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Software). KADMOS is set of MATLAB routines that can be used to calculate the apparent 40K-

40Ar (and the associated 40Ar-39Ar) ages as a function of a sample’s thermal history. KADMOS 

is written in MATLAB language and utilizes the Finite-Element Method (FEM) with grid 

refinement. The advantage of KADMOS is that it has been optimized for accuracy, 

performance and for maximum flexibility with respect to the modelled scenarios. KADMOS 

can be used to evaluate the apparent ages of various crystals and various geometries (planar, 

cylindrical & spherical) simultaneously. 

Despite the fact that the method that is followed here is general, we chose to focus on a 

particular case (40K-40Ar dating) and show specific examples. The software and the present 

documentation are provided free of charge1. At this point, we have also tested for 

compatibility with OCTAVE. 
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Introduction to the K-Ar and Ar-Ar methods 

The purpose of the present document is not to provide a detailed review of the Ar-Ar 

method but rather to present the major aspects of the KADMOS software. For a more 

comprehensive introduction to the topic, the reader is guided to the available literature (e.g. 

Braun and others, 2006; McDougall and Harrison, 1999; Reiners and others, 2017). 

Governing Equations 

The K-Ar and Ar-Ar methods are based on the radiogenic production of 40Ar in K-bearing 

minerals. In a closed system, the decay of 40K to 40Ar leads to the increase of the concentration 

of 40Ar with time. The increase of radiogenic argon is thus given by: 

𝑑𝐴𝑟

𝑑𝑡
= 𝜆𝐴𝑟𝐾 (1) 

where the left-superscripts of 40Ar and 40K have been omitted and 𝜆𝐴𝑟 is the decay constant 

of 40K to 40Ar (0.581·10-10yrs). 𝐾 represents the currently available amount of 40K. The latter is 

given by: 

𝐾 = 𝐾0𝑒
−𝜆𝑇𝑡 (2) 

where 𝐾0 is the initial amount of 40K, 𝜆𝑇 is the total decay constant of 40K (5.543·10-10yrs) and 

𝑡 is time2 (McDougall and Harrison, 1999, p. 17). The total decay constant considers also the 

decay of 40K to 40Ca. Replacing eq. (2) into eq. (1) yields an expression of argon production: 

𝑑𝐴𝑟

𝑑𝑡
= 𝜆𝐴𝑟𝐾0𝑒

−𝜆𝑇𝑡 (3) 

Equation (3) is a separable differential equation and can be solved with respect to 𝐴𝑟: 

𝐴𝑟 = 𝐴𝑟0 +
𝜆𝐴𝑟

𝜆𝑇
𝐾0(1 − 𝑒−𝜆𝑇𝑡) (4) 

where 𝐴𝑟0 is the initial amount of 40Ar that is commonly assumed to be zero. The factor 
𝜆𝐴𝑟

𝜆𝑇
 is 

the normalized constant for the decay of 40K to 40Ar can be expressed as: 

𝑓𝐴𝑟 ≡
𝜆𝐴𝑟

𝜆𝑇
≡

1

𝑘𝑒
=

1

9.54
 (5) 

Equation (4) can also be recast as a function of the current amount of 40K, yielding: 

 
2 if the values of the decay constants are used as given (in years), then time should be given in years as well 
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𝐴𝑟 = 𝐴𝑟0 +
𝜆𝐴𝑟

𝜆𝑇
𝐾(𝑒𝜆𝑇𝑡 − 1) (6) 

With the use of eq. (5), eqs. (4-6) can be solved with respect to time. The resulting 

expressions are (assuming 𝐴𝑟0 equal to zero): 

𝑡 =
1

𝜆𝑇
𝑙𝑛 (𝑘𝑒

𝐴𝑟

𝐾
+ 1) (7a) 

𝑡 = −
1

𝜆𝑇
𝑙𝑛 (1 − 𝑘𝑒

𝐴𝑟

𝐾0
) 

(7b) 

Equations (7) are the main formulas that are used to calculate the apparent age of a mineral 

once its 40Ar to 40K ratio is known. When minerals produce radiogenic 40Ar, concentration 

gradients of 40Ar may develop. In that case, 40Ar will diffuse following the concentration 

gradients and its evolution over a given domain will be described by the following diffusion-

production equation (in 1-dimension): 

