{ "DETAILS": { "NAME": "Doodleverse/Segmentation Zoo Res-UNet models for 4-class (water, whitewater, sediment and other) segmentation of Sentinel-2 and Landsat-7/8 7-band (RGB+NIR+SWIR+NDWI+MNDWI) images of coasts.", "DATE": "2022-11-24", "URL":"10.5281/zenodo.7358284", "CITATION":"Buscombe, D. (2022) Doodleverse/Segmentation Zoo Res-UNet models for 4-class (water, whitewater, sediment and other) segmentation of Sentinel-2 and Landsat-7/8 7-band (RGB+NIR+SWIR+NDWI+MNDWI) images of coasts. Zenodo data release 10.5281/zenodo.7358284", "QUERIES": "https://github.com/Doodleverse/segmentation_zoo/issues", "CREDIT":"Daniel Buscombe, @MARDAScience", "INTENDED_PURPOSE":"Landsat-7/8 and Sentinel-2 satellite image segmentation", "KEYWORDS": { "1": "Landsat", "2": "Landsat-8", "3": "Landsat-7", "4": "Sentinel-2", "5": "water", "6": "whitewater", "7": "sediment", "8": "other" } }, "DATASET": { "NAME": "Images and 4-class labels for semantic segmentation of Sentinel-2 and Landsat RGB, NIR, and SWIR satellite images of coasts (water, whitewater, sediment, other)", "SOURCE": "https://doi.org/10.5281/zenodo.7344571", "CITATION": "Buscombe, Daniel. (2022). Images and 4-class labels for semantic segmentation of Sentinel-2 and Landsat RGB, NIR, and SWIR satellite images of coasts (water, whitewater, sediment, other) (v1.0) [Data set]. Zenodo. https://doi.org/10.5281/zenodo.7344571", "NUMBER_LABELED_IMAGES": 579, "CLASSES": { "0": "water", "1": "whitewater", "2": "sediment", "3": "other" }, "N_DATA_BANDS": 7, "BAND_NAMES": { "0": "red", "1": "green", "2": "blue", "3": "NIR", "4:": "SWIR", "5:": "NDWI", "6:": "MNDWI" } }, "MODEL": { "NAME": "resunet", "KERNEL":9, "STRIDE":2, "FILTERS":6 }, "TRAINING": { "BATCH_SIZE": 32, "DROPOUT":0.05, "DROPOUT_CHANGE_PER_LAYER":0.0, "DROPOUT_TYPE":"standard", "USE_DROPOUT_ON_UPSAMPLING":false, "LOSS":"dice", "PATIENCE": 20, "MAX_EPOCHS": 100, "VALIDATION_SPLIT": 0.7, "RAMPUP_EPOCHS": 40, "SUSTAIN_EPOCHS": 5.0, "EXP_DECAY": 0.9, "START_LR": 1e-6, "MIN_LR": 1e-6, "MAX_LR": 1e-2, "MODE": "all" }, "AUGMENTATION": { "AUGMENTATION_USED": true, "AUG_ROT": 5, "AUG_ZOOM": 0.05, "AUG_WIDTHSHIFT": 0.05, "AUG_HEIGHTSHIFT": 0.05, "AUG_HFLIP": true, "AUG_VFLIP": true, "AUG_LOOPS": 10, "AUG_COPIES": 5 } }