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1 OVERVIEW 

This report describes results from the Eumetsat study “Optimal Estimation Method retrievals with 

IASI, AMSU and MHS measurements”. The objectives of the study are to specify a configuration to 

make joint use of IASI, AMSU and MHS measurements in retrievals based on the optimal estimation 

method (OEM). The study characterises the added value of using MW and IR radiances in synergy for 

the retrievals of water vapour and temperature in cloud-free scens with the OEM in comparison to 

using IASI radiances only, and will also explore the potential of the method for cloudy scenes. 

Furthermore, the study shall characterise the impact of the loss of one or more AMSU channels. 

The work was performed by the Remote Sensing Group (RSG) at STFC’s Rutherford Appleton 

Laboratory (RAL Space), with consultancy support from Dr William Bell of the UK Met Office, who  

brings specific expertise in the exploitation of AMSU and MHS measurements.  

The work is based on extending the existing Eumetsat IASI OEM, a version of which has been 

implemented at RAL (using their own in house tools). The scheme has extended to include AMSU 

and MHS observations and evaluated by comparing the retrieved temperature and humidity profiles 

against ECMWF analyses, and against the operational configuration. Retrievals are also assessed via 

standard diagnostics, such as fit residuals (in measurement space) and the gain of information 

quantified via diagnostics such as information content, degrees of freedom for signal and the 

averaging kernels (AKs). 

The study is divided into six main tasks: 

 Task 1: Definition of the measurement covariance matrix for the MW channels 

 Task 2 OEM(MWIR/Metop-B) over ocean, clear-sky 

 Task 3: OEM(MWIR/Metop-B) over land, clear-sky, with fixed emissivities 

 Task 4:  OEM(MWIR/Metop-B) over land, clear-sky with variable emissivities 

 Task 5: OEM(MWIR/Metop-B) in partial or full cloudy IFOVs 

 Task 6: Retrievals with one or more missing AMSU channels 

This report is complemented by a Annex, which contains a comprehensive collection of plots 

characterising the performance of the retrievals.  
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1.1 THE ATOVS INSTRUMENT SUITE 

The ATOVS (Advanced TIROS (Television and Infrared Observational Satellite) Operational Vertical 
Sounder) is a sounding instrument package first flown on the NOAA-KLM (-15, -16, -17) satellite 
series. It is composed of the Advanced Microwave Sounding Units A and B (AMSU-A, AMSU-B) and is 
complemented by the High Resolution InfraRed Sounder (HIRS/3).  

For Metop and the NOAA-18 and -19 satellite series, the AMSU-B sounder has been replaced by the 
Microwave Humidity Sounder (MHS), and the infrared sounder has been upgraded to HIRS/4. 

Although not considered formally part of the ATOVS package, the Advanced Very High Resolution 
Radiometer (AVHRR/3) is an imager also flying on Metop and on NOAA-18 and -19, which supports 
the ATOVS Level 1b processing.  

A detailed account of the ATOVS instruments technical characteristics is given in the NOAA KLM user 
guide1 , but we will give in the next sections the basic information necessary for product 
understanding and usage. 

1.2 AMSU-A 

1.2.1 TECHNICAL DESCRIPTION AND SPECTRAL CHARACTERISTICS 

The AMSU-A is a fifteen-channel microwave radiometer that is used for measuring global 
atmospheric temperature profiles and providing information on atmospheric water in all of its 
forms. 

AMSU-A measures in 15 spectral bands, summarised in the table below, where the temperature 
sounding mainly exploits the oxygen band at 50 GHz. 

Hardware for the two lowest frequencies is located in one module (AMSU-A2) and that for the 
remaining thirteen frequencies in the second module (AMSU-A1). This arrangement puts the two 
lower atmospheric moisture viewing channels into one module and the oxygen absorption channels 
into a second common module, in order to ensure commonality of viewing angle independent of any 
module and/or spacecraft misalignment due to structural or thermal distortions. The AMSU-A2 
module has a single antenna assembly, providing data for channels 1 and 2. AMSU-A1 has two 
separate antenna assemblies: AMSU-A11 provides data for channels 6, 7 and 9-15, and AMSU-A12 
provides data for channels 3, 4, 5 and 8. 

The following table summarises the spectral characteristics of AMSU-A. 

  

                                                           
1
 NOAA KLM User’s Guide. URL: http:///www2.ncdc.noaa.gov/docs/klm 
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Channel 
Channel 

frequency  
(GHz) 

No. of 
pass 

bands 

Nominal 
bandwidth 

(MHz) 

Temperature 
sensitivity  

(K) 

Calibration 
accuracy (K) 

Polarisation angles  

AMSU-A2 

1 23.8 1 270 0.30 <2.0 90-θ 

2 31.4 1 180 0.30 <2.0 90-θ 

AMSU-A1 

3 50.3 1 180 0.40 <1.5 90-θ 

4 52.8 1 400 0.25 <1.5 90-θ 

5 53.59±0.115  2 170 0.25 <1.5 θ 

6 54.40 1 400 0.25 <1.5 θ 

7 54.94 1 400 0.25 <1.5 90-θ 

8 55.50 1 330 0.25 <1.5 θ 

9 FLO= 
57.290344 

1 330 0.25 <1.5 θ 

10 FLO ± 0 .217 2 78 0.40 <1.5 θ 

11 FLO ± 0 .3222  
± 0 .048 

4 36 0.40 <1.5 θ 

12 FLO ± 0 .3222  
± 0 .022 

4 16 0.60 <1.5 θ 

13 FLO ± 0 .3222  
± 0 .010 

4 8 0.80 <1.5 θ 

14 FLO ± 0 .3222  
± 0 .0045 

4 3 1.20 <1.5 θ 

15 89.0 1 <6000 0.50 <2.0 90-θ 

The polarisation angle is defined as the angle from horizontal polarisation (electric field vector parallel 
to the satellite track) where θ is the scan angle from nadir. θ indicates horizontal polarisation and 90-θ 
indicates vertical polarisation. 

Table 4.1: Spectral characteristics of AMSU-A 

Each antenna assembly contains a warm calibration target with a different number of Platinum 
Resistance Thermometers (PRTs), five for the AMSU-A1 modules and seven for the AMSU-2 module. 

1.2.2  SCANNING GEOMETRY  

AMSU-A is an across-track scanning system with a scan range of ±48.33° with respect to the nadir 
direction. The instantaneous field of view (IFOV) of each channel is approximately 57.6 milliradians 
(3.3°) leading to a circular instantaneous field of view size close to 47.63 km at nadir and a swath 
width of ±1026.31 km (sampling time of 200.0 ms) for a nominal altitude of 833 km. The sampling 
angular interval is close to 58.18 milliradians (3.3333°). The distance between two consecutive scans 
is approximately equal to 52.69 km. 

There are 30 Earth views, two views of the internal warm target, and two views of cold space per 
scan line for each channel. Each scan takes 8.0 seconds to complete. 

http://oiswww.eumetsat.org/WEBOPS/eps-pg/ATOVS-L1/ATOVSL1-PG-4ProdOverview.htm#polarisationmeaning
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The following table summarises the scanning characteristics.  

Characteristics Value Unit 

Scan direction West to East (northbound) - 

Scan type Step -  

Scan rate 8 s 

Sampling interval (duration) 200 ms 

Sampling interval 3.3333 deg 

Pixels/scan 30 - 

Swath ±48.33 deg 

Swath width ±1026.31 km 

IFOV  3.3 deg 

IFOV type Circular - 

IFOV size (nadir) 47.63 km 

IFOV size (edge) - across track 146.89 km 

IFOV size (edge) - along track 78.79 Km 

Scan separation (adjacent scan 
lines) 

52.69 Km 

Table 4.2: Scanning characteristics of AMSU-A 

1.2.3 INSTRUMENT CALIBRATION 

During each in-orbit scan line, the AMSU-A views three different types of targets: 

 30 Earth views (pixels) 
 2 views of the internal warm target (~300 K) 
 2 views of cold space (~2.73 K) 

The accuracy of the warm calibration load brightness temperature is better than ±0.2 K. 

The cold space views, together with the internal warm target views and PRT measurements, are 
used during the ground processing to calibrate the AMSU-A radiances. 

1.3 MHS 

1.3.1 TECHNICAL DESCRIPTION AND SPECTRAL CHARACTERISTICS 

MHS is a five-channel microwave radiometer, which complements the Advanced Microwave 

Sounding Unit-A (AMSU-A) channels. In some MHS description documents, MHS channels may be 

numbered as a continuation of the AMSU-A channels: 16, 17, 18, 19 and 20. 
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It is planned to derive from these frequencies humidity profiles and cloud liquid water content. 

Additionally, the instrument's sensitivity to large water droplets in precipitating clouds can provide a 

qualitative estimate of precipitation rates.  

It is technically similar to the AMSU-B instrument, except for channel 20, where the AMSU-B side-
band at 176.31 GHz is missing.  

