
D5.9 Service deployment and cloud computing on
distributed Nordic cloud resources

Author(s) Helmut Neukirchen (UIce), Ernir Erlingsson (UIce),
Lorand Janos Szentannai (Sigma2), Claudio Pica
(SDU), Dan Sebastian Thrane (SDU), Matthias Obst
(GU), Tewodros Deneke (CSC), Abdulrahman Azab
(UiO)

Status Final
Version 2.0
Date 10. October 2022

Document identifier:

Deliverable lead SIGMA2
Related work package WP5
Author(s) Helmut Neukirchen (UIce), Ernir Erlingsson (UIce),

Lorand Janos Szentannai (Sigma2), Claudio Pica
(SDU), Dan Sebastian Thrane (SDU), Matthias Obst
(GU), Tewodros Deneke (CSC), Abdulrahman Azab
(UiO)

Contributor(s)
Due date 1. November 2022
Actual submission date
Reviewed by Ilja Livenson (ETAIS), Anders Sjöström (LU), Adil

Hasan (Sigma2)
Approved by
Dissemination level Public
Website https://www.eosc-nordic.eu/
Call H2020-INFRAEOSC-2018-3
Project Number 857652
Start date of Project 01/09/2019
Duration 36 months
License Creative Commons CC-BY 4.0
Keywords Service deployment, Cloud computing

1

https://www.eosc-nordic.eu/

2

Table of Contents
Table of Contents 2

Table of Abbreviations 4

Glossary 5

1. Introduction 6

2. Nordic cloud infrastructures 7

2.1 cPouta 7

2.2 NIRD Service Platform and NIRD Toolkit 7

2.3 UCloud 7

2.4 SNIC 8

3. Use cases 8

3.1 Machine Learning for Climate Modeling 8

3.1.1 Background and scientific value 8

3.1.2 Resources and services 10

3.1.3 Machine learning approach 10

3.1.4 Challenges, blockers 11

3.1.5 Status and outlook 12

3.2 Marine biodiversity exploration using cross-border resources and federated machine learning 12

3.2.1 Background and scientific value 12

3.2.2 Objective 14

3.2.3 Workflows 15

3.2.4 Technical Solution 16

3.2.5 Possibilities and options 21

3.2.6 Challenges, possible blockers 21

3.2.7 Status and outlook 22

3.3 Nordic Digital Humanities Laboratory data analytics on UCloud 23

3.3.1 Background 23

3.3.2 Objective 24

3.3.3 Workflows 24

3.3.4 Technical Overview 25

3.3.5 Technical Solution 29

3.3.6 Possibilities 31

3.3.7 Challenges, possible blockers 32

4. Benefits and lessons learned 33

5. Conclusions 34

3

Table of Abbreviations
Table 1. Abbreviations appearing in the document

Abbreviation Explanation

AI Artificial Intelligence

API Application Programming Interface

AUV Autonomous Underwater Vehicle

CPU Central Processing Unit

CSC IT Center for Science

EOSC European Open Science Cloud

FEDn Model agnostic framework for hierarchical federated machine learning

FedML Federated machine learning

GB Gigabyte

GPU Graphical Processing Unit

HPC High Performance Computing

IaaS Infrastructure as a Service

KSO Koster Seafloor Observatory

LoA Levels of Assurance

ML Machine Learning

MPI Message Passing Interface

NDHL Nordic Digital Humanities Laboratory

NIRD National Infrastructure for Research Data

NIRD SP NIRD Service Platform

NLP Natural Language Processing

OS Operating System

PaaS Platform as a Service

PI Principal Investigator

RI Research infrastructure

ROV Remotely Operated Vehicle

SaaS Software as a Service

SDU University of Southern Denmark

SGD Stochastic Gradient Descent

SP Service provider

STACKn Scaleout’s machine learning platform

TLS Transport Layer Security

vCPU Virtual CPU, subpart or share of a physical CPU core

VM Virtual Machine

4

Glossary
Table 2. A brief dictionary of terminologies appearing in the document

Term Definition

Cloud computing On-demand availability of computer resources (storage and computing), without
direct active management by the user

Container Packages of software containing all of the necessary elements to run in any
environment

Docker A set of platform as a service products that use OS-level virtualization to deliver
software in packages called containers

Docker Compose A tool to help define and share multi-container applications

Helm chart A collection of files that describe a related set of Kubernetes resources

Kubernetes An open-source container orchestration system for automating software
deployment, scaling, and management

OpenStack Cloud computing platform, mostly deployed as IaaS

Pod A pod is the smallest execution unit in Kubernetes

5

1. Introduction

The goal of the T5.2.3 subtask is to investigate and showcase innovative platforms for making scientific tools
able to discover and consume cloud computing resources, such as IaaS and Kubernetes solutions running
either on premises and/or on public clouds.

The subtask investigated solutions provided by Sigma2’s NIRD Toolkit1, STACKn2 and FEDn3 from Scaleout4,
cPouta5 from CSC, as well as UCloud6 from SDU. These provider solutions were selected based on the user
experience and eligibility to host and analyze the associated research data. The goal is to provide a platform
for researchers to deploy and run a variety of tools on user-selected data and cloud computing resources,
giving researchers the possibility to focus mainly on research and less on tools and irrelevant tasks. The
solutions we have investigated as part of the subtask are to enable AI/ML workflows for natural language
analysis, climate modeling and biodiversity use cases and to provide cloud infrastructure resources as well
as to enable sharing of workflows across borders.

Among tasks and activities, STACKn (formerly known as LeanAI), was brought into EOSC-Nordic. STACKn was
deployed on Kubernetes resources at Sigma2 on the NIRD Service Platform (NIRD SP), and at Scaleout. This
gave opportunities for demonstrating cross-border cloud computing capabilities and facilitating dialog for
collaboration with the NLP community. The NLP community has channeled their focus and efforts on
consuming more traditional HPC resources. Since slightly different needs arose from the marine biodiversity
community, FEDn was chosen as the technical platform solution.

The task investigated possibilities for enhancing the interoperability between the cloud container-based
computing and the traditional HPC to support compute-intensive AI/ML workflows from the EOSC-Nordic
research community. A proof concept based on UCloud has been developed, deployed and thoroughly
tested on the NIRD Toolkit.

Furthermore, this subtask discussed and evaluated possibilities for setting up a Nordic cloud toolbox, where
other service providers would have one single entry point for accessing all the tools and cloud infrastructure
enablers in one place.

Finally, effort has been invested into prototyping accounting for better cloud resource distribution, optimal
utilization, and improved resource planning and prediction.

After a close dialogue with communities, three main use cases have been investigated and worked on to
develop solutions which can support research, facilitate collaboration and scale out of silos offering scalable
cloud computing solutions.

6 https://cloud.sdu.dk/app/login

5 https://research.csc.fi/-/cpouta

4 https://www.scaleoutsystems.com

3 https://github.com/scaleoutsystems/fedn

2 https://github.com/scaleoutsystems/stackn

1 https://apps.sigma2.no

6

https://cloud.sdu.dk/app/login
https://research.csc.fi/-/cpouta
https://www.scaleoutsystems.com
https://github.com/scaleoutsystems/fedn
https://github.com/scaleoutsystems/stackn
https://apps.sigma2.no

2. Nordic cloud infrastructures
Cloud infrastructure efforts participating in the WP5 used cases of EOSC-Nordic are listed and shortly
described below to help the reader understand the different solutions, concepts and services enabling the
use cases described further below.

