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David López-Bueno, Senior Member, IEEE, Gabriel Montoro, and Pere L. Gilabert, Senior Member, IEEE

Abstract—In 5G and beyond radios, the increased bandwidth,
the fast-changing waveform scenarios, and the operation of large
array multiple-input multiple-output (MIMO) transmitter archi-
tectures have challenged both the polynomial and the artificial
neural network (ANN) MIMO adaptive digital predistortion
(DPD) schemes. This paper proposes training data selection
methods and dimensionality reduction techniques that can be
combined to enable relevant reductions of the DPD training
time and the implementation complexity for MIMO transmitter
architectures. In this work, the combination of an efficient
uncorrelated equation selection (UES) mechanism together with
orthogonal least squares (OLS) is proposed to reduce the training
data length and the number of basis functions at every behavioral
modeling matrix in the polynomial MIMO DPD scheme. For
ANN MIMO DPD architectures, applying UES and principal
component analysis (PCA) is proposed to reduce the input dataset
length and features, respectively. The UES-OLS and the UES-
PCA techniques are experimentally validated for a 2x2 MIMO
test setup with strong power amplifier input and output crosstalk.

Index Terms—artificial neural networks, digital predistortion,
machine learning, MIMO, power amplifier.

I. INTRODUCTION

THE advent of 5G has brought deploying flexible wave-
form, numerology and frame design strategies together

with increased bandwidth signals that operate in large-array
transmitter architectures with RF impairments that cannot
be handled properly by classical digital predistortion (DPD)
linearizers [1]. Nowadays 5G multi-antenna transmitters may
deliver fast-changing waveform configurations, either in terms
of modulation, bandwidth occupation or power statistics, that
require faster DPD coefficient adaptation. Such transmitters
need also to handle complex linearization scenarios involving
multiple power amplifier (PA) input and output cross cou-
pling effects and beam dependent PA loading effects, which
aggravate the overall PA distortion [2]. Fig. 1 shows the block
diagram of one MIMO transmitter architecture for sub-7 GHz
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and depicts some undesired effects that may appear like cross
couplings, I/Q gain and phase imbalances, DC offsets, in-band
LO couplings and PA nonlinear distortion [3], [4].

A. State-of-the-Art

Several MIMO DPD behavioral models accounting for cross
couplings have been presented over the last decade [6]–[8],
some of them capable to mitigate I/Q modulator imbalances
and DC offsets added to the crosstalk effects [9]–[11]. The
main concern of all the previous multivariate polynomial-
based models is that a multi-input DPD is required in every
transmit path and cannot be properly implemented for large-
array MIMO transmitters. To overcome the requirement of
including a multi-input DPD in every transmit path, a DPD
system combining a single linear crosstalk and mismatch
model block for the whole array and dual-input DPD models at
each Tx path is proposed in [12]. In addition, artificial neural
networks (ANN) have been proposed in literature over the last
years as an alternative to such higher complexity polynomial
models for MIMO DPD [13]–[15]. Such schemes benefit from
having only one ANN MIMO DPD block with as many inputs
and outputs as transmitter baseband channels and PAs, which
reduces the overall count of DPD coefficients for large arrays.
The single DPD block approach is also adopted in [16]–
[18] for addressing the linearization of hybrid beamforming
transmitter architectures at mm-waves.

Fig. 1: Multi-antenna circulator-less Tx. architecture (left) and
illustration of the spectra of the complex baseband signal and
the RF signal at a given PA output with typical RF impairments
(right). Source: [5].
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The adaptive multi-antenna DPDs can become key building
blocks in nowadays radio modems building massive digital
MIMO or hybrid beamforming transmitter architectures, but
only if designed to be computationally and power efficient.
The combination of training data selection methods and behav-
ioral modeling dimensionality reduction techniques is a design
strategy that may allow fast-adaptive well-conditioned MIMO
DPD systems with optimized DPD processing complexity.

The training data reduction methods reduce the memory
requirements, the number of operations and the overall DPD
adaptation time, by selecting convenient statistically represen-
tative training data samples. Several sample selection methods
(SSM) have been reported in literature to reduce the computa-
tional complexity of polynomial- or piecewise-based DPD and
to uncorrelate the observation errors in adjacent samples to get
better performance [19]–[22]. For ANN DPD, consecutive and
sparse waveform batch selection mechanisms were proposed
in [23] to reduce the training dataset length.

Among the different dimensionality reduction techniques
used for polynomial- or piecewise-based DPD, feature selec-
tion techniques [24] are employed to reduce the number of
DPD basis functions (and thus coefficients) in the real-time
forward path. Instead, feature extraction techniques are used
in the observation path to ensure well-conditioned estimation
and reduce the number of parameters required for DPD
identification or adaptation [25]. In ANN-based DPD, feature
selection techniques have been used to reduce the input dataset
and ANN complexity [26], to tune the center of radial basis
function neural networks [27] and to incrementally set the
optimal number of hidden layer neurons [28].

Most of DPD complexity reduction works in literature
apply to single channel transmit architectures and only a few
combine training data selection and basis reduction techniques
[23], [29]. Regarding multi-antenna DPD, the authors in [30]
use sparse estimation techniques to reduce the basis of MIMO
Volterra-based polynomial models for moderate input-output
crosstalk conditions. In [31], a piecewise closed-loop DPD in-
cluding a pruning algorithm for faster adaptation is introduced,
while in [32] singular vector decomposition (SVD) is applied
for dimensionality reduction of multiuser MIMO arrays.

B. Contribution and Novelty
To the author’s best knowledge, the combination of training

data selection methods and dimensionality reduction tech-
niques has not been addressed in the literature for multi-
antenna transmitter architectures with PA input and output
cross couplings provoking strong nonlinear effects. Typically,
such techniques have been evaluated in single-antenna systems
or multi-antenna systems with negligible cross couplings that
allow treating each PA independently. In this work, for the first
time several training data selection methods and dimension-
ality reduction techniques are combined for use in different
polynomial and neural network direct learning MIMO DPD
architectures to combat strong nonlinear effects and cross
couplings.

As proved in Section VI-B, the histogram-based sample
or equation selection methods [21], [22] fail to deliver the
expected performance in MIMO transmitter architectures when

the channel of interest is contaminated by adjacent channels
due to PA input and output cross talk. In this work, we evaluate
the waveform batch selection methods in [23] whose selection
is based in batch performance metrics. More importantly, we
propose using the more efficient uncorrelated equation selec-
tion (UES) method whose novel application to data selection
for least squares (LS) fitting, in our case applied to DPD,
outperforms the previous techniques, supports operation under
channel or antenna cross couplings, and runs faster.

Regarding the art in dimensionality reduction techniques,
we leverage on the novel application of the orthogonal least
squares (OLS) and PCA to MIMO DPD. We have deployed
the original OLS technique by Chen and Billings [33] for DPD
basis selection. This technique has inspired similar approaches
validated for single-antenna DPDs. We define how to apply
the original OLS technique to reduce the polynomial model
basis functions and ANN dataset features in MIMO DPD,
knowing that it is able to outperform OMP in DPD basis
selection and perform equally well than its later variants [34].
In polynomial-based DPD, PCA is commonly used in the iden-
tification subsystem to reduce the number of basis and avoid
an ill-conditioned estimation while reducing the complexity of
the LS calculation [5]. We propose using PCA to reduce the
number of features in large ANN MIMO DPD datasets. PCA
is able to extract the hidden structure in high-dimensionality
datasets, produce linear combinations of dataset features that
help the ANN to reach the desired results for a given structure,
and reduce the complexity both in training and inference
thanks to reducing the number of weights needed in the ANN
first hidden layer. As demonstrated in Section VI-B, PCA and
OLS can be used to trade-off between ANN performance and
reduced complexity (and faster adaptivity), respectively.

This article formulates and gives full visibility on how
the methods for faster MIMO DPD adaptivity are applied
to each of the three direct learning architectures, which is a
contribution frequently obviated in the literature but necessary
to allow reproducibility. The DPD adaptivity or some training
aspects in ANN-based digital predistorters are commonly not
addressed in the literature, and their limitations in comparison
to polynomial DPDs are sometimes omitted. The techniques
are combined and experimentally validated in a 2× 2 MIMO
laboratory test bench for the three MIMO DPD schemes under
the presence of strong cross couplings and nonlinear effects.