The following table summarises the spectral characteristics of MHS. 

Channel 
Central 

frequency 
(GHz) 

Bandwidth 
(MHz) 

Temperature 
sensitivity 

(K) 

Calibration 
accuracy 

(K) 
Polarisation 

H1 89.0 ±1400 1.0 1.0 V 

H2 157.0 ±1400 1.0 1.0 V 

H3 183.311±1.00 ±250 1.0 1.0 H 

H4 183.311±1.00 ±500 1.0 1.0 H 

H5 190.311 ±1100 1.0 1.0 V 

Table 4.5: Spectral characteristics of MHS 

1.3.2 SCANNING GEOMETRY  

MHS is an across-track scanning system with a scan range of ±49.44° with respect to the nadir 
direction. The IFOV of each channel is approximately 19.2 milliradians (1.1°) leading to a circular 
instantaneous field of view size close to 15.88 km at nadir for a nominal altitude of 833 km. Each 
scan takes 2.667 seconds to complete.  

The scan of the MHS instrument is synchronised with the AMSU-A scan, i.e. there are three scans of 
MHS for each scan of AMSU-A.  

There are 90 Earth samples per scan and per channel for a swath width of ±1077.68 km (sampling 
time of 19.0 ms). The sampling angular interval is close to 19.39 milliradians (1.1111°), which is 
slightly larger than that of AMSU-B (1.1000°). The distance between two consecutive scans is 
approximately equal to 17.56 km. 

The following table summarises the scanning characteristics.  

  



 

RAL Space 
STFC Rutherford Appleton Laboratory 
Harwell Oxford 
Chilton, OX11 0QX, United Kingdom 

Document:                     Final Report 
Customer Ref:                ITT 13/207194 
RAL Space Ref:               SSTD1569 

 2015-01-29 Page 12 of 120 

 

 

Characteristics Value Unit 

Scan direction West to East (northbound) - 

Scan type continuous -  

Scan rate 2.667 s 

Sampling interval (duration) 18.52 ms 

Sampling interval 1.1111 Deg 

Pixels/scan 90 - 

Swath ±49.44 Deg 

Swath width ±1077.68 km 

IFOV  1.1 deg 

IFOV type circular - 

IFOV size (nadir) 15.88 km 

IFOV size (edge) - across track 52.83 km 

IFOV size (edge) - along track 27.10 km 

Scan separation 17.56 km 

Table 4.6: Scanning characteristics of MHS 

1.3.3 INSTRUMENT CALIBRATION 

The MHS instrument calibration is based upon the measurement of cold space and of an on-board 
black body target. This calibration sequence is performed once every 2.667 seconds for each scan 
line. During one scan, MHS observes  

 90 Earth views (pixels) 
 4 views of the internal warm target (~300 K) 
 4 views of cold space (2.73 K) 

The warm target contains five platinum resistance thermometers (PRTs), as opposed to the seven 
PRTs for the older NOAA AMSU-B instrument. 

The cold space views, together with the internal warm target views and PRT measurements, are 
used during the ground processing to calibrate the MHS radiances. 
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2 ALGORITHM TECHNICAL DESCRIPTION AND METHODOLOGY 

2.1 OPERATIONAL IASI PROCESSOR AT EUMETSAT 

As an implementation of an OEM retrieval, the operational IASI processor seeks to find the state 

vector, x,  which minimise the cost function  

𝐽 =  (𝒙 − 𝒙𝐚)𝑻𝑺𝒂
−𝟏(𝒙 − 𝒙𝐚) + (𝑭(𝒙) − 𝒚)𝑻𝑺𝒚

−𝟏 (𝑭(𝒙) − 𝒚)  

Where 

 x is a vector containing the parameters to be retrieved. xa describes the a priori estimate of 

the state 

 Sa is the a priori covariance matrix (representing the assumed errors on the a priori 

estimate).  

 F(x) is a forward model which predicts the observed radiances given the estimated state. 

 y is the vector of measurements. 

 Sy is the measurement covariance (representing the assumed errors on the measurements). 

The operational OEM scheme for IASI has the following characteristics: 

 The state vector contains profiles of atmospheric water vapour, temperature and ozone, 

together with the surface skin temperature. The profiles are represented in terms of 

principle components (see below). 

 The forward model is RTTOV (version 10.2).  

 IASI measurements are reconstructed from L1B observations using a principle component 

based method which also filters some instrument artefacts.  

The scheme has been specified to RAL, via a set of files (CFIs) which define each term in OE cost 

function, together with the first guess state to be used for the retrieval (which is based on a linear 

regression to the observations [Ref:6] . This information is sufficient to allow the performance of the 

operational retrieval to be reproduced at RAL, using its own code.  

The files were described in a technical note which is summarised below. Generally the configuration 

files are in hdf5 format. Files containing global measurements from IASI, AMSU and MHS, together 

with necessary auxiliary data, have been provided for 3 days (17 April, 17 July, 17 October 2013).  

2.2 BACKGROUND TERM OF THE COST FUNCTION,  (𝒙 − 𝒙𝐚)𝑻𝑺𝒙
−𝟏(𝒙 − 𝒙𝐚)    

The state-vector 𝑥 ∈ 𝑅𝑛 represents the quantities to be retrieved: temperature profile (T), water 

vapour profile (W), ozone profile (O) and surface skin temperature (Ts). The profiles are represented 

as principal component (PC) scores of the deviation with respect to the a-priori. The number of 

principal component scores used for each of the three types of profiles are  𝑛𝑇 = 28, 𝑛𝑊 = 18,

𝑛𝑂 = 10. The total number of state-vector elements is 𝑛 = 𝑛𝑇 + 𝑛𝑊 + 𝑛𝑂 + 1. Sx is diagonal 

matrix. The elements on the diagonal can be extracted from the file COF_STV as summarised 

below:  
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Stave-vector 
component 

Dimension Unit (of corresponding PCs)  Diagonal of Sx 

𝑥𝑇 𝑛𝑇 K /COF_STV/T_covariance 

𝑥𝑊 𝑛𝑊 ln(ppmv) /COF_STV/W_covariance 

𝑥𝑂 𝑛𝑂 ln(ppmv) /COF_STV/O_covariance 

𝑥𝑇𝑠 1 K 9K2 

 As the PC scores used in the state-vector representation of the profiles are based on deviations 

from an a-priori profile given at the 101 fixed pressure levels RTTOV grid, the a-priori 𝑥𝑎 in this 

representation is zero (except of course for the last element corresponding to Ts). The principal 

components required to expand the PC scores into profiles represented at 101 pressure levels are 

also contained in the file COF_STV.   

2.3 OBSERVATION TERM OF THE COST FUNCTION, (𝑭(𝒙) − 𝒚)𝑻𝑺𝒚
−𝟏 (𝑭(𝒙) − 𝒚) 

The IASI observations are represented as a subset of reconstructed IASI L1C radiances with the unit 

mW/m2/sr/cm-1. The channel selection (consisting of 𝑚 = 139 channels) and the observation error 

covariance matrix, Sy (unit: (mW/m2/sr/cm-1)2 ), are provided in COF_SY. Note that the channel 

selection is provided with an assumed IASI channel numbering from 0 to 8460.  

The forward model F: 𝑅𝑛 → 𝑅𝑚 is composed of two functions: the state-vector representation 

function X: 𝑅𝑛 → 𝑅𝑁  and the RTTOV 10.2 implemented function f: 𝑅𝑁 → 𝑅𝑚 . Here, 𝑁 = 304, 

corresponding to the atmospheric temperature in K, the atmospheric water vapour concentration in 

ppmv and the atmospheric ozone concentration in ppmv, all at 101 fixed pressure levels each as well 

as the surface skin temperature. The state-vector representation function is computed individually 

for each component. For T we have 𝑋𝑇 = 𝑋𝑇
𝑎 + 𝐸𝑇𝑥𝑇  , where 𝐸𝑇 ∈ 𝑅𝑁𝑇×𝑛𝑇  are the 𝑛𝑇  leading 

principal components found in the dataset /COF_STV/T_eigenvectors and 𝑋𝑇
𝑎 is the a 

priori temperature profile in K at 101 levels which will be provided for each individual field of view. 

This is similar for W and O, except that the principal components are based on ln(ppmv) such that 

we get  𝑋𝑊 = exp (ln (𝑋𝑊
𝑎 ) + 𝐸𝑊𝑥𝑊)  and 𝑋𝑂 = exp (ln (𝑋𝑂

𝑎) + 𝐸𝑂𝑥𝑂), where 𝑋𝑊
𝑎  and 𝑋𝑂

𝑎 are the a 

priori water vapour and ozone concentrations in ppmv at 101 levels. 