𝜕𝐴𝑟

𝜕𝑡
= 𝐷

𝜕2𝐴𝑟

𝜕𝑥2
+ 𝜆𝐴𝑟𝐾0𝑒

−𝜆𝑇𝑡 (8) 

where we have assumed that the diffusion coefficient is independent of concentration and 

the diffusion takes place at constant temperature and pressure. Division of eq. (8) by 𝐾0 yields: 

𝜕

𝜕𝑡
(
𝐴𝑟

𝐾0
) = 𝐷

𝜕2

𝜕𝑥2
(
𝐴𝑟

𝐾0
) + 𝜆𝐴𝑟𝑒

−𝜆𝑇𝑡 (9) 

Equation (9) is the main equation that is solved in KADMOS. However, different variants and 

approximations of this form exist in the literature. For example, one could divide the previous 

equation by 𝜆𝐴𝑟, and obtain: 

𝜕

𝜕𝑡
(

𝐴𝑟

𝜆𝐴𝑟𝐾0
) = 𝐷

𝜕2

𝜕𝑥2
(

𝐴𝑟

𝜆𝐴𝑟𝐾0
) + 𝑒−𝜆𝑇𝑡 (10) 

which, for sufficiently small 𝜆𝑇, makes the last term of eq. (10) equal to unity. In addition, for 

relatively small timescales and for negligible accumulation of 40Ar, equation (7b) can be 

approximated by the apparent age (𝜏): 

𝑡 ≈ 𝜏 =
𝑘𝑒

𝜆𝑇

𝐴𝑟

𝐾0
=

𝐴𝑟

𝜆𝐴𝑟𝐾0
 

(11) 

In the latter case, eq. (10) can be approximated by the following form (Wheeler, 1996, p. 922): 

𝜕𝜏

𝜕𝑡
= 𝐷

𝜕2𝜏

𝜕𝑥2
+ 1 (12) 
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Numerical Solution of the Production-Diffusion Equations 

Main Routine of KADMOS 

In the current version of KADMOS, a main routine is provided (“KADMOS_Path.m”). 

KADMOS_Path can be used to calculate the radiogenic production of 40Ar from 40K in minerals 

as a function of their P-T history. In this routine, several P-T-t histories can be simulated 

simultaneously for variable crystal sizes. It is also possible to simulate the apparent 40K-40Ar 

ages that result from arbitrary P-T-t paths. A typical result of the KADMOS_Path is shown in 

Fig. 1.  

 

Fig. 1. Results from the KADMOS_Path program. Left diagram: Sample’s thermal 

history (dots indicate current position on path  while plotting). Three spherical 

muscovite crystals are cooled from 600°C to 25°C with a constant cooling rate of 

20°C/Myr. A thermal pulse of 500°C is added around 30Myr. Pressure remains 

constant at 2,000 MPa.  Right diagram: The apparent ages of the crystals are 

plotted as a function of their radius (normalized by the size of each crystal). For 

this calculation three crystal sizes have been considered (100,200 and 500 μm). 

The results shown in Fig. 1 demonstrate the effect of the thermal pulse on the apparent 

ages of the three crystal classes. It is expected that the smaller crystals (blue line in Fig. 1 – 

right diagram) will be largely affected by argon diffusion during the thermal pulse at ca 30 

Myr. In contrast, the apparent age at the core of the largest crystal is almost unaffected 

(yellow line in Fig. 1 - right diagram). 
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Main Equations 

KADMOS utilizes the Galerkin, Finite-Element-Method (FEM) in order to solve eq. (9) in 1-

dimension (1-d). In particular, the following form of the equation is solved: 

𝑥𝑛−1
𝜕𝐶

𝜕𝑡
=

𝜕

𝜕𝑥
(𝑥𝑛−1𝐷

𝜕𝐶

𝜕𝑥
) + 𝑥𝑛−1𝑆 (13) 

where 𝐶 represents the 𝐴𝑟/𝐾0 ratio, 𝑆 represents a source term (𝑆 = 𝜆𝐴𝑟𝑒
−𝜆𝑇𝑡), and 𝑛 is an 

integer 𝑛 ∈ [1,2,3]. The integer can be chosen so that different geometries can be modelled. 

