \dots + P(x_e, x_f)$$

that is a Homogeneous Diophantine Equation of degree two. Indeed, K satisfied clauses in φ correspond to K distinct small pieces of Homogeneous Diophantine Equation of degree two $P(x_i, x_j)$ which are equal to 1. In this way, we made a parsimonious reduction from (φ, K) in #EX2SAT to $(P(x_1, x_2, \ldots, x_n), K)$ in #HDE. Since we obtain that #EX2SAT is in #P-complete, then #HDE is in #P-hard. Furthermore, we know that #HDE is in #P.

References

- 1 Keith Conrad. The congruent number problem. The Harvard College Mathematics Review, 2(2):58–74, 2008.
- 2 Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, and Clifford Stein. *Introduction to Algorithms*. The MIT Press, 3rd edition, 2009.
- 3 David A Cox, John Little, and Donal O'shea. *Using algebraic geometry*, volume 185. Springer Science & Business Media, 2006.
- 4 David Darling. The universal book of mathematics from Abracadabra to Zeno's paradoxes. John Wiley & Sons, Inc., 2004.
- 5 Michael R Garey and David S Johnson. Computers and Intractability: A Guide to the Theory of NP-Completeness. San Francisco: W. H. Freeman and Company, 1 edition, 1979.
- 6 Neil D Jones, Y Edmund Lien, and William T Laaser. New problems complete for nondeterministic log space. *Mathematical systems theory*, 10(1):1–17, 1976. doi:10.1007/BF01683259.
- Noam Livne. A note on #P-completeness of NP-witnessing relations. *Information processing letters*, 109(5):259-261, 2009. doi:10.1016/j.ipl.2008.10.009.
- 8 Christos H Papadimitriou. Computational complexity. Addison-Wesley, 1994.
- 9 Omer Reingold. Undirected connectivity in log-space. Journal of the ACM (JACM), 55(4):1–24, 2008. doi:10.1145/1391289.1391291.
- 10 Thomas J Schaefer. The complexity of satisfiability problems. In *Proceedings of the tenth annual ACM symposium on Theory of computing*, pages 216–226, 1978.
- Jerrold B Tunnell. A classical Diophantine problem and modular forms of weight 3/2. *Inventiones mathematicae*, 72(2):323–334, 1983. doi:10.1007/BF01389327.
- Leslie G Valiant. The complexity of computing the permanent. Theoretical computer science, 8(2):189-201, 1979. doi:10.1016/0304-3975(79)90044-6.