The reconstructed radiances, y, are obtained from the IASI L1C PC scores provided in the PRP files 

using the eigenvector files IASI_EV?_xx_M02 (applicable to both Metop-A and B). To suppress 

instrument artefacts this is followed by a projection onto the forward model subspace as defined by 

the first 62 vectors in IASI_EV1_1C_M02_FS.hdf5 and the first 77 vectors in 

IASI_EV2_1C_M02_FS.hdf5 (no channels from Band 3 enter the retrievals). The format of the 

eigenvector files and how to compute reconstructed radiances is described in detail in [Ref:1] [Ref:2]  
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2.4 BIAS CORRECTION 

 IASI observations are corrected for bias (defined by Eumetsat in a CFI) using two vectors, 𝒃𝟎 and 𝒃𝟏, 

which define a fixed bias spectrum and a scan dependent term. The measurement used in the 

retrieval, 𝒚, is then given by 

𝒚 =  𝒚′′ − 𝒃𝟎 − 𝒃𝟏 (sec(𝜃) −  𝜇0)  

Equation 1 

Where 𝒚′′ is the double-filtered measurement vector (described in the previous section); 𝜃 is the 

satellite zenith angle (at the ground) and  𝜇0 is a constant.  
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2.5 IMPLEMENTATION OF THE OEM AT RAL 

Using the CFIs provided by Eumetsat, the OEM retrieval has been implemented at RAL. 

The code has been extended so that observations from IASI and MHS are also ingested and 

simulated by the FM (again using RTTOV 10.2). Coefficient files used are as follows: 

 rttov7pred54L/rtcoef_metop_1_amsua.dat: Creation date 16 May 2013. 

 rttov7pred54L/rtcoef_metop_1_mhs.dat:  Creation date 16 May 2013 

 rttov7pred101L/tcoef_metop_2_iasi.bin: Creation date 28 March 2013 

As indicated by the directory names, the MW coefficients are only defined on 54 levels, whereas the 

IASI coefficients are provided on 101 levels (the same as the levels on which the state principle 

components are provided). The code forms the state vector on the 101 levels and then linearly 

interpolates in pressure to the MW grid, before calling RTTOV for AMSU and MHS. 

Note that, although separate files are provided, there are no differences (other than the platform ID) 

between the AMSU or MHS coefficients for metop-1 (i.e. Metop-B) and metop-2 (Metop-A). IASI 

coefficients are only provided for metop-2 (Metop-A). 

Output (for IASI only) from the RAL implementation and the Eumetsat scheme have been compared 

for the 117 valid observations (out of 120 possible) in the first scan line of measurements from IASI 

file ID: 

IASI_1C_M01_20130417224800Z_20130417225055Z_N_C_20130418001733Z 

Results are compared in the following figures: 

 Figure 2-1 shows the Eumetsat simulated (based on the first-guess state) brightness 

temperatures (top left) and the difference between these and those from the RAL 

implementation (top-right). The figure also shows the modelled surface emissivity (from 

RTTOV) from Eumetsat (bottom left) and the difference from the RAL version (bottom right). 

 Figure 2-2 shows the cost function at initial guess for each scene. 

 Figure 2-3 shows for the first of these scenes  a comparison between the weighting functions 

for each element in the state vector. Note the state vector is expressed in terms of principle 

components of the physical profile variables. 

In general differences found are sufficiently small to conclude that the RAL implementation should 

reproduce the performance of the Eumetsat scheme.  

Results from iterative retrievals are compared in tasks 2 and 3, reported below. 

Retrieval diagnostics for the first scene from the above IASI file, from the RAL scheme are illustrated 

in Figure 2-4. These are linear diagnostics based on the weighting functions estimated for the first 

guess state. Estimated solution errors shows are the square-root diagonal elements of the solution 

covariance: 
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𝑺𝒙 =  (𝑺𝒂
−𝟏 + 𝑲𝐓𝑺𝒚

−𝟏𝑲)
−𝟏

 

Averaging kernels show the sensitivity of the retrieved profiles to perturbations of the true state. In 

this case: 

𝑨 =  (𝑺𝒂
−𝟏 + 𝑲𝐓𝑺𝒚

−𝟏𝑲)
−𝟏

𝑲𝐓𝑺𝒚
−𝟏𝑲′ 

Where K is the weighting function matrix (containing the derivatives of the forward model with 

respect to each element of the state vector). K’ is the derivative of the forward model with respect 

to perturbations on the 101 RTTOV model levels. The figure shows A’ = U A, the projection of A from 

the state vector (principal component) representation onto the model vertical grid. U is the matrix 

which contains the principal component basis vectors.  

The degrees of freedom for signal (DOFS) are also indicated for each species in the title above each 

averaging kernel. Ozone and water vapour errors and averaging kernels are shown relative to the 

initial guess state.  Note the ozone averaging kernels for lower levels exhibit a large apparent 

sensitivity to ozone in the stratosphere, partly due to this relative representation (mixing ratios in 

the stratosphere are much larger than those in the lower troposphere). 

One difference between the RAL and Eumetsat OEM implementation is the non-linear iteration and 

convergence approach: The RAL non-linear retrieval code uses the Marquardt-Levenberg update 

scheme (to improve convergence). It determines convergence based on change in cost function 

between iterations: If the change in cost is smaller than 1 then a retrieval is considered to have 

potentially converged. At this point, a purely Newtonian iteration is performed (i.e. without using 

the Marquardt-Levenberg term). If again the cost changes by less than 1 then the retrieval is 

considered to have converged.  For these retrievals, the initial Marquardt-Levenberg term is set to 

be negligible. The term will only contribute significantly if updates to the state result in degraded 

cost. In practise, almost all retrievals converge directly in 2-3 iterations. So, almost all retrievals are 

the result of effectively pure Newtonian iteration. It is therefore unlikely that any significant 

differences between the RAL and Eumetsat ODV results are caused by this difference in 

iteration/convergence approach, but it may be expected that results will not be exactly identical. 
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Figure 2-1: Comparison between simulated measurements (top panels) and modelled surface emissivity 

from the Eumetsat and RAL implementation of the IR OEM. 

 

 

Figure 2-2: Comparison between initial cost-function values from the Eumetsat and RAL implementation of 

the IR OEM. 
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Figure 2-3: Comparison between weighting functions from the Eumetsat and RAL implementation of the IR 

OEM. 
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Figure 2-4: Retrieval diagnostics from the RAL scheme. Top panels show estimated solution and a priori 

errors. Bottom panels show averaging kernels for a subset of the 101 levels. 
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3 TASK 1: DEFINITION OF THE MEASUREMENT COVARIANCE FOR THE MW 

CHANNELS 

This task covers the definition of the measurement error covariance matrices (Sy) for the microwave 

(MW) instruments AMSU and MHS. It comprises 3 sub tasks: 

 A description of the measurement errors used in the Met Office operational assimilation of 

AMSU and MHS observations. This work has benefitted from the involvement as a 

consultant to this study of Bill Bell of the Met Office 

 A brief literature review of retrievals of water vapour and temperature from AMSU and MHS 

data, focusing on the treatment of measurement errors in the earlier works.  

 Statistical comparisons to observations of radiances simulated based on the retrievals first 

guess atmospheric and surface state. 

The work conducted here has provided a firm overview of errors used in the community, including in 

NWP at the Met Office and at ECMWF. However, subsequent to this task it was decided to define 

the MW measurement covariance using statistics (derived in the study) of the difference between 

measurements and observations simulated using the IR-only OEM output. This work particular work 

is discussed in section 4.1, below.  
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3.1 AMSU-A/B AND IASI OBSERVATION ERRORS FROM ATOVS PROCESSING AT THE UK 

METOFFICE 

The following section describes the measurement errors for the AMSU-A/B instruments as used by 

the UK MetOffice for their operational ATOVS processing. The content of this section was provided 

by Dr William Bell and Peter Weston from the UK MetOffice. It reports the measurement errors, with 

a mention of the methods used in deriving their values.  

3.1.1 BACKGROUND 

The assumed observation errors (R in the notation of Ide, Sy in the notation of Rogers) determine the 

weight given to the observations in the operational 4D-Var analysis. 

In principle these estimates take account of several error sources in the observations: 

 Random instrument error, for example resulting from the non-zero noise equivalent brightness 
temperatures (NEΔT) associated with each measurement. 
 

 Forward model errors, due to inaccuracies in the radiative transfer modelling.  These may arise 
from errors in the underlying spectroscopy, or in the fast parameterisations used in the radiative 
transfer models.  Strictly these errors are more likely to be manifested as a local bias in the 
forward calculations, but taken over large ensembles of states, are assumed to be part of the 
random observation error and included in R. 
  

 Representativeness errors, resulting from scale mis-match between observation horizontal scales 
(typically ~45-100 km for MW observations, 15-40km for IR observations) and the scales 
represented by the background, or prior, estimate of the state (xB) which is typically significantly 
larger. Horizontal scale mis-match can also give rise to inter-channel correlations (as can forward 
model errors).  These inter-channel correlations are sometimes dealt with using a diagonal R, 
with inflation of the diagonal amplitudes to down-weight the observations. 
 

In practice it is the relative weights of observations, determined by R, and the background 

information (defined by the background error covariance matrix B) that determine the analysis state. 