If the geometry is spherical 𝑛 = 3, if the geometry is cylindrical 𝑛 = 2, and if it is planar 𝑛 =

1. For the planar case the “radius” corresponds to the half-width of the planar geometry (e.g. 

Lister and Baldwin, 1996, p. 86). 

FEM discretization and solution 

For the solution of equation (13) in 1-dimension we utilize linear shape functions (𝑁). The 

linear shape functions are given by: 

𝑁𝑖(𝑥) = 1 −
𝑥 − 𝑥𝑖

𝑥𝑖+1 − 𝑥𝑖
 (14a) 

𝑁𝑖+1(𝑥) =
𝑥 − 𝑥𝑖

𝑥𝑖+1 − 𝑥𝑖
 (14b) 

In its discretized general form, the following local system of equations (i.e. for each element) 

yields: 

[
𝑀

Δ𝑡
+ 𝜃𝐾] {

𝐶𝑖
𝑗

𝐶𝑖+1
𝑗

} = [
𝑀

Δ𝑡
− (1 − 𝜃)𝐾] {

𝐶𝑖
𝑗−1

𝐶𝑖+1
𝑗−1

} + 𝜃{𝐹𝑗} + (1 − 𝜃){𝐹𝑗−1} (15) 

where Δ𝑡 is the time increment, 𝐶𝑖
𝑗
 is the main unknown (degree of freedom) at the point 𝑖 

and at the time instance 𝑗, 𝑀 is the “mass” matrix, 𝐾 is the “stiffness” matrix and 𝐹 is the 

“force” vector. The superscript 𝑗 indicates that 𝐾 and 𝐹 are evaluated at a given time instance. 

𝑀,𝐾 and 𝐹 are given below: 

𝑀 = ∫ 𝑥𝑛−1 [
𝑁𝑖𝑁𝑖 𝑁𝑖𝑁𝑖+1

𝑁𝑖+1𝑁𝑖 𝑁𝑖+1𝑁𝑖+1
]

𝑥𝑖+1 

𝑥𝑖

𝑑𝑥 (16a) 

𝐾𝑗 = ∫ 𝐷𝑗 ∙ 𝑥𝑛−1 [

𝜕𝑁𝑖

𝜕𝑥

𝜕𝑁𝑖

𝜕𝑥

𝜕𝑁𝑖

𝜕𝑥

𝜕𝑁𝑖+1

𝜕𝑥
𝜕𝑁𝑖+1

𝜕𝑥

𝜕𝑁𝑖

𝜕𝑥

𝜕𝑁𝑖+1

𝜕𝑥

𝜕𝑁𝑖+1

𝜕𝑥

]
𝑥𝑖+1 

𝑥𝑖

𝑑𝑥 

(16b) 
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𝐹𝑗 = ∫ 𝑥𝑛−1 {
𝑁𝑖

𝑁𝑖+1
} 𝑆𝑗

𝑥𝑖+1 

𝑥𝑖

𝑑𝑥 
(16c) 

The advantage of the previous form is that the integrals in eqs. (16) can be evaluated 

analytically. In that case KADMOS uses the analytical expressions to evaluate eqs. 16. For the 

solution of the global system of equations all the matrices are assembled in the following form: 

𝑲𝑴{𝐶𝑖
𝑗
} = 𝑹 (17) 

where 𝑲𝑴 is the global left-hand side matrix and 𝑹 is the global right-hand-side vector. 𝑲𝑴 

and 𝑹 are assembled from the local 𝐾𝑀 and 𝑅 matrices following eq. (15), that is: 

𝐾𝑀 = [
𝑀

Δ𝑡
+ 𝜃𝐾] 

𝑅 = [
𝑀

Δ𝑡
− (1 − 𝜃)𝐾] {

𝐶𝑖
𝑗−1

𝐶𝑖+1
𝑗−1

} + 𝜃{𝐹𝑗} + (1 − 𝜃){𝐹𝑗−1} 

(18) 

At this point we note that another advantage of the previous formulation is that the matrix 

𝑲𝑴 is symmetric. For boundary conditions we consider a no-flux boundary condition in the 

left side of the modelled domain (𝑥 = 0) and 𝐶 = 0 at the right side of the domain (𝑥 = 𝐿) 

which represents the edge of the crystal. During the application of the boundary conditions, 

the symmetry of the 𝑲𝑴 matrix is enforced (c.f. Dabrowski and others, 2008; Räss and others, 

2017).  