The remainder of this paper is organized as follows. In
Section II the direct learning MIMO DPD schemes for the
polynomial and ANN approaches are presented. Section
III focuses on the DPD training data length reduction
mechanisms and details the new UES method for MIMO
architectures with cross couplings. Section IV introduces
how to apply OLS and PCA to polynomial and ANN MIMO
predistorters. The procedure to combine the proposed training
data reduction and dimensionality reduction techniques for
MIMO DPD application is detailed in Section V. The test
setup employed to experimentally validate the proposed
techniques in MIMO DPD architectures is described in
Section VI-A. Experimental results showing the benefits
in terms of performance, complexity, and training time of
combining dimensionality reduction techniques and data
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Fig. 2: MIMO DPD direct learning architecture with indepen-
dent polynomial MISO DPD blocks.

length reduction methods are provided in section VI-B. The
conclusion is given in Section VII.

II. DIRECT LEARNING MULTI-ANTENNA DPD SCHEMES

A. Polynomial-Based MIMO DPD Scheme

The block diagram of the polynomial MIMO DPD closed-
loop adaptive architecture is shown in Fig. 2. In the forward
path of this direct learning MIMO DPD scheme, we have one
multiple input single output (MISO) DPD block per PA or
antenna, whose input-output relationship can be described as

xi[n] = ui[n]− di[n] (1)

where xi[n] is the predistorted signal at the output of the ith

MISO DPD block, with i = 1, · · · , P , P is the number of PAs
or antennas (or MIMO baseband signals in a digital MIMO
transmitter), ui[n] is the ith MIMO baseband signal (it is noted
that the MIMO input signals are uncorrelated), and di[n] is the
PA distortion signal to be modeled. The polynomial model will
not only account for the ith MIMO baseband signal but all the
rest to deal with any PA input and output cross coupling and
nonlinear effect. The expansion of the generalized memory
polynomial (GMP) model for MIMO scenarios with nonlinear
crosstalk (GMPNLC) in [10] is used in this work to model
the PA distortion.

It is possible to rewrite (1) in matrix notation as follows

xi = ui −Uiwi (2)

where xi =
(
xi[0], · · · , xi[n], · · · , xi[L − 1]

)T
and ui =(

ui[0], · · · , ui[n], · · · , ui[L − 1]
)T

, with n = 0, · · · , L − 1,
are the MISO DPD block output predistorted signal and the
ith MIMO channel baseband signal input, respectively, and

Ui =
(
ϕi[0], · · · ,ϕi[n], · · · ,ϕi[L − 1]

)T

is the L × Ni

behavioral modeling data matrix, with L being the number

of samples and Ni being the number of basis functions or
the order of the ith MISO DPD model, and where ϕi

T [n] =(
φi1[n], · · · , φij [n], · · · , φiNi [n]

)
is the vector containing the

specific basis functions φij [n] with j = 1, · · · , Ni that will
be applied to the input data to constitute Ui. The vector
of DPD coefficients with dimensions Ni × 1 is wi =
(wi1, · · · , wij , · · · , wiNi

)T . The total number of coefficients
in the polynomial MIMO DPD will be Nt =

∑P
i=1 Ni.

In the MISO DPD update paths, the coefficients can be ex-
tracted iteratively finding the LS solution. At the kth iteration
the coefficients are obtained as

wi
k+1 = wi

k + µ
(
Ui

HUi

)−1

Ui
Hei (3)

where µ (0 ≤ µ ≤ 1) is a weighting factor and ei =(
ei[0], · · · , ei[n], · · · , ei[L−1]

)T
is the L×1 DPD error vector

defined as
ei =

yi

Gi
− ui (4)

where Gi is the desired linear gain of the ith PA, yi is the
signal at its output, and ui is the ith MIMO baseband signal.

B. Artificial Neural Network MIMO DPD Schemes

As shown in Fig. 3, the ANN-based MIMO DPD can either
be built with P independent MISO DPD blocks, each with P
inputs and a single output and producing a coefficient vector
ci (as in the polynomial approach), or with a single MIMO
DPD processing block with P inputs and P outputs and a
unique coefficients vector c.

In the MIMO DPD built with independent ANN MISO DPD
blocks, every block is fed with all the baseband channel inputs
ui (in practice, only those with cross-effect interaction should
be accounted) and every set of coefficients ci is calculated
to produce the ANN expected output (target signal) x′

i =
ui − ei that precompensates for the distortion added by the
corresponding PA and accounts for linear and nonlinear cross
couplings from other MIMO channels. Therefore, following
the notation in Fig. 3-top, the P sets of ci coefficients are
calculated independently to minimize every error increment
∆ei = ei−êi, where ei is the residual linearization error vec-
tor at the ith PA output as defined in (4) and êi = x′

i− x̂′
i is

the ANN estimated residual linearization error vector between
the target signal and the estimated signal x̂′

i.
The MIMO DPD built with the single ANN MIMO DPD

block in Fig. 3-bottom jointly generates all the precompen-
sation signals minimizing the error between every (ei, êi)
pair, and thus c is now calculated to minimize the sum of
all the error increments ∆ei. The topology shown in Fig. 4 is
proposed for this architecture. It is an augmented version of the
feedforward fully connected MIMO-RVTDNN in [14]. This
ANN has real-valued input IQ pairs defined as the real and
imaginary part of the input ui[n], where Iin,i[n] = Re{ui[n]}
and Qin,i[n] = Im{ui[n]}, with i = 1, · · · , P (one input
IQ pair per antenna), and real-valued output IQ pairs with
Î ′out,i[n] = Re{x̂′

i[n]} and Q̂′
out,i[n] = Im{x̂′[n]}, where

x̂′[n] is the ANN estimation of the targeted output x′[n]
with I ′goal,i[n] = Re{x′

i[n]} and Q′
goal,i[n] = Im{x′

i[n]}
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Fig. 3: MIMO DPD direct learning architecture with indepen-
dent ANN MISO DPD blocks (top) and with a single ANN
MIMO DPD block (bottom).

components. Every input IQ pair is augmented by several data
functions (DF in Fig. 4) that enrich the ANN basis functions
to improve nonlinear modeling. One of the augmentations that
favor nonlinear modeling is using DFs that generate envelope
dependent terms (i.e.,

∣∣Iin,i+ jQin,i
∣∣k with k ∈ N) [15]. Other

DFs to be potentially considered provide powers of the IQ
data (i.e.,

∣∣Iin,i
∣∣k and

∣∣Qin,i
∣∣k) or angle dependent terms (i.e.,(

arctan(Qin,i/Iin,i)
)k

). It is well noted that such augmented
products help the ANN to elevate the reachable modeling
nonlinear order without having to increase the number of
hidden layers using nonlinear activation functions. For proper
dynamic nonlinear system identification, tapped-delay lines are
added and applied to the input IQ pairs and to the DF outputs
(M is the memory depth), delivering the N ANN inputs shown
in Fig. 4. Long-term memory effect modeling components
(i.e., s[n] = 1

K

∑K−1
k=0 |Iini[n− k] + jQini[n− k]|2) can also

be introduced by the data functions but these inputs do not
need to be replicated and delayed by the tapped-delay system.

All the previous ANN inputs constitute the input dataset

features. Considering the input IQ data length L, the input
dataset will have N × L size. The size of the dataset will be
impacted by the complexity of the dynamic nonlinear effects
to be modeled. As observed in Fig. 4, the input dataset U =
(D1, · · · ,Di, · · · ,DP ) is built with the contributions from
every input IQ pair or MIMO baseband channel routed into the
MIMO DPD ANN. Considering P antennas, V data functions
and M sample memory depth, after augmentation and delay-
ing, every MIMO channel contributes with (2 + V )(M + 1)
dataset variables, totaling N = P (2+V )(M+1) ANN inputs.
We can now define Di =

(
ϕi[0], · · · ,ϕi[n], · · · ,ϕi[L−1]

)T
,

where ϕi
T [n] =

(
φui
1 [n], · · · , φui

j [n], · · · , φui

(2+V )(M+1)[n]
)

can be seen as a vector containing all the specific dataset fea-
tures (or basis functions) φui

j [n] linked to a given MIMO input
signal ui, for i = 1, · · · , P and j = 1, · · · , (2 + V )(M + 1).

The proposed MIMO DPD ANN is therefore created with
one input layer with N inputs, a first and a second hidden layer
with F and S neurons, respectively, and an output layer with
R neurons and outputs, with R = 2P . In the first and second
hidden layer we have the ϑ1(·) and ϑ2(·) activation functions
which are typically nonlinear functions such as the hyperbolic
tangent sigmoid (well suited for nonlinear modeling), while a
pure linear activation function is used at the output layer. The
total number of ANN DPD coefficients in c is divided into
FN + SF +RS weights and F + S +R biases.