Hence, sub-optimalities in the estimation of B can be compensated for by adjustment of the 

observation error covariances. 

As will be shown, the assumed observation errors for the ATOVS channels are inflated relative to (i) 

the objectively estimated errors, from the diagnostic described by Desroziers (2005)2; and (ii) the 

known NEΔT, which is believed to be the dominant contribution to the ATOVS observation errors, 

certainly for AMSU-A channels 6-13 (54.4 GHz — 57.29 GHz) 

3.1.2 ERRORS ASSUMED IN THE MET OFFICE OPERATIONAL 4D-VAR SYSTEM 

                                                           
2
 See Bormann and Bauer (2010) for the application to ATOVS, Weston et al (2014) for application 

to IASI. 
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Figure 3-1 below shows the observation errors diagnosed for the ATOVS channels used in operations 

during 2012 (Met Office now additionally assimilates MetOp-B radiances)  

 

Figure 3-1: Observation errors diagnosed for the NOAA-15,-17,-18,-19 and Met Op-A using the Desroziers 

method.  Results are shown for HIRS (channels 1-15) and AMSU-A (channels 21-35) and MHS / AMSUB 

(channels 36-40). 

 

These estimates will include representativeness errors for the Met Office 4D-Var (N216 analysis and 

N512 background resolutions). These errors of representativeness affect the humidity sensitive 

channels most (HIRs channels 11 and 12, and AMSU-B / MHS channels 3,4,5) 

For the key tropospheric temperature sounding channels, for which the radiometric performance is 

most critical, the diagnosed errors are in the range 0.10-0.13K for channels 6-9.  These values are 

close to the effective NEΔT for these channels, noting that the process of remapping the AMSU-A 

channels to the HIRS grid in a pre-processing step at the Met Office results in a 30% reduction in the 

effective noise of the AMSU-A observations, taking these channels from ~0.20K (unmapped) to ~0.13 

K (mapped).  Diagnosed errors get progressively larger for higher peaking channels (9-14) reflecting 

the decreasing bandwidth for these channels, and consequently higher NEΔT.  

Figure 3-2 compares the mean observation errors diagnosed for the instruments shown above, 

together with the assumed observation errors in 4D-Var. Figure 2 shows that assumed observation 
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errors are, for all ATOVS channels, inflated, relative to the diagnosed values.  This inflation is derived 

in an ad-hoc manner by running full assimilation experiments and optimising forecast impact.  This 

doubtlessly permits (small) sub-optimalities in the assimilation system, but is to date the only 

practical way of dealing with: (i) uncertainties in the estimate of B and (ii) the effects of inter-

channel correlations. 

 

Figure 3-2: Mean diagnosed observation errors (blue) and assumed observation errors (black) in the Met 

Office operational 4D-Var assimilation system. 

 

3.1.3 ESTIMATED IASI ERRORS FROM THE MET OFFICE OPERATIONAL 4D-VAR SYSTEM 

The diagonal elements of the R matrix are shown for MetOp-A IASI, for both operationally used, and 

diagnosed errors in Figure 3-3 below.  Also shown is the instrument noise (NEΔT) for comparison. 
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Figure 3-3:  Mean diagnosed observation errors (blue) and assumed observation errors (black dashed) for 

IASI in the Met Office operational 4D-Var assimilation system.  Also shown is the instrument noise (red). 

The inter-channel diagnosed correlations for IASI are shown in Figure 3-4 below. Larger correlations 

are diagnosed for the water vapour sounding channels (channels 110-137) and for the lower peaking 

temperature sounding channels (90-110).  The inter-channel correlations get progressively weaker 

for the higher peaking temperature sounding channels. 
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Figure 3-4: Diagnosed inter-channel correlation errors for IASI. 
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3.2 MEASUREMENT ERRORS FOR AMSU AND MHS PROCESSING FROM THE 

LITERATURE 

There are different types of retrieval algorithms used for the processing of AMSU/MHS (and other 

instruments of the TOVS observation suite). They can generally be broken down into three different 

categories 

 Linear regression algorithms 

 Physical algorithms including those based on the OEM method to be employed in this study 

 Neural network algorithms 

We focus this review on how the measurement errors for AMSU and MHS have been treated by the 

authors of papers from all three categories of retrieval schemes.  

A small number of publications also report on instrument effects encountered when working with 

AMSU / MHS data. These include the correction of asymmetries in the antenna pattern as a function 

of spectral channel, or corrections for a channel-dependant deterioration of the noise equivalent 

brightness temperature NEBT over time (not all channels are affected to the same extent). We also 

list some of these findings in the current section, as they will apply to this study. 

The publications most relevant to the Optimal Estimation technique are those by Rosenkranz2001 

and Susskind2003, who both use OEM. Chou2004 also gives a thorough analysis of observation 

errors for AMSU.  A summary of selected articles is provided below. 

ATKINSON 2001 
 
N. C. Atkinson, CALIBRATION, MONITORING AND VALIDATION OF AMSU-B, Adv. Space Res. Vol. 28, 
No. 1. pp. 117-126, 2001 

 
ABSTRACT 
The first flight models of the Advanced Microwave Sounding Unit (AMSU) were launched on the 
NOAA-15 satellite in 1998. This paper reviews the performance of AMSU-B to date, with particular 
reference to the problems experienced due to radio-frequency interference. It shows that a bias 
correction scheme developed by the Met Office and NOAA/NESDIS generally works well, though 
regular updates are necessary to keep track of long-term bias changes. The prospects for future 
AMSU-B flight models are discussed. The paper also outlines the aircraft-based campaigns that took 
place during 1999 for the purpose of validating those aspects of water-vapour measurement and 
spectroscopy that are important for AMSU. 
 
This paper presents an in-depth analysis of instrument effects that impact the data quality of AMSU-
B. The researcher from the UK Met Office draws on a long experience of using AMSU-B data in NWP, 
based on which they have compiled an assessment of, in the first place, channel dependant biases 
over the current mission lifetime. They have also performed airborne campaign with a simulator 
radiometer which, although not used to validate AMSU-B measurements directly, were used to 
improve the radiative transfer model and to measure sea surface emissivity.   
 
Soon after launch it was discovered that AMSU-B is susceptible to radio-frequency (RF) interference 
from the satellite data transmitters. This resulted in large scan-dependent biases in several channels. 
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The problem was compounded by intermittent faults in the transmitter antennas, resulting in erratic 
changes in the AMSU-B biases. However, in late September 1999 the spacecraft was re-configured to 
use two backup transmitters, and the primary transmitters were turned off. This greatly improved 
the quality of the AMSU-B data. Although biases still exist, they can be characterised by special tests 
in which each active transmitter in turn is turned off for brief periods. 
 
The paper also discusses the monitoring of other critical instrument parameters, such as channel 
noise (NEAT) and instrument temperature. 
 
Three different methods for determining biases are presented. The primary method of determining 
AMSU-B biases has been to use bi-monthly 'trending tests'. In this test each of the active transmitters 
(currently STX-2 and SARR) is turned off for periods of 30 seconds. By measuring the step-changes in 
Earth-view signal, an absolute measurement of bias associated with each transmitter is obtained. 
Other methods are comparison of a mean brightness temperature over a orbit with global mean 
brightness temperatures, and a comparison with NWP model statistics. 
 
The conclusion is that AMSU-B channels 17, 19 and 20 are especially affected by biases up to 40K, 
but after September 1999 the main interfering transmitter has been switched off, and the biases 
have consequentially become much smaller.  
 
The three methods of quantifying AMSU-B bias all indicate that scan-dependent bias drifts of up to 
1K per month can occur, particularly for channel 19. Therefore periodic updates are necessary to the 
bias correction tables. With these updates the worst case accuracy should be +/-0.3K for channel 16, 
+/-1K for channels 17 and 18 and +/-2K for channels 19 and 20. The tables in the header of the 
NESDIS 1B data sets can be several weeks out of date; therefore it is recommended that up-to-date 
information should be available on the internet. It is intended that the Met Office web site will 
contain a link to the latest bias correction file (www.metoffice.gov.uk) 
 
The summary of the analysis of other instrument parameters is that: 

• A seasonal variation of instrument temperature can be seen, with corresponding minor 
variations in gain and offset. There is no evidence of any long-term warming (which might 
have been expected if the surface mirrors had started to deteriorate). 

• There has been a gradual slight fall in gain for channels 18 20, and a slight increase in NEΔT. 
NEΔT values are still well within specification, with the exception of channel 18 which is now 
at the upper limit of its specification. The NEΔT specifications are <1 .OK for channels 16, 17 
and 19, < I . I K for channel 18 and <1.2K for channel 20. 

• Channel 16 NEΔT shows some rapid variations towards the end of the period, though this is 
not thought to be a cause for concern at present. A slight anomaly is apparent for channel 17 
early in 1999; NEΔT also falls slightly for the other channels at this time, as the instrument 
temperature shows a rapid decrease. 