The time integration of eq. (15) can be performed by the fully implicit (𝜃 = 1) or the semi-

implicit (𝜃 = 0.5) method as it is typically done in diffusion applications (e.g. Simpson, 2017). 

In the current version of KADMOS programs, we have found that a combination of the fully 

implicit method (𝜃 = 1) together with the separation of production-diffusion terms in eq. (15) 

yields more accurate and stable results. This way of solution resembles the separation of 

terms as it was done in the finite-difference approach of Lister and Baldwin (1996). More 

specifically, the concentration is first updated according to the following rule (for 𝜃 = 1): 

𝐶𝑖
𝑗
= 𝐶𝑖

𝑗
+ Δ𝑡[𝜃𝑆𝑗+1 + (1 − 𝜃)𝑆𝑗] (19) 

and the source term (𝑆) is given by: 

𝑆𝑗 =
1

𝑘𝑒
[𝜆𝑇 · 𝑒𝑥𝑝(−𝜆𝑇𝑡𝑗)] 

(20) 

After updating the concentrations, the boundary condition (at 𝑥 = 𝐿) is imposed and the 

solution of the diffusion part is obtained by solving eqs. (15) with 𝐹 = 0 and 𝜃 = 1. When 
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pressure and temperature (P-T) change with time, a small timestep is chosen, and at each time 

instance, P and T are updated using linear interpolation on a pre-computed P-T-t path. At the 

given P-T conditions, the diffusion coefficient of Ar is evaluated and the production/diffusion 

equations are solved. The last steps are repeated until the end of the simulation. 

The variable grid 

The particular form of the diffusion/production equation (eq. 10) results to solutions that 

have very large spatial derivatives at the edge of the crystal (Fig. 2). Especially in the case 

where the diffusion is limited, and the solution is dominated by the production term, the sharp 

compositional gradients that develop at the edge of the crystals may render the results 

inaccurate near the crystal edge.  

 

Fig. 2. Results from the KADMOS_Path program. Left diagram: Thermal history of 

a 500μm sized spherical muscovite crystal. The crystal is cooled from 600°C to 

25°C with a constant cooling rate of 100°C/Myr. Right diagram: The apparent age 

of the crystal is plotted as a function of its radius (normalized by the size of the 

crystal). 

Having a FEM formulation allows for the adaptation of a variable grid. The variable grid is 

used to calculate the solution in a very accurate way near the edge of the crystal. To construct 

the variable grid, we proceed as follows. First, we assume that the grid spacing (Δ𝑥) is changing 

by a constant factor (𝛼) between neighboring increments. We thus have: 
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Δ𝑥𝑖+1 = 𝛼Δ𝑥𝑖 (21) 

where the subscript 𝑖 indicates the number of the element. In addition, we know that the sum 

of the spatial increments (Δ𝑥𝑖) is equal to the length of the domain (𝐿). That is: 

∑Δ𝑥𝑖

𝑘

𝑖=1

= 𝐿 
(22) 

where 𝑘 is the number of the spatial increments. Equations (21) and (22) can be rearranged 

to produce a closed system of linear equations as follows: 

[
 
 
 
 

1 1
−𝛼 1

1 1
0 0

… 1
… 0

0 −𝛼
0 0

1 0
−𝛼 1

… 0
… 0… …

0 0
… …
0 0

… …
−𝛼 1]

 
 
 
 

[
 
 
 
 
 
Δ𝑥1

Δ𝑥2

Δ𝑥3

Δ𝑥4…
Δ𝑥𝑘]

 
 
 
 
 

=

[
 
 
 
 
𝐿
0
0
0…
0]
 
 
 
 

 

(23) 

The solution of the linear system results to the necessary values of the spatial increments 

(Δ𝑥𝑖). Finally, we have chosen to express the grid refinement by a numerical factor (RdX) 3  that 

represents the ratio between the first and last spatial increment. That is: 

Δ𝑥1 = 𝑅𝑑𝑋 ∙ Δ𝑥𝑘 (24) 

As an example, an RdX parameter equal to 1, results to the generation of a regular grid while 

an RdX parameter equal to 10 results to the generation of a variable grid where the last 

element (at the edge of the crystal) is 10 times smaller than the first element (at the core of 

the crystal). 