2.1 cPouta
cPouta at CSC, Finland, is based on the open source cloud software called OpenStack7 and is a generic
service which can be used for many tasks. One can use cPouta to build their own service, do a quick test,
have a development platform or build a data processing pipeline.

cPouta provides: i) high performance computing with superior flexibility and user experience via IaaS; ii)
self-service model for accessing, using and managing virtualized infrastructure; iii) deployment of resources
such as VMs, storage and networks; iv) variety of resources like block devices, virtual networks, HPC and
GPUs.

2.2 NIRD Service Platform and NIRD Toolkit
The NIRD Service Platform8 (NIRD SP) at Sigma2, Norway, is a Kubernetes-based cloud infrastructure,
enabling several types of services and software. NIRD SP allows researchers to run cloud services, such as
web services, domain- and community-specific portals, tools for data visualization, pre-/post-processing,
data discovery and data sharing.

The services run in containers to ensure high portability of the tools and reproducibility of the results. NIRD
SP is part of NIRD - the National Infrastructure for Research Data - an ecosystem of storage and cloud
services designed to support scientific research in every step of the research data life cycle. The services can
be used to consume data in place, without moving and staging. NIRD SP can host any service and services
can have a permanent web address or be launched on-demand on the NIRD Toolkit.

NIRD Toolkit provides on-demand access to a variety of predefined applications, such as Apache Spark,
Deep Learning Tools, Jupyter Notebook, Jupyter Hub, MinIO and RStudio. The NIRD Toolkit can be enriched
with even more tools.

2.3 UCloud
UCloud at SDU, Denmark, is designed to be a user-friendly solution for research with an intuitive graphical
user interface. The solution is flexible and extensible to account for the multi-scale and multi-disciplinary
research challenges, and the high data intensity and heterogeneity. The focus of UCloud is to make complex
digital technology accessible to all users. The platform runs on premises hosted at the University of
Southern Denmark, but it can also be used to federate remote infrastructure operated by another SP.

UCloud can provisioning system is flexible, including bare-bone9 virtual machines available via terminal to
complex software solutions in just a few seconds. The cloud infrastructure natively supports multi-tenancy,
with a separation of data and computing resources. It comes equipped with advanced data analytics tools

9 Each VM is mainly consuming the resources of a full bare-metal node

8 https://www.sigma2.no/nird-service-platform

7 https://www.openstack.org

7

https://www.sigma2.no/nird-service-platform
https://www.openstack.org

for data processing and visualization, many popular frameworks being pre-installed and optimized for the
user experience.

2.4 SNIC
SNIC Science Cloud (SSC)10 is a large-scale, geographically distributed OpenStack cloud Infrastructure as a
Service (IaaS), intended for Swedish academic research. SNIC Science Cloud is funded by the Swedish
Research Council (Vetenskapsrådet) through SNIC, and is available free of charge to researchers at Swedish
higher education institutions through open application procedures. Other research infrastructures are also
welcome to join SSC with a co-funding model with dedicated capacity. Platforms may be added to SSC in
order to support the Swedish research community as seen fit by SNIC (PaaS).

Some resources from SSC have been used by the marine biodiversity use case. This has been described in
Deliverable D5.2 Cross-borders computing through portals11.

3. Use cases
The following pilots serve as uses cases to develop and study service deployment and cloud computing on
distributed Nordic cloud resources:

1. Machine Learning for Climate Modeling
2. Marine biodiversity exploration using cross-border cloud resources and federated machine learning
3. Nordic Digital Humanities Laboratory data analytics on UCloud

3.1 Machine Learning for Climate Modeling
3.1.1 Background and scientific value
Climate change modeling involves many computations, e.g., concerning the Earth's energy budget that
accounts for the balance between the energy that the Earth receives from the Sun, and the energy the Earth
radiates back into outer space (see Figure 1).

11 Abarenkov, K.; Fouilloux, A.: D5.2 Cross-borders computing through portals, Deliverable, EOSC-Nordic 2021, DOI:
10.5281/zenodo.4607199

10 https://cloud.snic.se/

8

https://doi.org/10.5281/zenodo.4607199
https://doi.org/10.5281/zenodo.4607199
https://cloud.snic.se/

Figure 1. Schema of the Earth’s energy budget (image source: nasa.gov).

In this case study, we focus on computations related to modeling the radiative transfer of aerosol. The
reflectivity properties of different aerosol compositions in the atmosphere are an important part of
calculating the Earth’s energy budget. The number of aerosol combinations, however, are vast and complex
(see Figure 2 to get a rough idea). Therefore, it is extremely time-consuming to compute a good
approximation. In NorESM, this is done using a software module called Aerotab12, 13 which is implemented
using Fortran code that is hard to scale and to port to new platforms. To address this, this use case
investigates using deep learning to train a surrogate model, i.e., a neural network that has been trained
using the computational outcomes for many input parameters so that it can infer these outcomes without
needing to do the time-consuming calculations of the complex climate model. The input and output values
were obtained by running the legacy code. The learned surrogate model can then be used as a replacement
for the legacy code. Using standard deep learning software frameworks leads to better portability and
performance, being in fact even faster than the complex original computations (while training a neural
network is computationally intensive, inferring, i.e., using the trained neural network, is relatively fast).

13 https://noresm-docs.readthedocs.io/en/latest/faq/aero_faq.html

12 Kirkevåg, A., Grini, A., Olivié, D., Seland, Ø., Alterskjær, K., Hummel, M., Karset, I. H. H., Lewinschal, A., Liu, X.,
Makkonen, R., Bethke, I., Griesfeller, J., Schulz, M., Iversen, T.: A production-tagged aerosol module for Earth system
models, OsloAero5.3 – extensions and updates for CAM5.3-Oslo, Geosci. Model Dev., 11, 3945–3982, 2018. DOI:
10.5194/gmd-11-3945-2018

9

https://noresm-docs.readthedocs.io/en/latest/faq/aero_faq.html
https://doi.org/10.5194/gmd-11-3945-2018

Figure 2. Schema of aerosols influencing the Earth’s energy budget
(image source: CC BY 4.0 © 2018 Kirkevåg et al. https://doi.org/10.5194/gmd-11-3945-2018)

3.1.2 Resources and services
To make running the original code portable, it was packaged as a container that includes everything needed
to build (e.g., the matching Fortran compiler) and run the code on any container-enabled system, ranging
from a local system to distributed cloud resources.

The usage of container-based cloud and HPC resources by the climate community via the Galaxy portal has
in detail been described in Section 2.2 of Deliverable D5.2 Cross-borders computing through portals14 and
will be covered in a peer-reviewed publication15 and is therefore not repeated here again.

3.1.3 Machine learning approach
At first, the machine learning approach was to devise regressive deep learning models; i.e., a feed-forward
neural network using Tensorflow16 and Keras17 to eliminate the need for extensive auxiliary lookup tables
employed by Aerotab. However, this presented a problem as the lookup tables could not supply enough
training data to yield a good regression model with deep learning. Therefore, the approach was
fundamentally changed for the better by taking the model a step further and have it replace the whole
Aerotab application instead of only replacing internal property lookup tables. By targeting the whole
application a near infinite supply of training samples could be guaranteed and the usability potential of the
neural network significantly increased.