• The rapid rise in NEAT for all channels at the start of the period is probably associated with 
the thermal stabilisation of the instrument in the period immediately following its initial 
turn-on.  
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Figure 3-5: Characterisation of AMSU-B channels after Atkinson 2001. 

HOUSHANGPOUR 2005 
 
A. Houshangpour, V. O. John, and S. A. Buehler, Retrieval of upper tropospheric water vapor and 
upper tropospheric humidity from AMSU radiances, Atmos. Chem. Phys., 5, 2019–2028, 2005 

 
Abstract. A regression method was developed to retrieve upper tropospheric water vapor (UTWV in 
kg/m2 ) and upper tropospheric humidity (UTH in %RH ) from radiances measured by the Advanced 
Microwave Sounding Unit (AMSU). In contrast to other UTH retrieval methods, UTH is defined as the 
average relative humidity between 500 and 200 hPa, not as a Jacobian weighted average, which has 
the advantage that the UTH altitude does not depend on the atmospheric conditions. The method 
uses AMSU channels 6–10, 18, and 19, and should achieve an accuracy of 0.48 kg/m2 for UTWV and 
6.3%RH for UTH, according to a test against an independent synthetic data set. This performance was 
confirmed for northern mid-latitudes by a comparison against radiosonde data from station 
Lindenberg in Germany, which yielded errors of 0.23 kg/m2 for UTWV and 6.1%RH for UTH. 
 
This paper uses a regression scheme to calculate upper tropospheric humidity from the clear sky 
brightness temperatures of channels with strong water vapour absorbtion. A simple radiance-to-UTH 
relationship was first derived by Soden and Bretherton (1993), indicating that the clear sky 
brightness temperature measured at a strong water vapour absorption line is proportional to the 
natural logarithm of the dividend of UTH over the cosine of the satellite viewing angle. Their method 
provides a high computational speed in transforming brightness temperature to relative humidity by 
eliminating a full retrieval. The method developed is a combination of regression techniques and a 
simple physical model of the observing system, one could call it a regression on a physical basis. 
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Assuming a model atmosphere, upper tropospheric temperature parameters could be approximated 
by linear combinations of AMSU-A temperature channel radiances (AMSU-A channels 6–10). The 
retrieval of upper tropospheric water vapour was facilitated by transforming the corresponding 
water vapour channel radiances (AMSU-B channels 18 and 19) to a fixed atmospheric temperature 
profile using upper tropospheric temperature information. It was shown that UTWV is then an 
exponential function of the transformed brightness temperature under consideration. This 
exponential relationship could be easily linearised by taking logs. The original UTH model 
incorporating upper tropospheric water vapour as an explicit variable provides an excellent UTH 
retrieval when involving true values. However, it turned out to be sensitive to UTWV retrieval errors.  
 
This paper doesn't however report on these retrieval errors and how they would depend on the 
measurement errors in the AMSU radiances, so there is no direct relevance to our study.  
 

JIMENEZ 2005 
 
C. Jimenez, P. Eriksson, V. O. John, and S. A. Buehler, A practical demonstration on AMSU retrieval 
precision for upper tropospheric humidity by a non-linear multi-channel regression method, Atmos. 
Chem. Phys., 5, 451–459, 2005 
 
Abstract. A neural network algorithm inverting selected channels from the Advance Microwave 
Sounding Unit instruments AMSU-A and AMSU-B was applied to retrieve layer averaged relative 
humidity. The neural network was trained with a global synthetic dataset representing clear-sky 
conditions. A precision of around 6% was obtained when retrieving global simulated radiances, the 
precision deteriorated less than 1% when real mid-latitude AMSU radiances were inverted and 
compared with co-located data from a radiosonde station. The 6% precision outperforms by 1% the 
reported precision estimate from a linear single-channel regression between radiance and weighting 
function averaged relative humidity, the more traditional approach to exploit AMSU data. Added 
advantages are not only a better precision; the AMSU-B humidity information is more optimally 
exploited by including temperature information from AMSU-A channels; and the layer averaged 
humidity is a more physical quantity than the weighted humidity, for comparison with other datasets. 
The training dataset proved adequate for inverting real radiances from a mid-latitude site, but it is 
limited by not considering the impact of clouds or surface emissivity changes, and further work is 
needed in this direction for further validation of the precision estimates. 
 
The authors present a neural network retrieval approach to retrieve humidity from selected channels 
of AMSU-A and AMSU-B. Temperature data from AMSU-A are used to accurately retrieve humidity 
from AMSU-B channels. This paper contains a good literature review of past humidity measurements 
for AMSU. These include Rosenkranz 2001 (iterative minimum variance algorithm), Greenwald and 
Christopher 2002 (simplified relationship between UTH and brightness temperature derived for infra-
red data, but no detailed description of the retrieval processor), Buehler and John 2005 (same 
relationship as Greenwald and Christopher, but for AMSU-B and with a detailed description of 
precision). 
 
Some examples of weighting functions are given, but unfortunately no specific account of the 
treatment of measurement errors are supplied. The authors use a set of synthetic spectra and 
ECMWF model profiles to train their neural network algorithm. We presume that AMSU 
measurement errors are applied to the synthetic spectra, but the magnitude of the measurement 
errors is not given. 
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The authors also perform some traditional retrievals of AMSU profiles over a radiosonde launch site 
at Lindenberg (Germany) to validate how their their neural network algorithm fares with real 
measurements. The validation is successful, but no details of the traditional retrieval results which 
could be of interest to our study are given.   

LI 2000 
 
Li, Jun, Walter W. Wolf, W. Paul Menzel, Wenjian Zhang, Hung-Lung Huang, Thomas H. Achtor, 2000: 
Global Soundings of the Atmosphere from ATOVS Measurements: The Algorithm and Validation. J. 
Appl. Meteor., 39, 1248-1268. 
 
 
ABSTRACT 
 
The International Advanced Television and Infrared Observation Satellite Operational Vertical 
Sounder (ATOVS) Processing Package (IAPP) has been developed to retrieve the atmospheric 
temperature profile, moisture profile, atmospheric total ozone, and other parameters in both clear 
and cloudy atmospheres from the ATOVS measurements. The algorithm that retrieves these 
parameters contains four steps: 1) cloud detection and removal, 2) bias adjustment for ATOVS 
measurements, 3) regression retrieval processes, and 4) a nonlinear iterative physical retrieval. Nine 
(3 ϫ 3) adjacent High-Resolution Infrared Sounder (HIRS)/3 spot observations, together with 
Advanced Microwave Sounding Unit-A observations remapped to the HIRS/3 resolution, are used to 
retrieve the temperature profile, moisture profile, surface skin temperature, total atmospheric ozone 
and microwave surface emissivity, and so on. ATOVS profile retrieval results are evaluated by root-
mean-square differences with respect to radiosonde observation profiles. The accuracy of the 
retrieval is about 2.0 K for the temperature at 1-km vertical resolution and 3.0–6.0 K for the dewpoint 
temperature at 2-km vertical resolution in this study. The IAPP is now available to users worldwide for 
processing the real-time ATOVS data. 
 
The authors present a comprehensive analysis software for ATOVS data, including AMSU-A and 
AMSU-B, but also the infrared instrument HIRS. HIRS data are used in the first two of four steps for 
cloud detection and parametrisation, and the removal of HIRS observation biases. A regression 
solution for the parameters to be retrieved is then found. The results of this first regression retrieval 
are then used as the first guess for a physical retrieval. It is a non-linear, iterative physical retrieval of 
the atmospheric temperature profile, moisture profile, atmospheric total ozone, surface skin 
temperature and microwave surface emissivity through solving the radiative transfer equation (RTE). 
 
The paper present a full characterisation of AMSU-A and AMSU-B channels, including their spectral 
performance. They also tabulate a bias correction for each of the AMSU channels. A summary if their 
instrument characterisation is included below. 
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Figure 3-6: AMSU-A channel characterisation after Li2000 

 

 

 

Figure 3-7: Bias adjustment coefficients for the AMSU-A channels after Li2000 
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Figure 3-8: Result of bias correction for AMSU channels using the coefficients from the Table above (Li2000) 

MCKAGUE 2001 
 
McKague, Darren S., R. J. Engelen, J. M. Forsythe , S.Q. Kidder, and T. H. Vonder Haar, 2001: An 
Optimal-Estimation Algorithm for Water Vapor Profiling using AMSU. Proc. of 11th Conf. On Sat. 
Meteor. and Ocean, 633-636. 
 
This is the algorithm description paper leading up to McKague2003, an optimal estimation retrieval 
scheme for humidity profiling of AMSU-A and AMSU-B data. This paper is based on simulated 
measurements only, although it also lists measurement errors for the AMSU-A and AMSU-B 
instruments. In fact it gives more details about the algorithm setup than the follow up paper 
McKague2003 which deals with real measurements. 
 
The algorithm presented here simultaneously retrieves temperature profiles, water vapour profiles 
and surface emissivities, which is shown here to lead to more accurate water vapour retrievals.  
 