Generation of P-T-t paths and thermal histories 

In order to allow the investigation of various P-T-t paths, several “ideal” P-T-t paths are 

considered. In general, every P-T-t path has an initial P-T (P0,T0) and a final P-T (Pmin,Tmin). 

In addition, a total duration of the calculation is assumed (tlim). Note that the temperature 

and pressure are not allowed to go below the values set by Pmin and Tmin. For example, if a 

cooling history with a constant cooling rate is defined, temperature remains at Tmin and is 

not allowed to decrease further. This is done so that negative absolute temperatures are 

avoided. The different forms of P-T paths that are generated in the KADMOS_Path routine are: 

 
3 Keywords that refer to variables in the codes are written in red. 
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• lin-CR: This is the simplest path that assumes a simple cooling history with a 

constant cooling rate (SCR: in °C per Myr). Pressure is considered equal to P0 during 

the whole duration of the calculation. 

 

• asy-CR: This path assumes the asymptotic cooling of a sample following the 

formulation of Lasaga (Lasaga, 1983, p. 87). The pressure is considered constant in 

this case and it is equal to P0. An initial cooling rate is also needed in order to define 

the path. 

 

• lin-P-T: This path assumes linear (i.e. with constant rate) cooling and decompression 

from P0-T0 to Pmin-Tmin. 

 

• iso-T: This path assumes a constant temperature (equal to T0) and a constant 

pressure (equal to P0) for the whole duration of the simulation. 

 

• loaded: This option allows the loading of a custom path. 

 

As an example, the P-T-t path can be generated with the following function as follows: 

[Pres_A,TempK_A,time_A] = make_PTtpath(‘lin-CR’,T0, SCR,P0,Pmin,Tmin,tlim);  

The previous command generates a cooling path with a constant cooling rate (defined as 

positive). Once the temperature reaches the Tmin value, it will remain at Tmin until the 

simulation completes at tlim. Pressure will remain constant and equal to P0 in this case. 

Another example follows below: 

[Pres_A,TempK_A,time_A] = make_PTtpath(‘asy-CR’,T0, SCR,P0,Pmin,Tmin,tlim);  

The previous command generates an asymptotic cooling path that has an initial cooling rate 

equal to SCR. If the temperature reaches the value of Tmin, it will stay at that value; if the 

temperature does not reach the value of Tmin, it will keep dropping asymptotically until time 

reaches the value of tlim. Pressure will also remain constant and equal to P0 in this case. 

The resulting arrays (Pres_A, TempK_A, time_A) are the pressure (in MPa), the temperature 

(in K) and the time (in Myr) and are given as rows. 
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Main Input Keywords 

With the function make_PTtpath (included in the file “Inputs_Path.m”) it is possible to set 

up a great number of P-T-t histories and simulate the resulting apparent ages. However, a few 

more things need to be configured with the use of a few keywords in order to start the 

simulation. These keywords can be modified in the respective file “Inputs_Path.m”. These are: 

• name_file: The name of the file (e.g. [‘example01’] )4. 

• Lr: The classes of the different grain sizes (e.g. [100,200,500]). The values correspond to 

the length (in micrometers) of the characteristic radius of the sphere, cylinder, or the half-

thickness of the plane. 

• ndim_a: An index that is used to select the geometry (spherical=3, cylindrical=2 or 

planar=1; e.g. [3,3,3,3] represents four spherical crystals). 

• Min_Sys: As an example, this value is set to {'Muscovite1'} using the diffusion coefficients 

of argon in muscovite from Harrison and others (2009). For more details on the diffusion 

data see the following section “Diffusion Parameters” 

• Age0: This is an array that contains the initial age of the modelled crystals. If this value is 

not set to zero for each grain-size class, then the specific grain sizes will have an initial 

(homogeneous) age (e.g. setting Age0 = [1,5,10]; will lead to three different size classes 

that have 1, 5 and 10Myr as initial apparent ages at the beginning of their modelled 

thermal history).  