17 https://keras.io

16 https://www.tensorflow.org

15Abarenkov, K.;, Fouilloux, A.;, Neukirchen, H.; Azab, A.: Reproducible Cross-border High Performance Computing for
Scientific Portals, Workshop on Reproducible Workflows, Data Management, and Security (REWORDS), IEEE, 2022, to
appear. DOI: https://doi.org/10.48550/arXiv.2209.00596

14Abarenkov, K.; Fouilloux, A.: D5.2 Cross-borders computing through portals, Deliverable, EOSC-Nordic 2021, DOI:
10.5281/zenodo.4607199

10

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.5194/gmd-11-3945-2018
https://keras.io
https://www.tensorflow.org
https://doi.org/10.48550/arXiv.2209.00596
https://doi.org/10.5281/zenodo.4607199
https://doi.org/10.5281/zenodo.4607199

Unfortunately, however, the undertaking proved to be too much for the limited time this part of the project
was assigned. At first the machine learner had to gain a deeper domain knowledge of the Aerotab
application and its usage to correctly build it in the Docker container, which contained only source code that
needed to be built by the container itself. When correctly applied, which was not always the case, the
internal build process took around 100 core hours and could only run on a single core on a single node as
Aerotab is made up of legacy Fortran code that is difficult to parallelize. The duration of this process is due
to the application’s necessity in generating the aforementioned internal lookup tables before its result can
be considered accurate. Furthermore, this proved to be a painstaking process as Aerotab does not notify its
user explicitly if it has been incorrectly set up, either reporting Fortran errors that were cryptic to the ML
expert, or inaccurate results which lead to troves of generated training data being discarded.

The study was successful in devising a realistic approach of building regressive deep learning models to
replace Aerotab, and estimate the radiative transfer of aerosol directly. However, the study could not
provide a conclusive proof of the approach or its efficacy due the difficult learning process of Aerotab, its
domain, and the case study’s time duration. A follow up of this activity could be part of a future NeIC
coordinated EOSC-Nordic Project Affiliate.

3.1.4 Challenges, blockers
In fact, problems well known from classical software engineering research occurred in this use case
combined with new problems from machine learning.

The required efforts have been underestimated. Despite recent developments, such as automated
hyperparameter tuning, machine learning (ML) is still a task involving trial-and-error experiments which
require both significant human and computational resources. Doing a human resource intensive ML
sub-task in a more infrastructure-centric research project that has not many human resources allocated to
each sub-task was not appropriate.

Communication between experts from different domains (in this case: climate and ML) is a known problem
– the Interaction Room method could help to avoid this in future: it facilitates communication between
experts and stakeholders from different domains and thus achieves a common understanding: coming from
business applications, it has been adapted to pure simulation science HPC projects18, and is currently
adapted for AI projects in the European Centre of Excellence (CoE) Research on AI- and Simulation-Based
Engineering at Exascale (RAISE)19.

A known problem from data science and ML is availability (and quality) of data sets. In this sub-task, the
data needed as input for ML first needed to be generated by running the legacy code. This did require a
significant amount of time in this sub-task. In fact, the CRoss-Industry Standard Process for Data Mining

19 https://www.coe-raise.eu/ and https://www.coe-raise.eu/news-2021-04

18 Book, M., Riedel, M., Neukirchen, H., Götz, M.: Facilitating Collaboration in High Performance Computing Projects
with an Interaction Room. The 4th ACM SIGPLAN International Workshop on Software Engineering for Parallel Systems
(SEPS 2017). DOI: 10.1145/3141865.3142467, ACM Digital Library 2017.

11

https://www.coe-raise.eu/
https://www.coe-raise.eu/news-2021-04
http://dx.doi.org/10.1145/3141865.3142467

(CRISP-DM)20 describes a process to be used for data mining projects, which notably includes the phases
Data Understanding and Data Preparation, thus making clear that this must not be underestimated.

Also, while machine learning experts are fluent in new technologies (e.g. Python-based), they are typically
not used to complex environments such as huge Fortran-based earth system model implementations that
have grown over decades. Getting familiar with these huge software packages takes time and therefore,
introducing machine learning in legacy projects is not trivial.

3.1.5 Status and outlook
Due to lack of human resources combined with the challenges described above, this case study had to be
discontinued before being able to prove the efficacy of its approach. Nevertheless, replacing the whole
computation itself by a surrogate ML model is an emerging topic21 that promises to be worthwhile to
investigate further in the future in order to improve scalability and portability. However, the lessons learned
from the above challenges need to be taken into account, when doing so.

3.2 Marine biodiversity exploration using cross-border resources and
federated machine learning

3.2.1 Background and scientific value
The increasing access to autonomously-operated technologies offer vast opportunities to sample large
volumes of biological data22. This is especially the case for high-definition optical imagery coming from
remotely operated vehicles (ROVs), autonomous underwater vehicles (AUVs), drones, drop-cameras,
camera-traps, and video plankton recorders. The scientific potential of these technologies will change the
modus operandi of the ecological research community in the near future. The access to data from
camera-based systems allows scientists to extract biological information from remote ecosystems with
unprecedented quantity and quality. However, these technologies also impose novel demands on ecologists
who need to apply tools for data management and processing that are efficient, publicly available and easy
to use. Such tools are starting to be developed in the community, but they are rarely connected to
e-infrastructures for data management, archiving, and computation.

In this pilot use case, we explored the integration of one image-analysis system with EOSC Nordic resources.
We used a system that was developed under the NeIC program DeepDive23 called Koster Seafloor
Observatory (KSO). KSO is an open-source platform to analyze large amounts of subsea movie data for
marine ecological research. The KSO system architecture is shown in Figure 3. The systems incorporates
three distinct modules to: manage and archive the subsea movies, involve citizen scientists to accurately

23 https://neic.no/affiliate-deepdive/

22 Guidi, L., Fernandez Guerra, A., Canchaya, C., Curry, E., Foglini, F., Irisson, J.-O., Malde, K., Marshall, C. T., Obst, M.,
Ribeiro, R. P., Tjiputra, J., Bakker, D. C. E. (2020) Big Data in Marine Science. In: Alexander, B., Heymans, J. J., Muñiz
Piniella, A., Kellett, P., Coopman, J. [Eds.] Future Science Brief 6 of the European Marine Board, Ostend, Belgium. ISSN:
2593-5232. ISBN: 9789492043931. DOI: 10.5281/zenodo.3755793

21 Weber, T., Corotan, A., Hutchinson, B., Kravitz, B., Link, R.: Technical note: Deep learning for creating surrogate
models of precipitation in Earth system models. Atmos. Chem. Phys., 20, 2303–2317, 2020. DOI:
10.5194/acp-20-2303-2020

20 Shearer, C.: The CRISP-DM model: the new blueprint for data mining, J Data Warehousing (2000); 5(4):13—22.

12

https://neic.no/affiliate-deepdive/
https://doi.org/10.5281/zenodo.3755793
https://doi.org/10.5194/acp-20-2303-2020

classify the footage and, finally, train and test machine learning algorithms for detection of biological
objects24 (see Figure 4). This modular approach allows researchers to customize and further develop key
functionalities to fit various types of data and research questions related to analysis of marine imagery. This
adds more usability to the user experience.

Figure 3. KSO system architecture. Detail are described by Anton et al 2021 and updated on
https://www.zooniverse.org/projects/victorav/the-koster-seafloor-observatory/about/results

KSO is currently used in numerous scientific studies of marine biodiversity. These include

● Habitat maps for mussel beds in the Baltic Sea.
● Monitoring of Cold water corals in Marine Protected Areas.
● Impact of trawling on soft corals (sea pens) in Kattegat and Skagerrak.
● Monitoring and trophic interactions of invasive fish (round goby) in Nordic waters.
● Application of Generative Adversarial Networks (GANs) for rare species monitoring.
● Deep Learning methods to predict engagement of citizen scientists.