The measurement errors (or observational errors) used by the authors are random errors based on 
the NEBT of the AMSU channels listed in their first Table. They didn't specify any errors on the 
forward model, arguably because this is a simulation study only. The error on the a priori profiles are 
listed in their second Table. The third table specifies the improvement in water vapour profile 
retrieval from adding temperature, and then temperature and surface emissivity to the state vector 
(i.e. the vector containing all retrieved parameters). 
 
Importantly, the authors are treating all AMSU channels as uncorrelated, which may be overly 
simplistic. 
 



 

RAL Space 
STFC Rutherford Appleton Laboratory 
Harwell Oxford 
Chilton, OX11 0QX, United Kingdom 

Document:                     Final Report 
Customer Ref:                ITT 13/207194 
RAL Space Ref:               SSTD1569 

 2015-01-29 Page 34 of 120 

 

 

Figure 3-9: Channel specifications after McKague2001. The observation errors in their simulation study is 

pure random noise based on the NEBT in this table 

 

 

Figure 3-10: A priori errors used in the optimal estimation retrieval in McKague2001. 

 

Figure 3-11: This table illustrates the improvements in water vapour profile retrievals when adding 

temperature and surface emissivity to the retrieval state vector.   
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MCKAGUE 2003 
 
McKague, Darren S., and A. S. Jones. "A passive microwave optimal-estimation algorithm for near 
real-time water vapor profiling." Proceedings of the 11th Conference on Satellite Meteorology and 
Oceanography. 2003. 
 
 
In this proceedings paper the authors describe a classical optimal estimation retrieval setup 
according to Rodgers. A variety of parameters can be retrieved including profiles of water vapour 
mixing ratio, joint water vapour and temperature profiles (including surface temperature), and water 
vapour and temperature profiles along with microwave ave surface emissivities. The authors give a 
table with instrument parameters for AMSU-A and AMSU-B as used in their retrieval setup. This 
includes a column of NEBT for each channel of AMSU-A and AMSU-B. 
 
Most interestingly, the NEBT values for AMSU-B have been updated (i.e. Increased from 0.8K to 2K) 
in this work as compared to a previous publication by the same authors (see McKague2001). The 
channel specification for AMSU-A are unchanged. 
 
Similar to their previous work, there is no forward model error explicitly considered, and the AMSU 
channels are treated as uncorrelated. AMSU-B measurements have been averaged to the scale of 
AMSU-A observations before being input to the retrieval algorithm.  The authors perform a retrieval 
based real measurements and compare it to a reference retrieval scheme (The algorithm was tested 
on simulations in past work). The comparison to the existing scheme is good, and the authors claim 
that their scheme is fast enough to run in real time. 

 

Figure 3-12: AMSU channel characterisation in McKague 2003. Note that the AMSU-B channel NEBTs have 

been increased from McKague2001. 

MITRA 2010 
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MITRA, A. K.; KUNDU, P. K.; SHARMA, A. K.  y  ROY BHOWMIK, S. K.. A neural network approach for 
temperature retrieval from AMSU-A measurements onboard NOAA-15 and NOAA-16 satellites and a 
case study during Gonu cyclone. Atm�sfera [online]. 2010, vol.23, n.3, pp. 225-239. ISSN 0187-6236. 
 
ABSTRACT 
A neural network (NN) technique is used to obtain vertical profiles of temperature from NOAA-15 and 
16 Advanced Microwave Sounding Unit-A (AMSU-A) measurements over the Indian region. The 
corresponding global analysis data generated by National Center for Environmental Prediction (NCEP) 
and AMSU-A data from July 2006 to April 2007 are used to build the NN training data-sets and the 
independent dataset of May 2007 to July 2007 divided randomly into two independent dataset for 
training (land) and testing (ocean).  NOAA-15 and 16 satellite data has been obtained in the form of 
level 1b (instrument counts, navigation and calibration information appended) format and pre-
processed by ATOVS (Advanced TIROS Operational Vertical Sounder) and AVHRR (Advanced Very High 
Resolution Radiometer) Processing Package (AAPP). The root mean square (RMS) error of 
temperature profile retrieved with the NN is compared with the errors from the International 
Advanced TOVS (ATOVS) Processing Package (IAPP). The over all results based on the analysis of the 
training and independent datasets show that the quality of retrievals with NN provide better results 
over the land and comparable over the ocean. The RMS errors of NN are found to be less than 3 deg C 
at the surface, 0.9 deg to 2.2 deg between 700 and 300 hPa and less than 2 deg C between 300 and 
100 hPa. It has also been observed that the NN technique can yield remarkably better results than 
IAPP at the low levels and at about 200-hPa level. Finally, the network based AMSU-A 54.94-GHz 
(Channel-7) brightness temperature (maximum Tb) and its warm core anomaly near the center of the 
cyclone has been used for the analysis of Gonu cyclone formed over Arabian Sea during 31 May to 7 
June 2007. Further, the anomalies are related to the intensification of the cyclone. It has been found 
that the single channel AMSU-A temperature  anomaly at 200 hPa can be a good indicator of the 
intensity of tropical cyclone. Therefore it may be stated that optimized NN can be easily applied to 
AMSU-A retrieval operationally and it can also offer substantial opportunities for improvement in 
tropical cyclone studies. 
This is another paper on a neural network type of retrieval algorithm for AMSU-A temperature 
measurements solely. It is one of the most recent papers on AMSU processing. The authors claim 
that their neural network approach yields better results over land, and comparable results over 
ocean than the operational processor. They have tested their retrieval in a case study of cyclone over 
the Arabian see. 
 
The authors mention a temperature anomaly in AMSU-A channel 7 (54.94 GHz), which changes as a 
function of cyclone intensity, making this channel useful for the detection of cyclone strength. This 
could be something to keep in mind should we encompass problems in the temperature retrievals 
from this channel. 
 
The results of the neural network retrievals are compared to the IAPP processor, described in Li2000. 
The neural network is said to be superior to the physical retrieval in many cases because it doesn't 
depend on a forward model and its related error, and neither does it depend on the surface 
properties. The physical retrieval however is more generally applicable, and will also perform in 
extreme atmospheric conditions. 
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Figure 3-13: Table 1: RMS errors of Mitra2010 vs the IAPP processor of Li2000 (this is an OEM algorithm). 

The reference is the NCEP database   

OLSEN 2008 
 
E. T. Olsen, , S.-Y. Lee, , J. Susskind, J. Blaisdell, L. Iredel, AIRS/AMSU/HSB Version 5 
 Modification of Algorithm to Account for Increased NeDT  in AMSU Channel 4 
, JPL Technical Report, Version 1.1.1., February 2008, California Institute of Technology 
 
Abstract 
The AIRS Science Team Version 5 AIRS/AMSU retrieval algorithm includes use of observations of 
AMSU-A channel 4. This channel had an instrumental NEDT of 0.14K at launch. AMSU-A channel 4 
NEDT remained stable at this value until August 2007, at which time the channel noise began to 
increase. The Goddard DAAC operational  AIRS/AMSU Version 5 retrieval algorithm assumes the at-
launch value for AMSU-A channel 4 NEDT. As channel 4 noise increased from this value, the 
performance of the  Version 5 retrieval algorithm began to degrade, both in terms of the percentage 
of  acceptable retrievals as well as the accuracy of the accepted retrievals. 
 
This is an internal note from the AIRS Science Team at JPL documenting a modification in their V5 
data analysis algorithm which corrects for the increase in noise (Tsys) of the AMSU channel No. 4. 
The launch NEDT of 0.14K for channel 4 remained stable until 20078, from which it degenerated 
sharply.  
 
The correction was done by using linear regression to estimate the channel 4 radiance from the 
radiances of the other channels. The thus corrected channel 4 radiances were used as normal in the 
operational AMSU processor. It's deemed possible to use linear regression to infer one channel from 
others because the information content is spread over all channels. 
 
The authors don't provide an updated measurement error for the affected channel, rather do they 
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modify the measurements themselves so that they are compatible again with the original 
measurement noise definition. This is done by the application of so called microwave tuning 
coefficients (documented separately in the AIRS Science Team ATBD). They claim to have chosen this 
approach so as to have minimal disturbance to the existing algorithm (for backward compatibility). 
For the purpose of our own study, we should make sure that we are using an up to date version of 
AMSU level1b data. 
 
One other interesting point is that antenna pattern distortions affect the channels in different 
manners."It can be seen that the antenna pattern distortion makes the observed values of AMSU-A 
channel 4 colder than they should be by values ranging from about 1.2K near nadir to values greater 
than 2.0K at large satellite zenith angles. Similar antenna pattern distortions are observed in the 
other AMSU-A channels."  
 
The team conclude that: "AMSU channel 4 is indeed providing very little information about surface 
and atmospheric conditions not already contained in the remaining AMSU-A observations." They use 
channel 4 mainly for cloud clearing of measurements. 
 