A screenshot with a random set of inputs is given in Fig. 3 below. For example, the saved 

file will be named run_001, two size classes will be modelled (50 & 100 μm; Lr=(50,100]), the 

crystals will be spherical (ndim_a = [3, 3]), and their initial age will be zero (Age0 = [0, 0]). The 

diffusion parameters are taken from Harrison and others (2009) by selecting {‘Muscovite1’} in 

the keyword Min_Sys (more details are given in the following section).  The simulation will 

run for 50 (modelled) million years (tlim = 50) starting at 600°C and 2,000MPa as starting 

conditions (T0 =600 ; P0 = 2000). A cooling thermal history (with constant cooling rate) is 

 
4 Examples of inputs are given in blue color 

Note that phi, Lr, ndim_a, Age0 and Min_Sys must have the same size since their 

corresponding values apply for each size class individually. 
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chosen with an initial cooling rate of 50°C per Myr (SCR = 50). The cooling path is generated 

via the use of the make_PTtpath function (see previous section for details). 

 

 

Fig. 3. A screenshot example of the keywords in the file Input_Path.m. 

 

Diffusion Parameters 

In the current version of KADMOS the diffusivity of Ar is taken from various studies, the 

currently available choices are given in the table that follows (Table 1). Note that in some 

applications, the data have been augmented by including values for activation volume that 

were not included in the original datasets (e.g. Lister and Baldwin, 1996; Skipton and others, 

2018). In addition, the reported grain size does not necessarily correspond to the actual grain 

size and smaller values may be used (e.g. in the presence of cracks). Thus, the reported 

geometry is does not always correspond to the inferred geometry of a single crystal. For 

example, Lister and Baldwin (1996) use a planar geometry (slab) in order to describe diffusion 

of muscovite while, in contrast, Harrison and others (2009) use spherical geometry to fit their 

diffusion data. Thus, the user is encouraged to check the literature before choosing the 

optimal choice of parameters. 

An additional feature of KADMOS is that custom diffusion data may be used, these data 

can be implemented with the choice “custom” in Min_Sys keyword. To use custom, data a 

simple data file must be created (i.e. with the use of a simple text editor). The file must be 
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named “Custom_Diff.dat”. In this file, the user can add the values of the frequency factor (in 

cm2/sec) in the fist line, the value of activation energy (in kj/mol) in the second line, the 

activation volume (in cm3) in the third line, and the value of the reference pressure (in MPa) 

in the last line. The value of the reference pressure is normally taken as 0.0001 (MPa) but 

larger values may also be used based on the experimental calibration. 

 

Table 1. Table of diffusivity data included in KADMOS.  

Name 

(case sensitive) 
Mineral 

Grainsize 

(microns) 

Geometry 

employed 
Reference 

Muscovite1 muscovite 24-87 spherical 

(Harrison and others, 2009), note 

that spherical geometry was used 

to fit the experiments 

Muscovite2 muscovite 5.9 planar (Robbins, 1972)5,6 

Hornblende1 hornblende 80 spherical 
(Harrison, 1982), parameters 

from experiments only5,6 

Hornblende2 hornblende 80 spherical 

same as above, but parameters 

are given as suggested in the 

original study of Harrison (1982)5,6 

Biotite1 Biotite   (Grove and Harrison, 1996)7 

Biotite2 Biotite 150 cylindrical (Harrison and others, 1985)5,6 

Biotite3 Phlogopite 150 cylindrical (McDougall and Harrison, 1999)5,6 

Biotite4 Biotite - - (Grove and Harrison, 1996)8 

Orthoclase Orthoclase - - (Foland, 1994)9 

custom - - - - 

 

  

 
5 Geometry and grain size as used in Lister and Baldwin, (1996) 
6 Activation volume after Lister and Baldwin, (1996) 
7 Biotite with Xann : 0.71. Activation volume is considered zero. Skipton and others, (2018) used 14cm3/mol 
8 Data for Cooma biotite (Xann = 0.54). Activation volume is considered zero. 
9 Activation volume is considered zero. 
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Other software keywords 

In this section we briefly describe the remaining keywords that can be found in the main 

file of “KADMOS_Path.m”. Note that the program is optimized for accuracy and performance 

and therefore the user is advised to proceed with caution. 