24 Anton, V., Germishuys, J., Bergström, P., Lindegarth, M., Obst M. An open-source, citizen science and machine
learning approach to analyse subsea movies. Biodiversity Data Journal 9: e60548. 2021 DOI: 10.3897/BDJ.9.e60548

13

https://www.zooniverse.org/projects/victorav/the-koster-seafloor-observatory/about/results
https://doi.org/10.3897/BDJ.9.e60548

Figure 4. Examples of object detection ML models developed in KSO for ecological key species and habitat builders
in Nordic marine ecosystems, showing (a) the soft coral Pennatula phosphorea a key species of Nordic soft bottom
ecosystems which is affected by trawling; (b) the cold-water coral Desmophylum pertusum which occurs especially
in Norwegian and Swedish waters and is declining due to trawling and climate change; (c) the soft coral Bolocera
tuedie provides shelter for many other species in Nordic waters, and (d) the blue mussel Mytilus edulis/trossulus
which as a dominant habitat builder in alla Nordic waters – from the eastern Baltic to the arctic waters of the
Barents Sea. The ML models are used for creating high resolution habitat maps of key species and habitats, and for
analyzing changes of marine biodiversity across large spatio-temporal scales.

3.2.2 Objective
Although image analysis tools and systems are starting to be developed by the scientific community, they
are rarely connected to e-infrastructures for data management, archiving, and computing facilities. The lack
of connectivity between data and analysis systems is a major problem – both for the data research
e-infrastructures and for the community built systems. In this pilot we attempt to explore connecting cloud
infrastructures and develop the connections with research e-infrastructures as much as possible, including
linkage to HPC systems which are part of EOSC (e.g., SNIC resources for storage and computation).

14

Many of these studies deal with large data sets which are difficult to copy/move. However, as underwater
data are also sensitive if linked to geographic and depth information, this project explored the possibilities
of using cloud resources in providing infrastructure and computing capabilities for analyzing datasets in
place where the data resides.

3.2.3 Workflows
KSO developed a series of modules for data management, image annotation (including citizen science),
training and testing models, as well as data submission. These modules are made available through Jupyter
notebooks and can be combined in analytical workflows. Each notebook is a self-standing workflow
including a guided tutorial and allows users to perform a specific task of the system (e.g. upload footage to
the citizen science platform or analyze the classified data). The notebooks rely on the koster utility
functions25 and are detailed below (Figure 5 and Table 3). The published notebooks have been deployed
with slight adjustments to the underlying infrastructure, e.g., cPouta and NIRD Service Platform.

Figure 5. KSO workflows available on Ocean Data Factory’s Github site26

26 https://github.com/ocean-data-factory-sweden/

25 https://github.com/ocean-data-factory-sweden/kso_utils

15

https://github.com/ocean-data-factory-sweden/
https://github.com/ocean-data-factory-sweden/kso_utils

Table 3. Overview of current KSO notebooks with short description of function and state of development.

3.2.4 Technical Solution
Current machine learning practices often require centralizing data to a machine or a datacenter. This means
a secure, robust, and often custom-made cloud infrastructure (e.g., NIRD Service Platform or ePouta) is
required in advance before any data movement could happen, especially for training a model on
non-person sensitive data. In addition, the legal procedures related to data movement across borders has to
be discussed and agreed upon before any model training can happen.

Federated machine learning (FedML) can be used as a viable alternative to centralized analysis. FedML is
often employed when data can not be moved to a centralized place either due to privacy and security
requirements or size considerations. In such cases FedML is employed to train models on client facilities or
devices (e.g., to learn a model on client interaction patterns or train a species classification model on local
clusters). In FedML, multiple parties, or clients, jointly train a model while keeping data local and private
which means one moves computation instead of data. Incremental model updates are computed locally and
combined into a global model. Currently, FedML work is mainly focused on deep learning which is based on

16

Stochastic Gradient Descent (SGD)27. Some support for data analysis (e.g., correlation analysis) and
federated learning approaches for tree-based algorithms such as random forest are also coming to light.
Challenges in this area include system scalability due to uneven distribution of data, preserving client
privacy and system fault tolerance. Also, iterative optimization (e.g., SGD) needs low latency communication
which becomes a challenge when clients are distributed across different network domains. One needs to
remember also that no direct access might be feasible to the labeling of raw data.

Lot of effort is currently going towards innovative averaging algorithms that enhance system scalability,
compression and quantization schemes for partial model upload and update efficiency, and secure
aggregation protocols (e.g., protocols that allow no individual client updates can be directly inspected or
decrypted by the reducer) to enhance privacy of the system. Other algorithmic improvements include
efficient learning on sparse data.

There are several open source frameworks for facilitating federated machine learning. In this project we
used FEDn28 which is a scalable, modular, and model agnostic framework for hierarchical federated machine
learning. Stateless model combiners work independent of others on a single partial model update at a time,
making the system robust and scalable. The security of a FEDn network is protected through a secret token
exchange among its members. As FEDn scales massively horizontally, showing good performance
cross-device and cross-silos, it is suitable for being used in cross-border cloud computing, supporting the
use case where data cannot leave premises and computing is following data.

Other federated learning frameworks include TFF29, which provides quantization techniques to reduce
communication overheads during distributed model training. PySyft and FATE which provide homomorphic
encryption features to enhance security. PaddleFL provides a federated averaging scheme rather than a
hierarchical or centralized one.

3.2.4.1 Deploying FEDn
Before we can train a model in a federated way using FEDn, we need to first deploy a reducer-combiner
network. A FEDn network consists of three types of components, a reducer, several combiners and clients.
Figure 6 shows the overall architecture of a FEDn network.

29 https://www.tensorflow.org/federated/api_docs/python/tff/framework

28 https://github.com/scaleoutsystems/fedn

27 https://en.wikipedia.org/wiki/Stochastic_gradient_descent

17

https://www.tensorflow.org/federated/api_docs/python/tff/framework
https://github.com/scaleoutsystems/fedn
https://en.wikipedia.org/wiki/Stochastic_gradient_descent

Figure 6. FEDn architecture

The role of the reducer in FEDn is to create a global training strategy and coordinate the combiners as well
as dictate how to average model updates from individual combiners. The reducer also keeps the global state
of our model and facilitates the discovery and connection of new clients and combiners. The role of the
combiner is to aggregate model updates coming from the clients according to the strategy laid out by the
reducer. A FEDn client is a component that holds private local data on which the partial model training will
be done. When a client connects to a FEDn network for the first time, it will be provided by the reducer with
code to be used to train and validate its model and get assigned to a combiner.

The deployment of FEDn as shown in Figure 7 supporting KSO consists of the following instances and base
services:

1) a reducer and a combiner deployed at CSC;

2) a FEDn client deployed at CSC;

3) and a FEDn client deployed at Sigma2 on the NIRD Service Platform.

The deployment of the reducer and the combiner is done through Docker Compose on a virtual machine
with 3 cores and 4 GB main memory running on cPouta30 at CSC. cPouta is an OpenStack based cloud
solution which provides virtual machines, storage, network and other compute-related resources.

30 https://pouta.csc.fi/

18

https://pouta.csc.fi/

The FEDn client, Fedkso31 is deployed on the NIRD SP and on cPouta in a dedicated VM.