In the approach with independent ANN MISO DPD blocks,
the sum of all the ci sets totals P (FN+SF+2S) coefficients.
While the complexity in terms of coefficients will be higher
and the training of all the independent ANNs can take longer
without hardware (HW) parallelization, the calculation of
coefficients at each MISO DPD block will run faster and the
performance will be also better due to dividing the problem
into smaller ones (i.e., the coefficients at every independent
ANN are tuned to minimize a single channel increment error
vector and not the sum of potentially unbalanced different
channel increment error vectors).

The MIMO DPD ANN output IQ pairs Î ′out,i[n] and
Q̂′

out,i[n] are calculated during training in the forward pass.
The MIMO-RVTDNN coefficients c (ANN weights and bi-
ases) are then calculated with a backpropagation algorithm.
Taking as reference the Levenberg-Marquardt (LM) algorithm
[35] and the fully integrated MIMO DPD ANN, when going
backward the coefficients are calculated by minimizing the
mean square error (MSE) cost function that relies on the sum
of all the ∆ei. The forward-backward procedure is iterated
until the required linearization performance is achieved or the
ANN fails in generalization.

This procedure is equivalently applied P times for the MISO
ANN DPD. The U input dataset will be shared between
all these independent ANNs but now the single target goals
x′
i will be different according to the baseband channel of

interest and the effects to be counteracted at each of the
corresponding transmit chains. The cost function instead of
minimizing the sum of error increments it will now minimize
the error increment ∆ei for a given channel (see Fig. 3-top).
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Fig. 4: Two-hidden layer data function augmented fully con-
nected RVTDNN for MIMO DPD application.

III. TRAINING DATA LENGTH REDUCTION

A. Batch and Equation Selection Methods

In [23] two batch selection methods named consecutive
batch selection (CBS) and sparse batch selection (SBS) were
presented by the authors of this work. These methods were
used to reduce the length of the ANN input dataset for nonlin-
ear DPD modeling. These methods are compared with a SSM-
inspired multidimensional IQ memory mesh selecting (MeS)
method in [22] that can be applied to the equations (or rows) of
either polynomial behavioral modeling matrices or ANN input
datasets. Compared to MeS, CBS and SBS could also achieve
high reduction factors, similar normalized mean square error
(NMSE) performance but better adjacent channel power ratio
(ACPR) thanks to employing batch selection score metrics
linked to the out-of-band performance such as the adjacent
channel error power ratio (ACEPR). One advantage of the
batch selection methods is the versatility to adapt to different
scenarios and properly balance the in-band and out-of-band
distortion according to the requirements. For completeness,
the application of CBS and SBS to single channel DPD input-
output data is summarized and exemplified in Fig. 5.

When these batch and equation selection techniques are
applied to ANN MIMO DPD the following modifications
can be applied to guarantee suitable time coexistence of the

1. 𝒖 and 𝒚 are divided in 𝑁𝑏 data 

batches. 𝑁𝑏 is integer multiple of the 
reduction factor 𝑅𝐹𝑙 . Batches to be 
selected: 𝑁𝑠 = 𝑁𝑏/𝑅𝐹𝑙 .

2. CBS: metric calculation over sliding 

window with 𝑁𝑠 batch width (length of 
𝐿𝑠 = 𝐿/𝑅𝐹𝑙 samples), shifted over 
𝒖 and 𝒚 in 𝐿𝑏 = 𝐿/𝑁𝑏 sample steps. 
SBS: metric calculation over every 
consecutive batch (𝑁𝑏 in total).

3. Tunable batch scoring dep. on: a) 

worst NMSE b) worst ACEPR  c) 
highest 𝒖 rms PWR. 

4. CBS: Single batch selection. SBS: 

Batch indices are sorted descending
according to the score, and the 
selection is done with highest scoring 
ones. These are sorted ascending.

5. CBS and SBS: The batch indices are 

expanded to include the indices of the 
samples that contain, and form 𝜷.

CBS

SBS

Batch calc-> 1 2 3

NMSE score 3 2 1

ACEPR score 1 3 2

PWRu score 2 3 1

Batch score 6 8 4

Batch calc-> 1 2 3 4

NMSE score 3 2 1 4

ACEPR score 1 4 2 3

PWRu score 1 3 2 4

Batch score 5 9 5 11

𝐸𝑥𝑎𝑚𝑝𝑙𝑒: 𝑅𝐹𝑙 = 2, 𝑁𝑏 = 4, 𝑁𝑠 = 4,

𝐿= 40 → 𝐿𝑠 =20, 𝐿𝑏 = 10

max_score → index=[2]

𝜷=((index-1)* 𝐿𝑏 + 1: (index−1)∗𝐿𝑏 + 𝐿𝑠)=

=(11:30)

[4,2,1,3] -> [4,2] → indices=[2,4]

𝜷𝒌=((indices(𝑘)-1)* 𝐿𝑏 + 1: indices(𝑘)∗𝐿𝑏) 

for 𝑘=1,2 → 𝜷=[𝜷𝟏 𝜷𝟐]=[(11:20) (31:40)]

Fig. 5: CBS and SBS batch selection procedure [23].

selected training data samples between every MIMO channel
dataset contribution Di in U :

• For CBS and SBS, when the scores are calculated for
every (ui,yi) pair, these are then summed, and a unique
global batch index selection vector β is obtained for all
the MIMO channel input dataset contributions. Given a
length reduction factor RFl, β will store the relevant
L/RFl training data indices that will be applied to the
input-output data. This strategy can also be applied to
the polynomial MIMO DPD case allowing for higher
reduction factors. Under dominant strong cross couplings,
only the mean power of the ui signal batches is needed
to select the right indices, which reduces the number of
operations.

• With MeS the desired reduction factor RFl is expanded
by 50% and more equation indices than those initially
required are selected. Once these indices are selected for
all channels independently, only those appearing at all
channels are taken and stored in the vector Θ. Finally,
the number of coincident indices is reduced to provide the
desired L/RFl equation selection indices. This strategy
is not required for the polynomial MIMO DPD.

These MIMO adaptations applied to the CBS, SBS and
MeS techniques are also deployed in Section V. From now
onward, we will assume that the same length reduction factor
is applied to any MISO polynomial or MISO ANN block, i.e.
RFli = RFl for i = 1, ..., P ). As shown in the experimental
results in Section VI, the traditional histogram-based methods
can be underperforming for MIMO DPD application since the
baseband sample selection made according to the histogram
distribution of the baseband signal is no longer representative
of what happens at PA level due to having uncorrelated
couplings at the MIMO transmitter both before and after the
PA. SBS and CBS, however, can be more suitable to select ap-
propriate waveform segments thanks to tuning the performance
scoring method to reflect, for instance, the batches where the
waveforms are more impacted by the crosstalk effects.
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Algorithm 1 Uncorrelated equations selection (UES) method

1: procedure UES (U , CF )
2: initialization:
3: r ← U(1, :)
4: Θ(0) ← {1}
5: for m = 2 to L do
6: if |U(m, :) rH | < CF then
7: r ← U(m, :)
8: i(m) ← m
9: Θ(m) ← Θ(m−1)∪i(m)

10: end if
11: end for
12: return Θ
13: return U{Θ}
14: end procedure

B. Uncorrelated Equations Selection Method

A simple and computationally efficient equation selection
method is proposed in this work for application to both the
Ui polynomial behavioral modeling matrices and the U ANN
input dataset. The procedure is detailed in Algorithm 1. It
starts storing the first equation (i.e., matrix row) in U as
the original master equation r, and index one is stored in
the equation selection index vector Θ. The scalar product
between the master equation and the forthcoming equations
is then applied. When one of such products is below the
correlation factor (CF ) threshold, the new master equation
is stored together with its index. The process is repeated until
all the equations are evaluated, the equation selection index
vector Θ is completed and it is then applied to U to reduce the
number of equation or rows. The CF value to be set depends
on the desired length reduction factor RFl, i.e., the higher RFl

is, the smaller the CF value will be.
This method shows a good trade-off between implementa-

tion complexity and reduction performance. Such a procedure
not only reduces the number of correlated equations, and
thus provides better system conditioning but it is also able
to identify samples that are impacted by cross couplings. This
is because the correlation between adjacent OFDM waveform
samples for a given MIMO channel would be higher without
crosstalk effects, and thus by sequentially selecting uncorre-
lated equations those highly impacted by crosstalk effects are
stored. Fig. 6 shows an example on how the equation and
batch selection methods look like when applied to one input
baseband signal with RFl = 40. While MeS fills in most
of the histogram bins with the samples or equations appearing
initially in the training data, UES takes them in a more uniform
fashion.