• flag_save: This parameter can be 0 or 1. When it is set to 1, the program will save the 

results in a “mat” file at the end of the simulation. 

• flag_plot: This parameter can be 0 or 1. When it is set to 1, the program will plot the 

results while computing them and at the end of the simulation. 

• flag_echo: This parameter can be 0 or 1. When it is set to 1, the program prints the 

progress of the calculation in the command window. 

• chol_sol: This parameter can be 0 or 1. When it is set to 1 the solver will use Cholesky 

factorization and back substitution to solve the global system of equations. If this value 

is not equal to 1, MATLAB will use the default backslash solve to solve the system of 

equations. Note that for the particular case where the diffusion coefficients remain 

constant (i.e. at constant P-T), the code can be modified so that the global left-hand-side 

matrix (𝑲𝑴) is not re-assembled at each timestep. This will improve the code’s 

performance dramatically. However, we will not enter in such details in this first version. 

• theta: This parameter can be between 0 and 1. However, values less than 0.5 can lead 

to unstable calculations. For optimal performance this parameter is set to 1. 

• nt: This number must be an integer and denotes the number of time increments 

employed by the calculation. Increasing this number may increase accuracy but making 

this number too large will increase the time needed for the calculation. 

• nels: This number must be an integer and represents the number of elements employed 

by the FEM method. Increasing this number may increase accuracy but will increase the 

time needed for the calculation. 

• RdX: This number is the grid refinement factor (see section “The variable grid”). 
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Code testing 

In order to ensure that the results produced by KADMOS_Path are meaningful we 

calculated some examples that demonstrate the verification of our code. In these examples 

we compare our numerical results with results from analytical solutions and we also proceed 

with a convergence test that shows that the algorithm converges to a unique solution with 

increasing numerical resolution. 

Analytical benchmark 

As a first example we consider the degassing of a muscovite crystal at constant 

temperature and pressure for a given period of time (Fig. 4). In this case, we can calculate the 

analytical solution of the concentration field, the total (integrated) outward flux as a function 

of time, and the fractional mass loss as a function of time. We consider a spherical crystal of 

50μm radius that is degassed at 700°C (and 1,000MPa) for 1,000 hours. The expressions that 

were used for the calculation of the analytical solutions (for spherical geometry) are given in 

eqs. (25): 

𝐶(𝑟, 𝑡) = −
2𝐿𝐶0

𝜋𝑟
∑

(−1)𝑛

𝑛
𝑒𝑥𝑝(−𝑛2𝑋)𝑠𝑖𝑛 (

𝑛𝜋𝑟

𝐿
)

𝑛=∞

𝑛=1

 (25a) 

𝑞(𝑡) = 8𝜋𝐿𝐶0𝐷 ∑ 𝑒𝑥𝑝(−𝑛2𝑋)

𝑛=∞

𝑛=1

 
(25b) 

𝑓(𝑡) = 1 −
6

𝜋2
∑

1

𝑛2
𝑒𝑥𝑝(−𝑛2𝑋)

𝑛=∞

𝑛=1

 
(25c) 

where 𝐶 is the concentration, 𝑞 is the total outward flux (integrated over the total surface of 

the sphere) and 𝑓 is the fractional mass loss (McDougall and Harrison, 1999, p. 141)10. 𝑋 is 

also a function of time and (for constant diffusivity) is given by: 

𝑋 =
𝜋2

𝐿2
∫ 𝐷(𝑡′)𝑑𝑡′

𝑡

0

=
𝜋2𝐷𝑡

𝐿2
 

(26) 

The infinite sums in eqs. (25) have been calculated for the first 500 terms (i.e. 𝑛 = 500). 