JOHN 2008 

Viju Oommen John, Retrieval of Atmospheric Parameters from AMSU, Seminar at Institute of 

Environmental Physics, Univerity of Bremen, 2008 

This is not a peer reviewed publication, but rather the internet published slides from an institute 
seminar given at Uni Bremen. It is however of interest to include this work in our review, because the 
authors present the full error correlation matrix for temperature used in their Optimal Estimation 
retrieval of AMSU data. We have not found this in any Optimal Estimation retrieval paper published 
in the peer reviewed literature. They mention that they also have a covariance matrix for water 
vapour, but this one is not shown in the presentation. 
 
The presentation also includes their averaging kernels for temperature and water vapour, as well as 
retrieval results for various scenarios. The scenarios are of increasing complexity. They consist of 
simple retrievals of water vapour profiles, and then look at the impact of temperature on the 
humidity profiles. Simple retrievals of temperature are complemented with joint retrievals of water 
vapour, and then water vapour and surface emissivity in a similar fashion as is planned for our own 
study. There are also some results of simulations without cloud filtering, and with a purely diagonal 
error covariance matrix. Because this is just a presentation, the text on the interpretation of the 
results is minimal and not always conclusive. 
 
The conclusions of the authors from their OEM retrieval of atmospheric parameters from AMSU are 
summarised as follows: 
- Atmospheric parameters can be retrieved from AMSU data using Optimal Estimation Method 

(OEM) 
- Good knowledge of temperature (simultaneous retrieval) is necessary for the retrieval of water 

vapour 
- Emissivity should be retrieved along with temperature 
- Full covariance matrix should be used for better retrieval 
- Clouds do not make significant changes in the retrieval of temperature 
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ROSENKRANZ 2001 
 
Philip W. Rosenkranz, Retrieval of Temperature and Moisture Profiles From AMSU-A and AMSU-B 
Measurements, IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 39, NO. 11, 
pp2429, NOVEMBER 2001 
 
Abstract—The NOAA-15 weather satellite carries the Advanced  Microwave Sounding Units-A and -B 
(AMSU-A, AMSU-B) which  measure thermal emission from an atmospheric oxygen band, two water 
lines, and several window frequencies. An iterated  minimum-variance algorithm retrieves profiles of 
temperature  and humidity in the atmosphere from this data. Relative humidity  is converted into 
absolute humidity with use of the retrieved temperature profile. Two important issues in the retrieval 
problem are  modelling of the surface and clouds. An a priori surface emissivity is computed on the 
basis of a preliminary classification, and the  surface brightness spectrum is subsequently adjusted 
simultaneously with the moisture profile retrieval. Cloud liquid water is constrained by a 
condensation model that uses an extended definition of relative humidity as a parameter. 
 
The authors present a complex combined algorithm to retrieve water vapour profiles, temperature 
profiles and surface parameters from AMSU-A and AMSU-B data. Apart from the radiative transfer 
model, they also use a surface brightness model and an atmospheric moisture and condensation 
model which provide an improved first guess for the Optimal Estimation retrieval of atmospheric 
profiles. 
 
The data processing algorithm is iterative in itself, and the bare-bone structure can be broken down 
into the following 5 steps: 
 

1) Based on location and month, choose an a priori temperature profile . At present the a priori 
relative humidity is global. Also calculate the geomagnetic field, which has a minor effect on 
the transmittance of channel 14. 

 
2) Using location or other criteria, classify the surface as  discussed in Section II-B. Compute an 

a priori surface brightness temperature for this class. This will depend on surface 
temperature. 

 
3) Test for convergence of channels 1, 2, 3, 15, and 17–20 brightness temperatures. If not 

converged, update the humidity profile and the surface brightness temperature 
spectrumusing these channels. 

 
4) Test for convergence of channels 4–14. If not converged, update the temperature profile 

using these channels. 
 

5) Return to step 2 if convergence did not occur in step 4; else to step 3 if convergence did not 
occur in step 3; else exit. 

    
Because of the contamination of AMSU-B spectra by spurious signals from other emitters, the AMSU-
B analysis was restricted to a test period during which these interfering signal had been temporarily 
switched off. Furthermore, to compensate for the higher ground-pixel resolution of the high 
frequency channels, the AMSU-B measurements have been averaged to match the corresponding 
AMSU-A footprint.  
 
The measurement errors are given by the authors in their Table 1 (labelled “Sensitivity”). The error 
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covariance matrix is not given, but there is a short mention in the text that indicates the presence of 
non-zero off-diagonal elements, namely: ”A priori statistics are required for the parameters that 
characterize the state of the system. However, statistical correlations between temperature and 
relative humidity are not allowed to influence the retrieved profiles. Temperature is retrieved from 
the oxygen-band channels 4–14 and moisture and surface parameters from the water-vapor and 
window channels. Hence only radiative-transfer influences (e.g., water-vapor continuum absorption 
and surface emissivity in the oxygen band)  link different parameters in the retrieval.” 
 

SUSSKIND 1998  

 
J. Susskind, C. Barnett and J.Blaisdell, DETERMINATION OF ATMOSPHERIC AND SURFACE 
PARAMETERS FROM SIMULATED AIRS/AMSU/HSB SOUNDING DATA: RETRIEVAL AND CLOUD 
CLEARING MERTHODOLOGY, Adv. Space Res., Vol. 21, No. 3, pp. 369-384, 1998 
 
ABSTRACT 
New state of the art methodology is described to analyze AIRS/AMSU/HSB data in the presence of 
multiple cloud formations. The methodology forms the basis for the AIRS Science Team algorithm 
which will be used to analyze AIRS/AMSU/HSB data on EOS PM 1. The cloud clearing methodology 
requires no knowledge of the spectral properties of the clouds. The basic retrieval methodology is 
general and extracts the maximum information from the radiances, consistent with the channel noise 
covariance matrix. The retrieval methodology minimizes the dependence of the solution on the first 
guess field and does not require modelling or knowledge of the first guess error characteristics. 
Results are shown for AIRS Science Team simulation studies with multiple cloud formations. These 
simulation studies imply that temperature soundings can be produced under partial cloud cover with 
RMS errors better than 1°K in 1 km thick layers from the surface to 700 mb, 1 km layers from 700 mb 
to 300 mb, 3 km layers from 300 mb to 30 mb, and 5 km layers from 30 mb to 1 mb, and moisture 
profiles can be obtained with an accuracy of about 10% absolute errors in 1 km layers from the 
surface to 200 mb. 
 
This is the initial publication describing the AIRS Science Team algorithm for the analysis of AMSU 
data (see e.g. Olsen2008 for updates of the same algorithm). The paper discusses the influence of 
clouds on the channel error covariance matrix, which plays an important role in the Optimal 
Estimation retrievals.  
 
The cloud clearing algorithm used in this paper is based on the approach to correct the radiance in a 
given pixel to correct for the effects of cloud, and then perform a retrieval with a radiative transfer 
model that doesn't have to try to simulate the radiative properties of clouds. This means that the 
measurement error covariance matrix used in this paper is comprised of two terms: An instrumental 
error part depending on the channel noise temperatures, and a second part related to the cloud 
clearing errors. No explicit numbers are given for the error covariance matrix however, so we 
probably can't use this as a reference for our own study.    

SUSSKIND 2003  

 
Joel Susskind, Christopher D. Barnet, and John M. Blaisdell, Retrieval of Atmospheric and Surface 
Parameters From AIRS/AMSU/HSB Data in the Presence of Clouds, IEEE TRANSACTIONS ON 
GEOSCIENCE AND REMOTE SENSING, VOL. 41, NO. 2, FEBRUARY 2003 
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Abstract 
New state-of-the-art methodology is described to analyze the Atmospheric Infrared 
Sounder/Advanced Microwave Sounding Unit/Humidity Sounder for Brazil (AIRS/AMSU/HSB) data in 
the presence of multiple cloud formations. The methodology forms the basis for the AIRS Science 
Team algorithm, which will be used to analyze AIRS/AMSU/HSB data on the Earth Observing System 
Aqua platform. The cloud-clearing methodology requires no knowledge of the spectral properties of 
the clouds. The basic retrieval methodology is general and extracts the maximum information from 
the radiances, consistent with the channel noise covariance matrix. The retrieval methodology 
minimizes the dependence of the solution on the first-guess field and the first-guess error 
characteristics. Results are shown for AIRS Science Team simulation studies with multiple cloud 
formations. These simulation studies imply that clear column radiances can be reconstructed under 
partial cloud cover with an accuracy comparable to single spot channel noise in the temperature and 
water vapor sounding regions; temperature soundings can be produced under partial cloud cover 
with RMS errors on the order of, or better than, 1 K in 1-km-thick layers from the surface to 700 mb, 
1-km layers from 700–300 mb, 3-km layers from 300–30 mb, and 5-km layers from 30–1 mb; and 
moisture profiles can be obtained with an accuracy better than 20% absolute errors in 1-km layers 
from the surface to nearly 200 mb. 
 