IV. DPD MODEL ORDER REDUCTION

A. Orthogonal Least Squares

Several feature selection techniques have been proposed
for DPD linearization to keep the most representative ba-
sis functions (or regressors) and thus reduce the modeling
dimensionality [24]. From the matching pursuit family, the
orthogonal matching pursuit (OMP) [36] and the doubly OMP

Fig. 6: Training data length reduction methods application.

(DOMP) [34] have proved to be suitable approaches to trade-
off linearity performance and model order reduction. In this
work, the original orthogonal least squares (OLS) technique
shown in Algorithm 2 was considered because it outperforms
OMP and we are facing a challenging nonlinear scenario.

Algorithm 2 is defined generically. The cumulative model-
ing error e relies on a target signal t. This target signal will
be the PA output yi when using the polynomial MIMO DPD
scheme in Fig. 2 and x′

i when using ANN-based schemes like
those in Fig. 3. As in OMP, in OLS it is possible to define
a support vector (Υ) containing the indices of the best basis
functions of a generic polynomial behavioral modeling matrix
or ANN input dataset U . At every iteration of the Algorithm
2 search, Υ will be fed with the indices corresponding to the
basis functions that better contribute to minimize the residual
modeling error, which are sorted according to their relevance.
For a given dimensionality reduction factor RFd, the algorithm
iterates N/RFd times to fill Υ with the required number of
indices. This support set will be finally applied to the U matrix
to obtain a reduced version having only the selected basis.
Unlike OMP, OLS adds deflation to the chosen columns so
when a basis function is chosen, those still to be selected are
orthogonal with respect to the chosen ones. Gram-Schmidt
is performed by first obtaining a projection vector ρ of the
selected regressor into each one of previously orthogonalized
regressors in Z (step 11). This projection is then used to
decorrelate the basis functions with the selected regressor as
per step 12 in Algorithm 2, where ⊗ is the Kronecker product
operator. The selection step used in OLS is different from that
used in OMP, since it accounts for the minimum residual error
after orthogonalization.

The specific usage of OLS both for the polynomial and
the ANN-based MIMO DPD is detailed as follows. For
polynomial MIMO DPD schemes, OLS will be applied at
every MISO DPD block as UOLS

i = OLS(yi,Ui, RFd) with
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Algorithm 2 Orthogonal Least Squares

1: procedure OLS (t,U , RFd)
2: initialization:
3: e(0) ← tL×1

4: Υ(0) ← {}
5: Z(0) ← UL×N

6: for m = 1 to N/RFd do

7: Z
(m−1)
{i} ←−

i/∈Υ(m−1)

Z
(m−1)

{i}

∥Z(m−1)

{i} ∥2

8: i(m) ← argmin
i/∈Υ(m−1)

min
wi

∥e(m−1) −Z
(m−1)
{i} wi∥22 ≈

≈ argmax
i/∈Υ(m−1)

|Z(m−1)
{i}

He(m−1)|

9: Υ(m) ← Υ(m−1) ∪ i(m)

10: e(m) ← e(m−1) − (Z
(m−1)

{i(m)}
He(m−1))Z

(m−1)

{i(m)}

11: ρ(m) ← Z
(m−1)

{i(m)}
HZ(m−1)

12: Z(m) ← Z(m−1) − ρ(m) ⊗Z
(m−1)

{i(m)}
13: end for
14: return Υ
15: return U{Υ}
16: end procedure

i = 1, · · · , P (being P the total number of PAs, anten-
nas or MIMO channels). For the ANN approach built with
independent MISO DPD blocks, OLS is applied at every
MISO DPD block as UOLS

i = OLS(x′
i,U , RFd), where U =

(D1, · · · ,Di, · · · ,DP ) is the common MISO ANN’s input
dataset (i.e., for a small number of antennas all the MIMO
baseband channels are routed into any MISO DPD ANN and
therefore there is a single U dataset shared between all the
MISO DPD ANNs before applying reduction. It is noted that
every MISO DPD ANN would have different input datasets
otherwise, depending on the physical coupling between chan-
nels at every PA or antenna. Note also that, for the sake
of simplicity, we have assumed that the same dimensionality
reduction factor is applied to any polynomial or ANN MISO
DPD block, i.e., RFdi = RFd for i = 1, ..., P . In the single-
ANN MIMO DPD scheme, OLS is applied independently to
every MIMO baseband channel input dataset contribution as
UOLS =

(
OLS(x′

1,D1, RFd), · · · , OLS(x′
P ,DP , RFd)

)
,

since we have a single dataset U but we need to handle
simultaneously the P different target signals x′

i. Finally, it
is also important to remark that OLS can also be used for
basis function or feature preselection to speed-up the UES
method, as shown in Section V, thanks to reducing the number
of elements per equation and so the number of operations.

B. Principal Components Analysis

This feature extraction technique is suitable for convert-
ing an original set of eventually correlated basis functions
into a new uncorrelated orthogonal basis set called principal
components. For DPD purposes, PCA is typically used to
reduce the number of parameters to be estimated in the feed-
back path and avoid ill-conditioning or over-fitting problems
[37]. In polynomial-based MIMO DPD architectures, a new

transformed matrix for each MISO DPD block, Ûi (with
dimensions L×Mi) is defined as,

Ûi = UiVi (5)

which corresponds to the eigenvectors of the matrix UiUi
H .

The Ni × Mi transformation matrix Vi = (vi1, · · · ,viMi)
is composed of the eigenvectors of the covariance matrix
Ui

HUi, where Ni is the number of original basis (or DPD
coefficients) of the ith MISO DPD block (i = 1, · · · , P ), and
Mi is the number of transformed basis after reduction (i.e,
Mi < Ni). When the transformed matrix Ûi is applied to
(3), a new reduced set of transformed coefficients ŵi with
dimension Mi × 1 is obtained. The original Ni × 1 vector of
coefficients is obtained through the transformation matrix as

wi = Viŵi. (6)

Both the original number of basis Ni and the pruning or
reduction factor RFdi=Ni/Mi could be different at each
MISO DPD block if every PA showed different distortion
characteristics. However, when the operating conditions of the
PAs are similar the same parameters and reduction factor RFd

can be applied to all the MIMO branches. The transforma-
tion matrices Vi are calculated only once and will be valid
irrespective of the changing transmitted waveforms when the
PA operating conditions do not change very significantly over
time. This process can be done a priori offline (i.e., factory
profiling) to avoid HW resource utilization and extending
the DPD adaptation time, for a given set of representative
PA operating conditions. Thanks to the orthogonality of the
resulting transformed matrices, the polynomial MISO DPD
coefficients’ extraction can be carried out with simple dot
products (i.e., avoiding matrix inversions), and one-by-one
increasing the number of independent components until the
desired performance is reached, as shown in [38].

Unlike in polynomial-based approaches, where PCA is not
used to directly reduce the number of the original basis
functions in the DPD function, in the case of the ANN DPD,
PCA does contribute to reduce the size of the ANN. When
applied to the input dataset, the ANN will directly operate with
the feature-reduced transformed dataset both during training
and inference (or feedback and forward paths, respectively).
By reducing the input dataset features and so the MIMO ANN
inputs and the total amount of data to be processed by the
ANN, the number of weights in the first hidden layer FN will
be decreased and the overall DPD training or update time will
be also reduced. Given the ANN architecture in Fig. 4, PCA
can be applied to every MIMO baseband channel input dataset
contribution Di. Therefore, considering a MIMO or MISO
ANN generic input dataset U = (D1, · · · ,Di, · · · ,DP )
with i = 1, · · · , P , each transformation matrix Vi can be
calculated and then be applied to obtain every D̂i trans-
formed matrix, by using the same procedure as for the
polynomial MISO-DPD architecture. After applying PCA as
UPCA =

(
PCA(D1, RFd), · · · ,PCA(DP , RFd)

)
, the result-

ing transformed input dataset will be Û = UPCA =(
D̂1, · · · , D̂P

)
, both for the MISO (i.e., when all channels

are routed into every MISO-ANN DPD block) and the MIMO
ANN architectures. Applying PCA to every MIMO channel



8

input dataset contribution works better than applying PCA
to the overall multi-channel dataset since it helps to better
preserve the most relevant variables of features provided by
every channel. One advantage of PCA over OLS when applied
to the input dataset, is that PCA is used as an unsupervised
learning technique that helps extracting the hidden structure
from the high dimensional dataset. PCA is able to produce
linear combinations of the dataset features which helps the
ANN reaching the desired results for a given structure.