 

 
10 Note that in some expressions of McDougal and Harrison (1999), the diffusivity is omitted (e.g. for flux 

expressions). This does not influence the results if normalized fluxes are calculated (e.g. for the calculation of an 
age spectrum). However, this omission can cause dramatic errors when absolute values are needed. 
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Fig. 4. Numerical and analytical solutions for the constant temperature degassing 

problem. (a) Temperature as a function of time. (b) Concentration (normalized) 

as a function of distance (normalized). (c) integrated outward flux as a function 

of time. (d) Fractional mass loss as a function of time. 

In the previous example, the diffusion coefficient had to be calculated at the temperature 

and pressure of interest. For the numerical calculation, the concentration as a function of the 

non-dimensional distance is directly evaluated as a natural output of the KADMOS software 

(see FEM discretization and solution). To calculate the total outward flux numerically, we 

considered the equation of mass balance over a given volume as follows: 

𝑑

𝑑𝑡
∭𝐶𝑑𝑉 = −∯𝐽𝑑𝐴 

(27) 

where 𝐽 represents the outward flux at the edge of the crystal. The first term of eq. (27) 

represents a volume integral and the second term represents a surface integral. Thus, by 

considering a finite time increment Δ𝑡, the total outward flux (𝑞) can be evaluated via: 
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𝑞 = ∯ 𝐽𝑑𝐴 = −
𝑑

𝑑𝑡
∭𝐶𝑑𝑉 ≈

∭𝐶𝑗𝑑𝑉 − ∭𝐶𝑗−1𝑑𝑉

Δ𝑡
 

(28) 

where ∭𝐶𝑗𝑑𝑉 is the volume-integrated concentration at a given instance 𝑗. This method of 

flux calculation is less sensitive to numerical errors since there is no need for the direct 

calculation of spatial derivatives. 

Numerical resolution test 

In this section we show the results of a numerical convergence test, i.e. the converge of the 

solution with increasing numerical resolution. As an example, we consider the same model 

configuration that was used to produce Fig. 2. We monitor the age of the core of a crystal as 

a function of the number of elements (nels keyword). The results are plotted in Fig. 5 and 

show that for calculations with 1,000 number of elements, the apparent age in the core of a 

spherical crystals is essentially the same. Moreover, our results show that even a calculation 

with 50 elements yields accurate apparent age with the variation being in the order of 1,000 

yrs. 

 

Fig. 5. Results of the numerical resolution test. nels represents the number of 

elements in the FEM model. Solution parameters as for Fig. 2.  
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Using KADMOS in MATLAB 

The use of KADMOS software is straightforward. First the user needs to copy and paste in 

the same folder the two “.m” files from the KADMOS_MATLAB folder. These are: 

• KADMOS_Path.m (contains the computational keywords and options) 

• Inputs_Path.m (contains keywords related to the problem definition) 

Once MATLAB opens in the folder where these files are located, the user can run the program 

KADMOS_Path.m either by right-clicking on it, or by typing: 

KADMOS_Path 

in the command window. 

Using KADMOS in OCTAVE 

Although KADMOS was written originally in MATLAB we have made sure that there is also 

compatibility with OCTAVE. The files that are needed to run the OCTAVE-friendly version are 

located in the folder KADMOS_OCTAVE. The main difference from the MATLAB version is that 

all the functions used must be present as separate files (and not included within other .m files) 

in the same folder. Therefore, the user needs to copy all the contents of the KADMOS_OCTAVE 

folder in a directory. These files are: 

• KADMOS_Path_OCTAVE.m (contains the computational keywords and options) 

• Inputs_Path_OCTAVE.m (contains keywords related to the problem definition) 

• make_PTtpath.m (a function needed in Inputs_Path_OCTAVE) 

• linspace_adapt.m (a function needed in KADMOS_Path_OCTAVE.m) 

• fill_Matrix_FEM.m (a function needed in KADMOS_Path_OCTAVE.m) 

• diff_system.m (a function needed in KADMOS_Path_OCTAVE.m) 

• check_ndomains.m (a function needed in KADMOS_Path_OCTAVE.m) 

Once OCTAVE opens in the folder where these files are located, the user can run the 

program KADMOS_Path_OCTAVE.m either by right-clicking on it, or by typing: 

KADMOS_Path_OCTAVE 

in the command window. 
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