Figure 7. FEDn (including FEDn client deployments) training a KSO model at various nordic infrastructures

3.2.4.2 Packaging KSO For Federated Learning
A KSO compute package is a compressed (tar.gz) bundle of code that will be executed by a FEDn client to
train a local model on its local data. The package is first uploaded to the reducer along with an initial model
(i.e., yolov5m) during initialization of the FEDn network. Every client will be provided with this package
when it joins the FEDn network, and later it will unpack and use it to train and validate its local model.
Figure 8 illustrates how the package looks and is used in the current implementation.

31 https://github.com/tdeneke/fedkso

19

https://github.com/tdeneke/fedkso

Figure 8. Visualization of FEDn - KSO pilot implementation

First, a FEDn client receives a model update request from the combiner. The client's dispatcher module then
consults an entrypoint definition file found in the package and obtains and runs the entrypoint (command
to execute) to produce the next model update. There are two entrypoints that are required by FEDn, the
train and the validate entrypoint. The training entrypoint expects a single input and produces a single
output. It takes a global model which was aggregated in the previous epoch or an initial seed model as an
input and produces an updated model based on its local data. This new updated model is then sent back to
the combiner for aggregation. Custom model serialization and deserialization functions are implemented
with the help of FEDn SDK to handle the integration with the KSO model training libraries. The validation
entrypoint is a model input and produces the validation results which can be sent back to the reducer via
the combiner for monitoring and reporting of the model training process.

3.2.4.3 Deploying Fedkso Clients
Two Fedkso clients were deployed, connecting to the FEDn network supporting the KSO use case. One
Fedkso client is deployed at CSC and another on the NIRD SP container cloud.

The deployment of the Fedkso client at CSC is done through Docker Compose on a virtual machine (separate
from the one running the combiner and reducer), with 4 cores and 8 GB main memory running on cPouta
OpenStack infrastructure.

The deployment of the Fedkso client at NIRD SP is done using Helm-charts on the Kubernetes-based cloud
infrastructure. The client pod has access to 4 vCPUs and 8 GB memory.

20

In supporting the FEDn KSO pilot, we utilized two cloud computing platforms, the OpenStack-based Pouta
Cloud and Kubernetes-based NIRD SP cloud infrastructure.
OpenStack is an open-source open standard cloud computing platform that provides virtual machines,
storage, network, and such compute-related resources on demand. Instantiation of cloud resources such as
virtual machines is simple and can either be done through a web UI or the REST API provided by the
platform. Our FEDn pilot framework components and a FEDn client are deployed on the virtual machines
through Docker, an engine for managing containerized applications. This fact makes the deployment process
automated, portable and reproducible.

Another FEDn client running the KSO use case is also deployed on a container running on a Kubernetes
cluster. Kubernetes is an open-source container orchestration platform which makes it easy to deploy, scale
and manage containerized applications. Our Kubernetes deployments are done through the use of an
automated deployment management system called Helm which takes a set of declarative deployment YAML
manifestes and translates it to running application components on Kubernetes containers. This shows the
adaptability of the system to various cloud platforms enabling better collaboration.

3.2.5 Possibilities and options
Federated machine learning, as well as cloud infrastructures, be it homogeneous or heterogeneous like in
the showcased setup, can be an additional alternative tool facilitating open research. This approach allows
research institutions to collaborate on global models together, breaking down silos and bridging across
borders. Another possibility is including the components in application catalogs so that they can be used
on-demand by research collaborators. This is mainly a collaborative modeling platform where most of the
tools are containerised, which allows a significant level of reproducibility.

3.2.6 Challenges, possible blockers
During the work with the use case, legal blockers were identified, which hindered us in deploying the
solution on a larger scale and constrained us to use test data. For example, as in our case, knowing when is
it legally and technically feasible to share a model trained on private local underwater data without
compromising a leakage (e.g., input data reverse engineering attack) of any sensitive geographic and depth
information was a challenge.

FEDn-KSO, in addition to automated and scalable cloud deployment, provided a suitable solution for
facilitating input data privacy by making it visible to local clients only. Its composable architecture also
accommodates future enhancements (e.g., output/model privacy mechanisms such as the addition of
controlled noise during model training to prevent input data reverse engineering). However, even though
FEDn analyses data were in place, the lack of legal and technical assessment for data/information leakage
became a showstopper and hindered us taking the use case further and preparing production deployment.
Furthermore, it is unclear whether there are any legal blockers, or policies regulating sharing the machine
learning models across borders and institutions. In the future, based on this work and observations made,
we hope for a legal framework that would set a more concrete privacy threshold that needs to be met for
output model (i.e., weights, parameters) sharing.

Deploying FEDn on multiple cloud infrastructures, as a consequence of heterogeneity, revealed both
possibilities and challenges. It has clearly been demonstrated that the approach of deploying and providing
computing capabilities for researchers on cloud infrastructure is future-oriented and a wise decision. At the

21

same time, adaptations for different cloud solutions had to be carried out, in the first instance requiring
manual adaptations and adjustments.

At this stage it is important to disseminate the results of the FEDn pilot to domain specific infrastructures
who may want to make use of such services in the future. Here important links to national, nordic, and
European infrastructures dealing with biodiversity and ecology need to be consolidated. This includes, e.g.,
Swedish Biodiversity Data Infrastructure32 as well as European ERICs, e.g., European Marine Biological
Resource Center33 (EMBRC). Our pilots can be used to present tangible suggestions how seamless service
interaction can be created between such domain specific infrastructures and more foundational
e-infrastructures, such as e.g., Swedish National Data Service34 (SND), Swedish National Infrastructure for
Computation35 (SNIC), and European Open Science Cloud36 (EOSC).

The FEDn pilot encountered several blockers that turned into opportunities. During the KSO service
development we developed an open API to run object detection models over new footage. This API,
exposed through a website (called Koster Seafloor Detector), reached its limit very quickly with the original
design because of lack of computational capacity. This blocker is currently addressed by outsourcing the
computation to the SNIC Science cloud.

3.2.7 Status and outlook
Currently, FEDn-KSO provides an automated approach for distributed model training related to marine
biodiversity exploration and analysis. More specifically, it provides a viable technological solution for
ecological research communities in the nordic and further, for collaborating on building predictive models
across borders while keeping their data samples locally and in place. In the past, such collaboration would
require additional ways to facilitate data transfer and model aggregation.

The FEDn-KSO pilot was deployed with example datasets, using non-sensitive data as input for setting up,
testing and training the distributed data model. However, the pilot could not move forward to a production
deployment as a consequence of policy- and legal limitations.

It is important that technical, scientific, and even legal activities are synchronized and progress together.
Hence, KSO will wait with further implementation of the FEDn system until a scientific use case requests
this functionality, and is investing effort in sorting out the legal aspects hindering use of the demonstrated
capabilities of cross-border cloud computing. Meanwhile, KSO is focusing on the technical development of
the workflows.

KSO will also put emphasis on balancing the scientific use cases and the technical development more
equally among the Nordic countries. To this end, KSO is preparing a user Nordic workshop (funded by NeIC)
in autumn 2022. The goal of the workshop is to bring Nordic groups together, understand the architecture
of various image analysis systems in biodiversity research, establish contacts between researchers and
developers, and explore the potential for co-development. Discussions will focus especially on infrastructure
service development, functionality for image archiving, data management, image annotation, model testing
& training, as well as model execution. Figure 9 shows a roadmap of the prospective development of KSO.