V. MIMO SCENARIO COMBINED APPLICATION
PROCEDURE

This section details how the training data length reduction
methods and the dimensionality reduction techniques are se-
quentially combined. To do that, Fig. 7 shows the application
procedure for the MIMO DPD based on independent polyno-
mial MISO DPD blocks (abbreviated as MISO POLY), while
Fig. 8 and Fig. 9 show the procedure for the MIMO DPD
with a single ANN MIMO DPD block (MIMO ANN), and
the variant with independent ANN MISO DPD blocks (MISO
ANN), respectively. The flowcharts show how the PA’s input-
output data is employed for each architecture defined in Sec-
tion II, and how the polynomial behavioral modeling matrices
and the ANN input datasets (also defined in Section II) are
processed according to the length reduction and dimensionality
reduction methods deployed in Section III and Section IV,
respectively. To reduce the complexity and processing time
of the dimensionality reduction techniques the training data
length reduction is first applied. In the notation being used,
when a length reduction technique is applied to a variable
the lr superscript is added to the variable name, while the
lr dr superscript is used when the dimensionality reduction
techniques are applied to the length reduced variables.

In a first stage, if data batch selection is chosen then either
SBS or CBS is applied to every (ui,yi) pair. The indices
selection in β is then applied to such variables, and also to
x′
i for ANN training, before building the reduced behavioral

modeling and dataset matrices U lr
i and U lr, respectively.

These contain basis functions that will be a length reduced
version of the original ones with L/RFl samples each. If,
otherwise, an equation selection method is chosen, the full
behavioral modeling and dataset matrices, Ui and U , are
first created. With MeS, the method is applied P times to
the Ui MISO DPD polynomial blocks or directly to the
channel dataset contributions Di in the ANNs. In either
case, P equation selection index vectors Θi are generated.
The polynomial MIMO DPD will employ each one at its
corresponding MISO-DPD block, while for the ANN dataset
these index vectors will be merged into a single one by
following the procedure described in Section III-A. As seen in
Section III-B, UES is applied to every MISO DPD behavioral
modeling matrix Ui, and just once to the U ANN dataset. An
exception to the latter case is in the MISO ANN architecture
when, in order to speed up UES, OLS is applied in advance
to reduce the number of columns. Since OLS will be applied
to U at every MISO ANN DPD block considering different
target signals x′

i, we can have different OLS Υi support sets

MIMO BB

WAVEFORMS

(𝒖𝒊, 𝒚𝒊) pairs

for 𝑖 = 1,… , 𝑃

SBS | CBS [Sec. III.A] and [23]

1. SBS/CBS(𝒖𝒊, 𝒚𝒊, 𝑅𝐹𝑙), for 𝑖 = 1,… , 𝑃
2. Summation of the 𝑃 scores for global 
batch index 𝜷 selection  

𝒖𝒊
𝒍𝒓 = 𝒖𝒊(𝜷)

𝒚𝒊
𝒍𝒓 = 𝒚𝒊(𝜷)

MISO POLY DPD BM MATRICES [Sec.II.A]

𝑼𝒊 = (𝝓𝒊 0 ,… ,𝝓𝒊 𝐿 − 1 )𝑇

for 𝑖 = 1,… , 𝑃

MeS [Sec. III.A] and [22]

𝑼𝒊
𝒍𝒓 = MeS(𝑼𝒊, 𝑅𝐹𝑙), 𝒚𝒊

𝒍𝒓 = 𝒚𝒊 𝚯𝒊

𝑼𝒊
𝒍𝒓 = (𝝓𝒊 𝛩𝑖(1) , … ,𝝓𝒊 𝛩𝑖(

𝐿

𝑅𝐹𝑙
) )𝑇

for 𝑖 = 1,… , 𝑃

UES [Sec. III.B]

𝑼𝒊
𝒍𝒓 =UES(𝑼𝒊, CF) 

where 𝐶𝐹 = 𝑓(𝑅𝐹𝑙) 

If preOLS applied, then:

𝑼𝒊
𝒍𝒓 =UES(OLS(𝒚𝒊, 𝑼𝒊, 𝑅𝐹𝑑

′), CF) 

𝒚𝒊
𝒍𝒓 = 𝒚𝒊(𝚯𝒊)

all for 𝑖 = 1,… , 𝑃

OLS [Sec. IV.A]

𝑼𝒊
𝒍𝒓_𝒅𝒓= OLS(𝒚𝒊

𝒍𝒓, 𝑼𝒊
𝒍𝒓, 𝑅𝐹𝑑)  

for 𝑖 = 1,… , 𝑃

PCA [Sec. IV.B]

෡𝑼𝒊
𝒍𝒓_𝒅𝒓= PCA(𝑼𝒊

𝒍𝒓, 𝑅𝐹𝑑)  
for 𝑖 = 1,… , 𝑃

LENGTH
REDUCTION
METHOD?

SBS | CBS UES | MeS

MeSUES

PCAOLS

LENGTH
REDUCTION
METHOD?

DIMENS.
REDUCTION
METHOD?

MISO POLY DPD BM MATRICES 

w/ SBS | CBS REDUCTION [Sec. III.A]

𝑼𝒊
𝒍𝒓 = (𝝓𝒊

𝒍𝒓 0 ,… ,𝝓𝒊
𝒍𝒓 𝐿

𝑅𝐹𝑙
− 1 )𝑇

for 𝑖 = 1,… , 𝑃

Fig. 7: MISO POLY combined application flowchart.

leading to different equation selections vectors Θi at each of
the P MISO ANN blocks. The columns selection can just be
used to calculate the equation selection and not be propagated
to the next stages. The reduction factor (RF

′

d) at the preOLS
step before UES may be different to the one used for effective
dimensionality reduction at the later OLS stage (RFd).

In a second stage the modeling basis or dataset variable
reduction techniques OLS and PCA are applied as described in
Section IV-A and Section IV-B, respectively. The final reduced
polynomial or ANN input modeling data is then obtained. As
previously mentioned, both the preOLS and the OLS column
indices may be calculated for every MIMO channel in advance
for a given set of operating conditions to avoid increasing the
MIMO DPD training/update times. Same applies to the PCA
transformation matrices. Finally, it is noted that when a factor
RFd is applied in OLS or PCA to reduce all the polynomial
MIMO DPD basis functions, the total number of coefficients
is also reduced by this factor. In ANNs, however, this is no
longer valid since the OLS/PCA reduction is applied to the
input dataset features and thus only the number of weights in
the first hidden layer are reduced proportionally.

VI. EXPERIMENTAL RESULTS

A. Test Setup

The proposed schemes have been benchmarked and vali-
dated with the MATLAB controlled HW test bench shown
in Fig. 10. To launch in parallel multiple DPD experiments
a MATLAB client-server waveform upload/download archi-
tecture has been enabled. The MATLAB server communi-
cates both with the remote clients running the DPD algo-
rithms and the laboratory HW composed of FPGA boards
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MIMO BB

WAVEFORMS

𝒖𝒊, 𝒙′𝒊 and 𝒚𝒊 if SBS | CBS

for 𝑖 = 1,… , 𝑃

SBS | CBS [23]

1. SBS/CBS(𝒖𝒊, 𝒚𝒊, 𝑅𝐹𝑙), for 𝑖 = 1,… , 𝑃
2. Summation of the 𝑃 scores for global 
batch index 𝜷 selection [Sec. III.A]

𝒖𝒊
𝒍𝒓 = 𝒖𝒊(𝜷), 𝒙′𝒊

𝒍𝒓 = 𝒙′𝒊(𝜷)

MIMO ANN DATASET [Sec.II.B]

𝑼 = (𝑫𝟏, … , 𝑫𝒊 , … , 𝑫𝑷) where
𝑫𝒊 = (𝝓𝒊 0 ,… ,𝝓𝒊 𝐿 − 1 )𝑇

MeS [Sec. III.A] and [22]

𝜣𝟏 ←MeS(𝑫𝟏, 𝑅𝐹𝑙x1,5), …, 𝜣𝑷 ←MeS(𝑫𝑷, 𝑅𝐹𝑙x1,5)

𝜣=intersect(𝜣𝟏,…, 𝜣𝑷),  𝜣 =𝜣(1: 
𝐿

𝑅𝐹𝑙
)

𝑼𝒍𝒓 = 𝑫𝟏
𝒍𝒓, … ,𝑫𝒊

𝒍𝒓, … ,𝑫𝑷
𝒍𝒓

𝑫𝒊
𝒍𝒓 = (𝝓𝒊 𝛩(1) ,… ,𝝓𝒊 𝛩(

𝐿

𝑅𝐹𝑙
) )𝑇

UES [Sec. III.B]

𝑼𝒍𝒓 =UES(𝑼, CF) where 𝐶𝐹 = 𝑓(𝑅𝐹𝑙) 
If preOLS applied, then:

𝑼𝒍𝒓 =UES(OLS 𝒙′𝟏, 𝑫𝟏, 𝑅𝐹𝑑
′ , … , OLS 𝒙′𝑷, 𝑫𝑷, 𝑅𝐹𝑑

′ ), CF)

𝑼𝒍𝒓 = 𝑫𝟏
𝒍𝒓, … , 𝑫𝒊

𝒍𝒓, … , 𝑫𝑷
𝒍𝒓 with

𝑫𝒊
𝒍𝒓 = (𝝓𝒊 𝛩(1) ,… ,𝝓𝒊 𝛩(

𝐿

𝑅𝐹𝑙
) )𝑇

and 𝒙′𝒊
𝒍𝒓 = 𝒙′𝒊 𝜣 for 𝑖 = 1,… , 𝑃

OLS [Sec. IV.A]

𝑼𝒍𝒓_𝒅𝒓 = (OLS(𝒙′𝟏
𝒍𝒓,𝑫𝟏

𝒍𝒓, 𝑅𝐹𝑑), … , OLS(𝒙′𝑷
𝒍𝒓,𝑫𝑷

𝒍𝒓, 𝑅𝐹𝑑))

PCA [Sec. IV.B]
෡𝑼𝒍𝒓_𝒅𝒓 =(PCA(𝑫𝟏

𝒍𝒓, 𝑅𝐹𝑑) , … , PCA(𝑫𝑷
𝒍𝒓, 𝑅𝐹𝑑))

LENGTH
REDUCTION
METHOD?

LENGTH
REDUCTION
METHOD?

DIMENS.
REDUCTION
METHOD?

MIMO ANN DATASET

w/ SBS | CBS REDUCTION [Sec. III.B]

𝑼𝒍𝒓 = (𝑫𝟏
𝒍𝒓, … , 𝑫𝒊

𝒍𝒓, … , 𝑫𝑷
𝒍𝒓)

𝑫𝒊
𝒍𝒓 = (𝝓𝒊

𝒍𝒓 0 ,… ,𝝓𝒊
𝒍𝒓 𝐿

𝑅𝐹𝑙
− 1 )𝑇

SBS | CBS UES | MeS

MeSUES

PCAOLS

Fig. 8: MIMO ANN combined application flowchart.

for waveform playback (TI TSW14J56EVM) and recording
(TI TSW14J57EVM), data converters (TI DAC38RF82EVM
and TI ADC12DJ5200EVM), two ADI ADL5605 PA drivers,
two GaN HEMT class J PAs based on the Cree CGH35030F
transistor, and a tunable bidirectional passive network to
provoke controlled couplings between the PA outputs and
potential loading effects, (by manually setting the attenuation
step of the mechanical variable attenuator shown in Fig. 10).
The PA input cross talk effects are digitally introduced into
the predistorted baseband signals, in the MATLAB Laboratory
server before transmission through the test setup, according to
the PA input cross talk level set by the remote user.

The PAs are operated at 875 MHz RF frequency and about
27 dBm mean output power with 2x2 MIMO 80 MHz band-
width carrier-aggregated fast convolution filter bank multi-
carrier (FC-FBMC) signals featuring 13-14 dB PAPR. The
waveform length is 737280 samples, after oversampling 2
ms signals by a factor of 3 to accommodate for the DPD
bandwidth expansion (368.64 MHz baseband sample rate).
Each of the two FC-FBMC signals generated are uncorrelated
and feature changing PAPR values at every training iteration.

The two discrete PAs need some initial adjustment to reach
similar operation point due to transistor pinch-off voltage
dispersion or having different parasitic effects in the two proto-
typed boards. The differences in linearity performance imply
that there will be some common DPD modeling basis valid
for the two models but to reach the maximum performance
there will be basis that are needed for one of the PAs but not
necessarily the other. Since the general approach is to apply
the same overall DPD model to the two PAs, to reduce the

MIMO BB

WAVEFORMS

𝒖𝒊, 𝒙′𝒊 and 𝒚𝒊 if SBS | CBS

for 𝑖 = 1,… , 𝑃

SBS | CBS [Sec. III.A] and [23]

1. SBS/CBS(𝒖𝒊, 𝒚𝒊, 𝑅𝐹𝑙), for 𝑖 = 1,… , 𝑃
2. Summation of the 𝑃 scores for global 

batch index 𝜷 selection 𝒖𝒊
𝒍𝒓 = 𝒖𝒊(𝜷), 

𝒙′𝒊
𝒍𝒓 = 𝒙′𝒊(𝜷)

MISO ANN DATASET [Sec.II.B]

𝑼 = (𝑫𝟏, … , 𝑫𝒊 , … , 𝑫𝑷) where
𝑫𝒊 = (𝝓𝒊 0 ,… ,𝝓𝒊 𝐿 − 1 )𝑇

MeS [Sec. III.A] and [22]

𝜣𝟏 ←MeS(𝑫𝟏, 𝑅𝐹𝑙x1,5), …, 𝜣𝑷 ←MeS(𝑫𝑷, 𝑅𝐹𝑙x1,5)

𝜣=intersect(𝜣𝟏,…, 𝜣𝑷),  𝜣= 𝜣(1: 
𝐿

𝑅𝐹𝑙
)

𝑼𝒍𝒓 = 𝑫𝟏
𝒍𝒓, … , 𝑫𝒊

𝒍𝒓, … , 𝑫𝑷
𝒍𝒓 with

𝑫𝒊
𝒍𝒓 = (𝝓𝒊 𝛩(1) , … ,𝝓𝒊 𝛩(

𝐿

𝑅𝐹𝑙
) )𝑇

UES [Sec. II.B and III.B]

𝑼𝒊
𝒍𝒓 =UES(𝑼, CF) where 𝐶𝐹 = 𝑓(𝑅𝐹𝑙) 

𝑼𝒊
𝒍𝒓 = 𝑫𝟏

𝒍𝒓, … , 𝑫𝒊
𝒍𝒓, … , 𝑫𝑷

𝒍𝒓 with

𝑫𝒊
𝒍𝒓 = (𝝓𝒊 𝛩(1) , … ,𝝓𝒊 𝛩(

𝐿

𝑅𝐹𝑙
) )𝑇

and 𝒙′𝒊
𝒍𝒓 = 𝒙′𝒊 𝜣 for 𝑖 = 1,… , 𝑃

If preOLS applied, then:

𝑼𝒊
𝒍𝒓 =UES(OLS(𝒙′𝒊, 𝑼, 𝑅𝐹𝑑

′ ), CF) 

𝑼𝒊
𝒍𝒓 = 𝑫𝒊𝟏

𝒍𝒓 , … , 𝑫𝒊𝒋
𝒍𝒓, … , 𝑫𝒊𝑷

𝒍𝒓 with

𝑫𝒊𝒋
𝒍𝒓 = (𝝓𝒋[𝛩𝑖(1)], … , 𝝓𝒋 𝛩𝑖(

𝐿

𝑅𝐹𝑙
) )𝑇

𝒙′𝒊
𝒍𝒓 = 𝒙′𝒊(𝜣𝒊) for 𝑖 = 1,… , 𝑃 and j = 1,… , 𝑃

OLS [Sec. IV.A]

𝑼𝒊
𝒍𝒓_𝒅𝒓= OLS(𝒙′𝒊

𝒍𝒓,𝑼𝒊
𝒍𝒓, 𝑅𝐹𝑑) for 𝑖 = 1,… , 𝑃

PCA [Sec. IV.B]

෡𝑼𝒊
𝒍𝒓_𝒅𝒓=(PCA(𝑫𝟏

𝒍𝒓, 𝑅𝐹𝑑) ,… , PCA(𝑫𝑷
𝒍𝒓, 𝑅𝐹𝑑))

for 𝑖 = 1,… , 𝑃
෡𝑼𝒊
𝒍𝒓_𝒅𝒓=(PCA(𝑫𝒊𝟏

𝒍𝒓 , 𝑅𝐹𝑑) ,… , PCA(𝑫𝒊𝑷
𝒍𝒓 , 𝑅𝐹𝑑))

for 𝑖 = 1,… , 𝑃 when preOLS+UES is applied.

LENGTH
REDUCTION
METHOD?