36 https://eosc-portal.eu/

35 https://www.snic.se/

34 https://snd.gu.se/sv

33 http://embrc.eu/

32 https://biodiversitydata.se/

22

https://eosc-portal.eu/
https://www.snic.se/
https://snd.gu.se/sv
http://embrc.eu/
https://biodiversitydata.se/

Figure 9. Roadmap for developing KSO as a Nordic resource for underwater image analysis

3.3 Nordic Digital Humanities Laboratory data analytics on UCloud
3.3.1 Background
With this use case we wanted to demonstrate how researchers from social sciences and humanities at
Nordic universities can collaborate across borders in a secure and interactive virtual research environment
with the best possible resources to run a job. Specifically, representatives from Nordic Digital Humanities
Laboratory (NDHL) collaborated on monitoring news and social media during the first phase of COVID-19
(Jan 1 - Jun 30 2020), see Nielbo et al 202137 and Figure 10. Importantly, all data came with restrictions on
storage location and access due to copyrighted and sensitive content. Finally, the demonstrator provides a
context for showcasing the UCloud platform and its development.

37 Nielbo, K.L., Haestrup, F. and Enevoldsen, K.C. and Vahlstrup, P.B. and Baglini, R.B. and Roepstorff, A. When no news
is bad news - Detection of negative events from news media content, arXiv:2102.06505 [cs.CY] 2021 DOI:
10.48550/arXiv.2102.06505

23

https://doi.org/10.48550/arXiv.2102.06505

Figure 10. News monitoring (broadsheet newspapers) during the first phase of COVID-19 in Denmark. The monitoring
system uses a multilingual Scandinavian language model to derive structured representation of front pages, then
compute surprise (upper) and persistence (lower) between representations, and run a change detection algorithm
over the signals.

3.3.2 Objective
The use case has three objectives: 1) sharing of access to compute and restricted data resources
(copyrighted Danish newspapers) in order to monitor media response to COVID-19 in the Nordic countries;
2) research collaboration in a low barrier to entry interactive computing environment; 3) showcase the
UCloud platform for research collaboration in the social sciences and humanities.

3.3.3 Workflows
NDHL ingests media source data from news websites and the Informedia database and aggregates the data
in the HOPE database, see Figure 11. Data are then normalized using a state of the art language model DaCy
in order to extract nouns and adjectives (lemmatized forms). Data extraction and normalization are only
available to the host (in this case DK) due to restrictions on the source data. In the final step,
representations of front pages are inferred using a domain-specific model for news media (trained on 10
years of news media data), surprise and persistence signals are extracted, and a change detection model
applied to find robust structural changes, see Figure 10. The implementation and deployment of the use
case has been based on UCloud instances.

24

Figure 11. Demonstrator workflow for NDHL’s media monitoring during the first phase of COVID-19.

3.3.4 Technical Overview
UCloud is designed to be user-friendly with an intuitive graphical user interface, flexible and extensible to
account for the multi-scale and multi-disciplinary research challenges, and the high data intensity and
heterogeneity. The focus of UCloud is to make complex digital technology accessible to all users.

In a sense, UCloud acts as an orchestrator of resources. Allowing users to consume resources, such as
compute and storage, from multiple different providers using the same interface. This allows for seamless
experience when consuming resources from different providers, allowing researchers to focus on their work
as opposed to the specifics of any given provider.

UCloud ships with a powerful system for managing projects and applying for resources. Requesting
resources for use through UCloud is an integrated process and all occurs inside UCloud. A potential principal
investigator (PI) can initiate the application process through the interface. The application process is
illustrated in Figure 12.

25

Figure 12. A graphical illustration of the allocation process in UCloud.

The allocation process goes through the following steps:

1. You first choose to create an allocation

2. Then you select the intended recipient of the resources

3. You can then select from a list of grant givers

4. And fill out which resources are required

5. You must then fill out an application, describing why you need the resources

6. The approval process begins and the grant giver ultimately decides whether to approve or reject the
application

A project is created as a result of a successful grant application. Projects allow for collaboration between
different users across the entire UCloud platform. A project has one or more members and contains zero or
more groups. Every member of a project has a role (see Table 4), this role is used to dictate which actions
they can perform within the project.

Role Notes

PI The primary point of contact for projects. All projects have exactly one PI.

Admin Administrators have the same privileges as a PI, but they are not considered the
primary point-of-contact. A project can have zero or more admins.

User Has no special privileges

Table 4. The possible roles of a project member of UCloud. All members have exactly one role in the project.

26

Groups are used to subdivide members into smaller sections (see Figure 13). This subdivision is used for
permission management of the resources that are consumed within UCloud. For example, a PI can use this
feature to grant read-only access to some data for some members of their team, while granting read-write
access to others.

Figure 13. Project management interface of UCloud. In this interface an admin or PI of a project can invite new
members into the project. The members that have accepted the invite can then further be arranged into groups.

UCloud’s core job is to act as an orchestrator of resources. The resources supported fall roughly into either
storage or compute. It is the job of UCloud to specify a set of core rules for accessing and manipulating
these resources. The implementation of the resources is backed by well-tested established components,
such as Kubernetes and POSIX file systems.

The file-system abstraction of UCloud provides researchers with a way of storing large data-sets efficiently
and securely (see Figure 14).

Figure 14. The file management interface of UCloud. It highlights some of the features included in UCloud. For
example, we see that each file has a sensitivity classification, indicated by an “S”, which means that the folder contains
sensitive information.

The file-system of UCloud interfaces with project management, and accounting to provide a fully featured
experience. For example, UCloud supports:

27

● All interactions with the file-system are automatically audited

● Share files with collaborators with authorization based on projects and groups

● Powerful file metadata system for data management

The computational system of UCloud provides researchers a way of performing computations on their

datasets. Researchers begin by selecting an application from a large catalog of scientific applications. A

small selection of applications can be seen in Figure 15.

Figure 15. A small subset of applications available on UCloud.

UCloud hosts a variety of different applications designed for different styles of scientific computing:

● Batch applications provide support for long running computation workloads. This type of workload
is typically highly parallelized using technologies such as MPI.

● Interactive web applications provide support for graphical and interactive applications. This type of
application is well-suited for developing new code. For example, JupyterLab is exposed via its web
interface.

● Virtual desktop environments provide many of the same benefits of a web application, but with a
full desktop attached.

● Virtual machines support advanced workloads which have special requirements not covered by the
other types of applications. This allows users to, for example, create their own Kubernetes cluster.

UCloud empowers cross-border and cross-organization collaboration. It does so by providing a technical
framework for integrating compute and storage to a central platform. These service providers (SPs) are
considered independent, and UCloud exposes few limitations on how they are run. As a result, the

28

framework enables both cross-border and cross-organization collaboration. The technical framework is
exposed to SPs through a provider API, which is covered in Section 2.3.5.

Throughout the UCloud project’s life, several providers have integrated with the UCloud platform. This is
illustrated in Figure 15. The integrations cover platforms of many different types. This includes traditional
cloud technologies, such as Kubernetes and OpenStack. Yet, it also covers more traditional HPC technologies
such as Slurm. The SPs all integrate through a provider API, but the API itself is implemented using software
designed for different types of SPs. The software itself is generic and can be deployed at multiple sites, as
long as the underlying technology stack is similar.

For the NDHL demonstrator, a proof-of-concept SP was created and integrated with the central UCloud
service platform. This cluster was installed and physically located at CSC in Finland and it integrated with the
central UCloud service platform which is physically located at the University of Southern Denmark. The CSC
provider ran a small Kubernetes cluster and integrated with UCloud using the Kubernetes integration. This is
the same Kubernetes integration which runs at the YouGene Cluster, see Figure 16.

Figure 16. An illustration showing a range of service providers integrating with the UCloud service platform. The
providers are located and hosted by different organizations spanning multiple countries. The service providers
integrate using different technology stacks, such as Kubernetes. The [Production], [Pre-production] and
[Proof-of-concept] labels all refer to the integration with UCloud and not the operating status of the cluster itself.

3.3.5 Technical Solution
UCloud is an orchestrator of resources. It is primarily responsible for orchestrating different SPs to do the
work as requested by the end-user. To facilitate this work, UCloud has a provider API. This API specifies both
the low-level technical of how the SP and orchestrator must communicate but it also covers the high-level
rules and concepts which are used when communicating to the end-user. Figure 17 illustrates some of the
work going into an ordinary request from the end-user. There are a few pieces of information worth
highlighting.

29

Figure 17. UCloud is an orchestrator of resources. This diagram illustrates how the core of UCloud communicates with

a provider to facilitate a computational workflow. The key part of this is the “integration module” which is responsible

for communicating with UCloud and coordinating with existing infrastructure. The integration module communicates

with UCloud through a well-defined provider API.

The figure exemplifies this, but it is generally the case that the end-user communicates directly with the
UCloud service platform and not the SP. This allows for UCloud to perform secondary tasks, such as:
authentication, authorization, auditing and accounting. These tasks are of high importance but are typically
complicated to implement and usually do not provide a lot of business value to the end-user. This does not
remove all responsibility from the SPs but, generally speaking, this makes the task easier. Effectively,
allowing the SPs to better focus their energy on delivering a good service to the end-user.

Once UCloud has performed these secondary tasks, the SPs responsible for a given resource (in this case a
computational job) are contacted regarding the request. The SP internally acts on this request and then
proceeds to update UCloud about any changes with the resource. For example, the SP might notify UCloud
about changes in job state or accounting usage.

30

The provider API is illustrated in Figure 17 as the arrows moving bidirectionally between UCloud and the
provider. In practice, this API is implemented by a piece of software which we simply refer to as an
“integration”. Figure 16 illustrates these different integrations installed in various SPs.

One such integration is the Kubernetes integration. This integration currently runs in production on the
YouGene cluster and was tested as part of the NDHL demonstrator on a cluster installed at CSC. This
integration delivers a service which is deeply integrated with UCloud and tailored primarily towards
interactive high performance computing. It focuses on workloads which are easy to containerize, such as
JupyterLab. It is designed to be coupled with a sibling integration delivering storage based on any
distributed POSIX filesystem. This allows users to easily spin up an analysis workflow, web service or batch
processing on demand. Being based on containers, end-users don’t have to focus on any management or
configuration of their workloads. They simply spin up a workload when they are needed and shut it down
when they do not need it. Applications are periodically updated on UCloud, thus an end-user can always
pick an up-to-date version.

The OpenStack integration delivers persistent virtual machines through UCloud. Virtual machines are
particularly useful when a workload is long running, requires persistent data or is otherwise unsuitable for
containerization. This integration gives end-users a much higher degree of freedom when it comes to
managing the workload’s environment. This freedom also comes with an increased responsibility for the
end-user, as they now need to manage software updates and configuration manually.

The integration module and along with it the Slurm integration, delivers an integration tailored for HPC
providers. Both end-users and SPs gain a lot from such an integration between HPC systems and UCloud. All
end-users get to take advantage of the many years of development which has gone into HPC software and
hardware. This allows users to squeeze out more performance for their workloads when it matters.
Unfortunately, most HPC systems can be quite daunting to use for beginners. UCloud can help in this
respect, by providing a user experience more similar to the ones they would get from their own laptop’s
operating system, while still achieving the performance of an HPC system. Finally, SPs and power users gain
benefits from UCloud’s handling of tasks which are secondary to the actual compute and storage. Amongst
other things, the UCloud service platform improves the grant application process, project management and
accounting. This makes system management easier for SP owners. For researchers, this means spending less
time on tasks which are secondary to their research.

3.3.6 Possibilities
UCloud today delivers a solution which enables cross-organization and cross-border collaboration for
compute and storage. It already has in-production and pre-productions services which span multiple
organizations and uses dramatically different technology stacks. All of this is delivered in a platform which
helps both SPs and end-users deal with the tasks that are not directly related to compute and storage. For
example, this includes tasks such as: authentication, authorization, auditing, accounting and project
management.

In the future, we believe it is important to focus on a number of areas. UCloud must continue to expand its
suite of integrations to better cover the needs of SPs. For example, this can include support for different
compute schedulers and storage technologies. It must also continue to integrate more SPs into the service

31

platform and make the required adjustments to facilitate this. Finally, with more SPs integrated into UCloud,
it becomes crucial to focus on functionality which crosses multiple SPs. One important example of this is
facilitating the movement of data between SPs.

3.3.7 Challenges, possible blockers
With projects, such as UCloud, come a lot of challenges, for example related to trust and security.
Cyber-security is a complex and moving target. But, we will attempt to cover some risks and the principles
behind mitigating these risks.

As already mentioned in Section 3.3.5, UCloud communicates with SPs using a (web) API. Due to the
distributed nature of UCloud, this ends up having to use public networks for communication. Because of
this, UCloud employs best practices for communication across such networks, in particular all traffic is
encrypted via TLS. UCloud was designed based on principles from Zero Trust architecture38. As part of the
message protocol, UCloud authenticates and authorizes all messages. There is no implicit trust between an
SP and UCloud based on, for example, network addresses. Furthermore, the API avoids proxying
information, when not strictly needed. We mention in Section 3.3.5 that the end-user almost always
communicates with UCloud directly. This is true in most cases, but not always. In some cases, such as
upload of data, UCloud only facilitates a session between the end-user and the SP. This way, UCloud never
sees any of the files stored on any of the providers. This is true even when a user uploads files from within
the UCloud interface.

UCloud always authenticates itself with an SP. Yet, this only proves to an SP that UCloud is able to
authenticate itself. It does not prove, for example, that any backing user requests are actually legitimate.
Assuming that UCloud is acting in good faith, this is not a problem. But it does introduce some trust in
UCloud that is not acting malicious. To mitigate this, UCloud provides a mechanism for SPs to authenticate
that a message is from an end-user. This mechanism uses public key cryptography with keys exchanged
between end-user and SP directly. This works by having the end-user digitally sign all messages they send to
UCloud. UCloud, having never seen any of the keys, has no way of forging or validating a signature. Thus,
UCloud will forward the signature as it receives it. This gives the SP a tool to validate messages from UCloud
which target a specific user. The SP, using the public key, must verify that the message received from UCloud
matches the end-user's intention.

In a similar fashion, the SP always authenticates itself with UCloud. But, UCloud cannot be certain that the
SP is not acting malicious. Because of this, SPs are only allowed to query and update information relative to
their own SP. This enforces the principle of least privilege. Furthermore, UCloud keeps audit logs for all API
requests and backups of the backend data, which can aid in recovering in case an SP is compromised.

4. Benefits and lessons learned
Through the course of the subtask, we have had the chance to have dialogues with several research
communities, close collaboration between sites, test and push the capabilities of existing technologies and

38 https://www.nist.gov/publications/zero-trust-architecture

32

https://www.nist.gov/publications/zero-trust-architecture

cloud infrastructure implementations from which scientists did benefit by getting an easy access to
e-Science resources. The lessons learned and recommendations for the future that can be drawn from this
experience are as follows:

1. Trial-and-error experiments are still necessary for development of machine learning models and
thus still require significant human effort and computational resources.