LENGTH
REDUCTION
METHOD?

DIMENS.
REDUCTION
METHOD?

MISO ANN DATASET

w/ SBS | CBS REDUCTION [Sec. 

III.B]

𝑼𝒊
𝒍𝒓= 𝑫𝟏

𝒍𝒓, … , 𝑫𝒊
𝒍𝒓, … , 𝑫𝑷
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Fig. 9: MISO ANN combined application flowchart.

DPD complexity and ensure well-conditioned identification the
dimensionality reduction techniques are highly convenient.

B. Data Length and Dimensionality Reduction Measurements

The proposed techniques have been experimentally bench-
marked and validated in Table I and Table II. The parameters
of the three MIMO DPD architectures evaluated are as follows:

1) MISO POLY. The MISO DPD block for every PA is
based on the GMPNLC model with nonlinear degree 7
and up to 10-tap memory depth. Nonlinear degree 9 and
up to 12-tap memory depth was also evaluated but the
improvement in performance was not relevant despite
nearly doubling the number of coefficients.

2) MISO ANN. The MISO DPD blocks are based on two-
hidden layer ANNs, with 20 neurons per hidden layer
and hyperbolic tangent sigmoid activation functions. The
following data augmentation functions are considered
for every MIMO channel input dataset (Iini, Qini) con-
tribution: |Iini + jQini|k with k = 1, · · · , 6, |Iini|k
and |Qini|k for k = 3, and a long-term component
considering a sliding window of K = 1000 samples.
Except for the long-term component, 12-tap consecutive
memory delays are also applied to all these contributions
to enable dynamic nonlinear modeling.

3) MIMO ANN. The single MIMO DPD block is based
on a two-hidden layer ANN, with 20 neurons per hidden
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Fig. 10: Remotely accessible multi-antenna digital linearization test setup block diagram (left) and demonstration test bench
picture (right). TX: transmitted; RX: received; WFMs: waveforms; CH: channel; EXTL: external; CLK: clock; DAC: digital-
to-analog converter; DRV: driver; AMP: amplifier; PWR: power; CX CTRL: cross talk control; MECH VAR ATT: mechanical
variable attenuator; ADC: analog-to-digital converter; DC: direct current.

layer and hyperbolic tangent sigmoid activation func-
tions. The following data augmentation functions are
added to every MIMO channel input dataset (Iini, Qini)
contribution: |Iini + jQini|k with k = 1, · · · , 6, |Iini|k
and |Qini|k for k = 7, · · · , 9 and a long term component
considering a sliding window of K = 1000 samples.
Again, 12-tap consecutive memory delays are applied.

These three MIMO DPD architectures and the researched
techniques have been evaluated considering -15 dB PA input
and -15 dB PA output cross couplings. Fig. 11 shows the
degradation in the NMSE and ACPR figures with increasing
equal input and output cross coupling values, when no MIMO
DPD is applied. At -15 dB cross coupling level additional
nonlinear effects appear due to changes in the input signal
power statistics and the class-J PA loading conditions. At such
coupling level, and considering the highest PAPR MIMO base-
band signals, the PA input signal peaks are compressed about 3
dB at the PA output. No crest factor reduction techniques were
applied to the MIMO waveforms. Such challenging scenario
requires handling complex MIMO DPD models.

Table I and Table II show complexity, performance and

Fig. 11: CH1 and CH2 NMSE and ACPR versus input and
output cross coupling level.

timing results (i.e., overall number of MIMO DPD coefficients,
NMSE and worst upper/lower ACPR, and time measured
with MATLAB’s tic toc functions) for a representative set
of both dimensionality reduction test cases and the combi-
nation of data length and dimensionality reduction test cases,
respectively. These techniques are evaluated with the MIMO
2x2 test setup detailed in Fig. 10 for the three MIMO DPD
architectures. A number of test case labels are included in the
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TABLE I: Dimensionality Reduction Benchmark for MIMO DPD.
CASE.

METHOD
RED.
FACT.

DPD
COEFF.

NMSE
CH2 [dB]

NMSE
CH1 [dB]

ACPR
CH2 [dBc]

ACPR
CH1 [dBc]

TOTAL
DPD UPD.
TIME [s]

C1. GMP 1-D N/A 644 -11.3 -12.5 -36.7 -38.7 615
C2. NONE N/A 1440 -36.3 -37.4 -46.1 -46.3 2862
C3. OLS 4 360 -36.4 -37.4 -45.4 -45.8 232
C4. OLS 8 180 -36.5 -37.5 -45 -45.4 74

MISO
POLY
GMPNLC

C5. PCA 8 180 -35.5 -36 -42.4 -43 72 1ST ITER.
DPD TT [s]

REMAINING
ITER. TT [s]

C6. OLS 6 2724 -36.3 -38.6 -46.9 -47.5 2.81E+04 1.42E+04 1.40E+04
C7. OLS 16 1604 -36.3 -36.8 -47.8 -48 1.75E+04 1.08E+04 6.68E+03MISO

ANNs C8. PCA 4 3604 -36.8 -38.8 -48 -48.7 3.84E+04 2.45E+04 1.38E+04
C9. OLS 6 1764 -35.1 -37.4 -44 -45.7 4.01E+04 3.03E+04 9.82E+03
C10. OLS 16 964 -36.5 -37.6 -45.3 -46 1.90E+04 1.22E+04 6.83E+03MIMO

ANN C11. PCA 6 1764 -36.4 -38.3 -47.2 -47.7 5.21E+04 2.64E+04 2.58E+04

tables and in the text to facilitate the tracking of the results.
Regarding Table I, when the best classical GMP DPD

linearization configuration is applied independently to every
MIMO channel (C1), since no crosstalk is accounted in the
modelling, the resulting NMSE figures are equivalent to those
found in Fig. 11 when DPD is not applied (i.e., the crosstalk
is a dominant inband effect which is not corrected, only the
ACPR is enhanced by about 3-4 dB at C1). The best GMPNLC
configuration (with reasonable number of coefficients) is able
to overcome the previous limitations but considering the
demanding test setup scenario the NMSE values reach near
-37 dB NMSE and -46.2 dB ACPR on average (C2). When
using the polynomial MIMO DPD scheme, OLS is the most
effective technique to reduce the complexity and the total DPD
update time while preserving performance. When a coefficient
reduction factor of 8 is applied, OLS features about 1.5 dB
and 2.5 dB better NMSE and ACPR, respectively, than PCA
(C4 vs. C5). The DPD update time is reduced by a factor circa
40 when compared to the nominal case (C4 vs. C1).

When comparing the performance of the polynomial and
the ANN linearization schemes, the MISO ANN is the better
performing. The results for the nominal ANN-based MIMO
DPD schemes without dimensionality reduction are not pro-
vided due to the huge amount of time required to obtain them.
When considering the MISO ANN scheme after applying PCA
dataset reduction by 4, the NMSE is improved by 0.5-1.5 dB
but, more importantly, the ACPR is also improved by 2-2.5
dB, in comparison with the GMPNLC MISO POLY scheme
(C4 vs. C1). Table I also shows that both for the MISO and
MIMO ANNs, for lower basis reduction factors PCA delivers
the best attainable performance, but OLS is a better choice for
higher reduction factors (C7 vs. C8).

When comparing the number of coefficients, for small
arrays the MISO POLY scheme may feature much less co-
efficients than the ANN schemes (C4 vs. C10) but, however,
when the best performance is pursued, they may feature similar
number of coefficients. For example, the MISO ANN scheme
with OLS reduction by 16 outperforms GMPNLC in terms
of spectral contention as seen in Table I (C2 vs. C7) and the
linearized spectra plots in Fig. 12. The AM-AM and the AM-
PM characteristics for this case are also shown in Fig. 13.

The main drawback of the ANN schemes is that the DPD
update time is significantly larger than the polynomial ones
(i.e., 2.5 orders of magnitude higher, see C3-C4 vs C6-

C11). This is clearly an obstacle for the adoption of ANN-
based MIMO DPD schemes unless dimensionality reduction
is combined with significant training data length reduction
factors (and together with efficiently parallelized ANN-specific
processing HW). The time taken to train the ANN at the first
MIMO DPD iteration is in the order of magnitude (between
1 and 3 times higher) of the time needed to train the MIMO
DPD in the remaining iterations with different data and PAPR
statistics MIMO waveforms until the desired performance is
reached (i.e., typically 7-8 iterations are needed). This is due
to the fact that in the first iteration the DPD coefficients are
trained from scratch, and it takes longer to find the coefficients
that minimize the ANN cost function, and the following
training iterations benefit from using the previously calculated
and updated coefficients when training with new data. Having
pre-trained ANNs can also contribute to reduce the overall
MIMO DPD training time (TT in Table I).