2. Communication between experts from different domains is a known problem and needs to be
better facilitated in the future in order to achieve a common understanding. Good dialog between
experts and stakeholders must be at the core of activities to ensure a successful outcome.

3. It has become clear that despite cloud infrastructures providing an easy way for end-users to work
and focus their effort on the research projects, not all research communities can benefit equally
from it. It is important to consider having a technical solution which not only aims for providing
web-based solutions for computing capabilities, but also combines or is complementary to more
traditional ways of processing and consuming data, such as command line interfaces.

4. Accounting of cloud resource utilization is a fairly difficult topic, and it proved to be a challenging
topic in relation to federating resources across different SPs and RIs, since they all have different
ways of handling accounts, projects and resource allocations. A full common solution would require
further work in order to harmonize or at least find common grounds on a standard for cloud
resource allocations.Work in this direction exists, which addresses, at least in part, the problem. In
the Nordic region, a noteworthy effort is the NeIC Puhuri project39. Puhuri aims to provide a
common scalable digital authorization platform for accessing HPC resources. It is currently used by
the ten LUMI consortium countries to offer access to the LUMI supercomputer. Puhuri integrates
with MyAccessID, a service from Geant, as a common platform for identity and access
management. Much work in the Puhuri project has been dedicated to harmonizing resource and
project definitions among the participating members in the Nordic region. Puhuri now provides a
common platform where national allocators can manage projects and resources at SPs and where
they can obtain information on utilization of resources. Although the initial goal for Puhuri was HPC
and, in particular, the LUMI supercomputer, the platform is capable of handling resources specific
for cloud computing as well.

5. The cloud solutions were designed to fulfill requirements shaped by various stakeholders. The
different code bases, architecture designs and technical implementations are based on different
sets of use cases identified by each project. There are certainly common use cases and
functionalities provided by each solution, however, with different technical approaches and
solutions. Intrinsically, the knowledge base and the competence pool at each SP and RI have also
influenced the respective technical implementations. Adopted licensing models for each of the
solutions are meant to reflect requirements and technical choices. Harmonizing these might be a
difficult exercise.

6. Security is in general another difficult topic. Challenges exist due to lack of trust and agreements
between different service providers and institutions. This is even more difficult when the providers
are in different countries with perhaps different regulations and requirements for security and data
protection. Legal challenges for the use of sensitive data across borders are a long standing
problem. Even if we just restrict the problem to the Nordic region, the challenges remain very
acute. This task did not focus on these legal challenges, but we note that other tasks of EOSC-Nordic
cover that part. At the more technical level, two frameworks have been used in this task. In regards

39 See https://neic.no/puhuri/

33

https://neic.no/puhuri/

to identity management and authentication, AAI solutions like the previously mentioned
MyAccessID and Puhuri, offer different Levels of Assurance (LoA) to SPs. While the implementation
of strict guarantees on LoA is not without challenges, once in place, LoA will help SPs to have a strict
control on user identities. The second technical approach showcased in this WP is the use of Zero
Trust approach (see UCloud demonstrator). Zero Trust frameworks by definition remove or greatly
reduce the trust required between the different actors and, while not completely new, are still not
broadly used, as they require complex solutions to be implemented.

7. While certainly there are still technical challenges to be addressed and resolved, there are clear
stoppers and hindrances introduced by regulations, laws and policies. As earlier mentioned, it is
important that technical and legal activities are synchronized and progress together. WP2 is in fact
coordinating efforts between national initiatives and contributing to harmonizing policies and
investing effort in removing legal issues in Nordics in the context of EOSC. WP2 is amongst others,
looking into policies and resource provision, as well as cross-border collaboration models, which are
addressed in Deliverable D2.5 Open Science policies and resource provisioning in the Nordic and
Baltic countries (second report).40

8. Finally, while work and collaboration, as a consequence of the COVID-19 pandemic, was very much
limited for the most of the time to remote video meetings, webinars and workshops, it has proven
to be efficient and optimal for cross-border collaboration. However, the physical meetings, face to
face dialogues cannot be substituted for but rather complemented, video meetings being a perfect
addition to periodic physical meetings.

5. Conclusions
Important initiatives and solutions have emerged within EOSC-Nordic and have proven to be
groundbreaking and to the benefit of research and collaboration.

The cross-border computing used by the climate modeling community is based on the user-friendly Galaxy
portal giving easy access to cloud computing resources and bare-metal HPC clusters. Part of this has been
developed earlier in this subtask and the details are therefore already described in Deliverable D5.2
Cross-borders computing through portals41.

The marine biodiversity exploration using cross-border resources and federated machine learning, i.e. the
FEDn-KSO use case, showcased the capabilities of cross-border cloud computing, exemplifying possibilities
for deploying the same software across multiple cloud architectures. It also demonstrates how different
technical challenges related to transfer and movement of large amounts of datasets can be addressed.

We can also conclude that a better way for providing ML frameworks, like FEDn, is to provide applications in
the catalog of the cloud solution provider, e.g., by registering it as an application in NIRD Toolkit instead of
deploying it as a service on the NIRD SP. For this, one should use Helm charts extensively, and offer
parametrized applications, i.e., one application which can instantiate the FEDn components. This approach
would fit better and give more flexibility to the end-users and offer self-service capabilities.

41 Abarenkov, K.; Fouilloux, A.: D5.2 Cross-borders computing through portals, Deliverable, EOSC-Nordic 2021, DOI:
10.5281/zenodo.4607199

40 Hammargren, P.-O.; Arvola, M.; Rauste, P.: D2.5 Open Science policies and resource provisioning in the Nordic and
Baltic countries (second report), Deliverable, EOSC-Nordic 2021, DOI: 10.5281/zenodo.5537068

34

https://doi.org/10.5281/zenodo.4607199
https://doi.org/10.5281/zenodo.5537068

The Nordic Digital Humanities Laboratory data analytics on UCloud use case demonstrates the ability of
UCloud to deliver a solution which enables cross-organization and cross-border collaboration for compute
and storage. With UCloud one can accomplish connecting different cloud infrastructures, allowing
researchers to set up projects and workflows and deploy applications within the same namespace. While
orchestration of jobs and computing resources is at the core of UCloud, moving data where the compute
capacity is, requires further prototyping and work.

Similarly to UCloud, great results have been achieved on the NIRD Service Platform and NIRD Toolkit,
supporting multiple use cases, like STACKn and FEDn services being deployed on the NIRD SP. Also,
predefined applications in the NIRD Toolkit, e.g., Jupyter Notebook, allows Norwegian and Nordic users to
deploy applications, start AI/ML workflows with a few clicks, giving them the opportunity to focus on what
matters most, research.

While a common Nordic cloud toolbox was not deemed to be practical solution given the different code
bases as well as licenses for the different cloud solutions, the collaboration certainly revealed possibilities
for collaboration and possibilities for setting up a shared application repository, based on for example Helm
charts, making applications, frameworks shareable across projects and borders.

Accounting of cloud resource usage was addressed by each service provider and adjusted for the particular
solution in each case. Accounting evolved in parallel with the solution but never reached a satisfactory state
as it is a complex field, being very much dependent on the resource allocation model and technical solution
for the cloud infrastructure. As a consequence, prototyping an accounting solution which would work across
borders was not yet possible to achieve and would require further effort.

35