In Table II, the dimensionality reduction techniques are
preceded by the training data length reduction techniques as
per Section V, and the length reduction processing time is
both identified and further added to the total DPD update
time count. In the MISO POLY scheme, the best data length
reduction techniques are SBS and UES, but when combined
with OLS, UES performs about 1.5 dB NMSE and 1.2 dB
ACPR better and is slightly faster (C14 vs. C13). MeS does
not provide acceptable ACPR performance when having strong
cross couplings for any of the DPD architectures (the better
performing case is shown for the MISO POLY architecture in
C12). In the MISO POLY case, applying OLS reduction by 8
is already a powerful tool to significantly shorten the training
time. When applying UES-OLS additional 35% DPD update
time reduction can be obtained paying very little performance
cost with regards to applying only OLS (C4 vs. C14).

With the ANN-based schemes, when having very strong
cross couplings it is hard to reach the desirable performance
when applying data length reduction right at the first DPD
training iteration where the ANN coefficients are calculated
from scratch. To avoid NMSE and ACPR losses of about 1-1.5
dB and 2-2.5 dB (C16-C17 vs. C19-C20 and C22-23 vs. C25-
C26), respectively, pretrained first iteration coefficients that
have been calculated without training data length reduction
can be loaded, and the length reduction be applied starting at
the second iteration. This is clearly what better works for such
strong crosstalk conditions but, if pretrained ANN coefficients
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(a) (b)

Fig. 12: Power spectral density plots for (a) CH1 and (b) CH2 before and after DPD linearization, considering the GMPNLC
polynomial architecture (C2), the MISO ANN architecture with OLS reduction by 16 (C7), and the MIMO ANN architecture
with UES reduction by 40 and PCA reduction by 6 (C23).

(a) (b) (c) (d)

Fig. 13: AM-AM plots for (a) CH1 and (b) CH2 and AM-PM plots for (c) CH1 and (d) CH2 before and after DPD linearization,
considering the MISO ANN architecture with OLS reduction by 16 (C7).

TABLE II: Training Data Length Reduction Combined with Dimensionality Reduction Benchmark for MIMO DPD.
CASE.

METHOD
RED.
FACT.

DPD
COEFF.

NMSE
CH2 [dB]

NMSE
CH1 [dB]

ACPR
CH2 [dBc]

ACPR
CH1 [dBc]

LENGTH
REDUX

TIME [s]

DPD
TRAIN.

TIME [s]

TOT.
DPD UPD.
TIME [s]

C12. MeS-OLS 10 8 180 -32.6 -33.6 -39.7 -40.5 238.6 6.7 245.3
C13. SBS-OLS 20 8 180 -35.2 -35.7 -43.1 -43.2 50 3.3 53.3MISO

POLY C14. UES-OLS 10 8 180 -36.8 -36.9 -44.4 -44.5 42.7 7.1 49.8
C15. CBS-PCA 80 4 3604 -36.2 -36.8 -43.5 -43.6 68.3 146.4 214.7
C16. UES-PCA 80 4 3604 -36.2 -37.2 -45 -44.8 12.9 92 104.9
C17. UES-PCA 40 4 3604 -36.8 -37.7 -45.4 -45.7 13 170.6 183.6

MISO
ANN

1st iter
pretrained C18. UES-OLS 80 16 1604 -33.5 -35.3 -43.8 -44.5 12.9 67.5 80.4

C19. UES-PCA 80 4 3604 -35.5 -35.7 -43.1 -42.1 15.1 211.9 227MISO
ANN C20. UES-PCA 40 4 3604 -36.2 -37.1 -44.6 -44.6 13.3 242.3 255.6

C21. CBS-PCA 60 6 1764 -36.4 -37.6 -45.4 -45.8 45 265 310
C22. UES-PCA 60 6 1764 -36.2 -37.3 -44.9 -44.7 15.5 93.5 109
C23. UES-PCA 40 6 1764 -36.4 -37.6 -45.6 -45.9 15.2 200.3 215.5

MIMO
ANN

1st iter
pretrained C24. UES-OLS 40 16 964 -36.1 -36.6 -43.1 -43.8 15.3 87.8 103.1

C25. UES-PCA 60 6 1764 -35.2 -36 -43 -43.1 17.7 258 275.7MIMO
ANN C26. UES-PCA 40 6 1764 -35.9 -36.8 -45 -44.4 17.6 534.2 551.8

are not available, UES can be also applied from the first DPD
iteration by decreasing the UES training data length reduction
factor before calculating a new set of coefficients (C16 vs. C20
and C22 vs. C26). When compared to the optimal pretrained
case, the performance will be similar and the training time
will be kept in the same order of magnitude (i.e., 2-4 times
higher). With ANNs, and when precombined with PCA, CBS

works better than SBS. While in the MISO ANN UES shows
1-1.5 dB better ACPR performance and is about 1.5 times
faster than CBS (C15 vs. C16), in the MIMO ANN scheme
CBS may perform similarly or even better than UES, but the
DPD updating time of the former can be 2-3 times larger (C21
vs. C22). Finally, while combining UES and OLS with a high
dimensionality reduction factor can be about 2 times faster



13

Fig. 14: Bubble plot with time versus worst case channel ACPR and number of coefficients (i.e., proportional to bubble size)
considering the three presented MIMO DPD architectures.

than using UES-PCA with a lower dimensionality reduction
factor (i.e., comparing 1st iteration pretrained schemes), such
advantage is not enough to compensate for the performance
loss (C17 vs. C18 and C23 vs. C24).

At this point, it is important to remark that with the
UES-PCA method being applied to the ANN-based MIMO
DPD schemes, we can approach the polynomial MIMO DPD
training times and we also have some degrees of freedom to
overcome the linearization performance of the polynomial.
One example may be found in Table II by comparing the
MISO POLY case when applying OLS reduction by 4 with
either the MISO ANN or the MIMO ANN cases applying
UES-PCA (C4 vs. C17 and C23). The linearized spectra plots
obtained when using the MIMO ANN scheme after applying
UES-PCA in C23 are also added to Fig. 12 to show similar
spectral contention when compared to the MISO POLY case
without basis reduction in C2 (i.e., the comparison is done here
for a similar number of coefficients, but featuring the MIMO-
ANN scheme lower training time). The total DPD update time
of the MISO/MIMO ANN schemes is reduced about 2 orders
of magnitude when comparing the use of PCA or OLS with
either UES-PCA and UES-OLS (C6-C11 vs. C15-C26). The
gain with respect to the nominal ANNs without dimensionality
reduction would be above three orders of magnitude. Applying
dimensionality reduction to the herein ANN topologies (for
2x2 MIMO DPD) with factors between 6 and 16 deliver
reductions in the number of ANN coefficients between the
55% and the 75%, respectively. Note that the higher the
number of antennas, the more impact that the dimensionality
reduction will have over the total number of ANN coefficients
(the weights at the first hidden layer will increase far more
significantly than the weights and biases at others).

The most representative results combining different MIMO
DPD architectures with the proposed techniques are also sum-
marized in Fig. 14. In general terms, it is evident that according
to our 2x2 test scenario the ANN-based DPD schemes may
feature higher complexity than the polynomial ones, but also
similar adaptivity speed and better performance. Such benefits
could even be more evident when considering larger arrays

where the number of MIMO DPD coefficients may increase
with the number of antennas much faster in the polynomial
approach than in ANNs (i.e., MIMO ANN scheme).

VII. CONCLUSION

This work has provided an insight on training data selection
and dimensionality reduction techniques for faster adaptivity
and more efficient polynomial and ANN MIMO predistorters.
The MIMO ANN DPD schemes can outperform the poly-
nomial ones in complex scenarios but show unaffordable
training times. OLS and PCA allow reducing the number of
DPD coefficients and training time but need to be combined
with data length reduction techniques for fast adaptivity. The
batch selection techniques and the UES method contribute to
significantly reduce the ANN DPD training time and overcome
the limitations of histogram-based data selection mechanisms
under strong cross couplings. This work contributes with
two novel strategies: the first combines UES with OLS for
polynomial MIMO predistorters, and the second combines
UES with PCA for ANN schemes. With these techniques we
have reduced the MIMO DPD training times by two orders of
magnitude, the number of coefficients by a factor between 2
and 10 (depending on the MIMO DPD architecture), and meet
the required performance for a worst-case scenario.
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