The authors present a retrieval scheme for the analysis of AIRS, AMSU-A and HSB (which is said to be 
similar to AMSU-B). This paper is a refinement of the methodology first described in Susskind1998. 
 
These simulation studies imply that clear column radiances can be reconstructed under partial cloud 
cover with an accuracy comparable to single spot channel noise in the temperature and water 
vapour sounding regions; temperature soundings can be produced under partial cloud cover with 
RMS errors on the order of, or better than, 1 K in 1-km-thick layers from the surface to 700 mb, 1-km 
layers from 700-300 mb, 3-km layers from 300-30 mb, and 5-km layers from 30-1 mb; and moisture 
profiles can be obtained with an accuracy better than 20% absolute errors in 1-km layers from the 
surface to nearly 200 mb. 
 
Most importantly for the purpose of our study, they present a cloud clearing algorithm that is said to 
work well for the combined analysis of IARS/AMSUx data. No spectral knowledge of cloud 
parameters are required. There is however not much information on the treatment of AMSU 
measurements (i.e. Sy) found in this paper either.  
 

VANGASSE 1996 
 
P. Vangasse, J. Charlton and M. Jarrett , CHARACTERISATION OF THE ADVANCED MICROWAVE 
SOUNDING UNIT, AMSU-B , Adv.Space Res. Vol. 17, No. 1, pp. (1)75-(1)78, 1996. 
 
ABSTRACT 
The Advanced Microwave Sounding Unit, AMSU-B, is a five channel microwave radiometer to be 
flown later this decade on the series of polar orbiting spacecraft NOAA-K, L and M . It will provide 
global data in support of synoptic weather forecasting by sounding the water vapour content of the 
atmosphere from the ‘window’ channels at 89 and 150 GHz to the strong resonance line at 183.3 
GHz. It has a scan period of 22/3 seconds and provides 90 earth view pixels each of nominal beam 
width 1.1 degrees during earth scan. The key radiometric requirements of the instrument are to 
provide a temperature sensitivity of 1 to 1.2K depending on channel, a linearity within 0.3 of the 
temperature sensitivity and a beam efficiency of 95%. This paper describes the design of the AMSU-B, 
the ground based buy-off tests and results obtained for the Proto-Flight Model (PFM), Flight 2 (FM2) 
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and Flight 3 (FM3) Models in the context of these requirements. The Engineering Model testing is 
described in reference /1/. 
 
This paper gives a comprehensive overview of the instrument specification of AMSU-B. This includes 
the individual channel noise temperatures (NEBT), but also the channel linearity, as well as results 
from antenna pattern measurements. Thermal tests were performed at DRA Farnborough by the Uk 
Met Office, and antenna measurements were done at Queen Mary College, London. The numbers 
presented here are a useful reference for the determination of the measurement error covariance 
matrix, be it for the thermal noise error component only. 
 
The values of NEBT for AMSU-B channels are similar to those presented in McKague2001, however 
McKague et. al. Have escalated their numbers in a subsequent publication McKague2003, so some 
reservations will have to apply here.    
 

 

Figure 3-14: Pre-flight AMSU-B channel noise temperatures by Vangasse1996 

WU 2001 
 
X. Wu, L. Lavanat, F. Zhang, M. Ran and P. Brunel, RETRIEVING ATMOSPHERIC TEMPERATURES FROM 
NOAA-15 ATOVS MEASUREMENTS, ACTA METEOROLOGICA SINICA, Vol. 15, No. 4, 2001 
 
The authors describe an iterative, non-linear retrieval system based on a Optimal Estimation 
algorithm for the analysis of ATOVS data. The authors are based at the National Satellite 
Meteorological Centre in China. The NSMC are running their own pre-processing of ATOVS data with 
the AAPP package, with some unspecified adaptations “according to the local situation”. The AAPP 
was updated with the latest corrections for IARS and AMSU. The forward model used is RTTOV. 
 
The authors point out that due to the overlapping weighting functions the acquisition of realistic first 
guess profiles is important for the quality of the retrieval. In the presented work, the first guess 
profiles are derived from a 10 day rolling average based on the Chinese regional NWP HLAFS (High-
resolution Limited Area Forecasting System). The retrieval algorithm itself is classical OEM approach 
after Rodger. 
 
The paper includes tabulation errors of RTTOV calculations and observations for a ten day period 
between 21 and 30 August 1999 for NOAA-15 over land. The errors are calculated at 40 levels and 40 
ATOVS channels (channels 21-35 are the 15 AMSU-A channels, channels 36-40 are the 5 AMSU-B 
channels). These give a more comprehensive picture of the real noise performance of the ATOVS 
channels than pure NEBT numbers.    
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Figure 3-15: Errors of RTTOV calculations vs. observations for a 10 day period in August 1999. These "real 

life" errors could be more indicative of measurement errors than pure NEBT values. 

EYRE 1989 
 
Eyre, J. R., 1989: Inversion of cloudy satellite sounding radiances by nonlinear optimal estimation. I: 
Theory and simulation for TOVS. Quart. J. Roy. Meteor. Soc., 115, 1001–1026 
 
This two-part Publication (Part II is on application to real TOVS data) gives the first characterisation of 
MSU (and HIRS) channel noise performance used to calculate the error covariance matrix, and also a 
set of state vector variances used to calculate the a priori covariance matrix. Numbers are for the 
original MSU, not the advanced AMSU. 
 

 

Figure 3-16: Radiometric and forward model errors for the computation of the observation error covariance 

matrix after Eyre1989.  
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CHOU 2004 

HIEN-BEN CHOU and HUEI-PING HUANG, A new procedure for estimating observation errors in 

AMSU data and its application to retrieval, Q. J. R. Meteorol. Soc. (2004), 130, pp. 79–101 

SUMMARY 
An accurate estimate of observation errors is crucial to the retrieval of atmospheric profiles from 
satellite data using a variational method. In practice, observation errors, both systematic and 
random, are often estimated from the difference between satellite observations and simulated 
satellite observations obtained from a radiative-transfer operator with a 12 h forecast as its input. 
Observation errors estimated by this approach may be contaminated by errors in the 12 h forecast. 
This work describes a practical way to eliminate the 12 h forecast error and improve the estimate of 
the observation error in the Advanced Microwave Sounding Unit (AMSU) data. Following the 
philosophy of the National Meteorological Center (NMC) method (that derives the statistics of 
forecast error from the differences between pairs of forecasts at disparate ranges valid at the same 
time), in this study the pairs of forecasts at different ranges in the NMC method are first converted to 
brightness temperatures in the AMSU channels by a radiative-transfer operator. The 12 h forecast 
errors are then determined from the representations of these forecasts in radiance space spanned by 
the AMSU channels. Since most AMSU channels have beam position-dependent systematic 
observation errors, the procedure further takes into account this dependence by performing the 
statistics separately for sub-groups of data in each AMSU channel with different beam positions. In a 
case-study, after eliminating the 12 h forecast error obtained by this procedure from the total 
estimated observation error, the remaining random error of the satellite observation is shown to be 
smaller than the background error (provided by 12 h forecasts of a numerical weather-prediction 
model) in most of the AMSU temperature sounding channels. Using the error-corrected AMSU data in 
these channels, a retrieval experiment using a one-dimensional variational scheme shows an 
improvement of 0.2–0.4 K over the background error in the retrieved temperature profiles above 780 
hPa. 
 
The authors from the Central Weather Bureau in Taipei are using a 1D variational approach to 
retrieve atmospheric profiles from ATOVS data. The variational method has recently become widely 
used for retrieving atmospheric profiles from satellite data and for assimilating satellite data into 
numerical weather prediction systems (the meteorology background of the authors clearly shows 
here). In the variational approach, the ratio between background error and observation error 
crucially determines the weight given to the observations. 
 
In general, the results of retrieval or data assimilation, by a variational method or any other 
optimization approach, improve with more accurate estimates of the observation and background 
errors. Eyre (1989) showed that the results of retrieval are more strongly affected by the change in 
the inter-level correlation of the background-error matrix than that in the observation error. 
However, in his simulation study it is assumed that the observation has no bias. As the observation 
error includes random and systematic components, it is necessary to remove the systematic error 
and obtain an accurate estimate of the random error for the use in retrieval. 
 
In previous studies (Eyre 1992; English et al. 2000), the differences between observations and 
simulated observations calculated from a radiative-transfer model with short-range forecast profiles 
as inputs are used to construct the statistics of observation error. In such a procedure, the error in 
the short-term NWP forecast would inevitably contaminate the estimate of the observation error. 
The focus of this paper is the quantification and mitigation of this contamination. 
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The background-error covariance matrix B was constructed from statistics of the differences between 
analyses and 12 h forecasts (valid at the same time). The statistics of the differences between 
observation and simulated observation are used to remove the systematic component (bias) of 
satellite observation error and to construct the E matrix. 
 
The authors go one step beyond other publications in that they calculate the measurement errors 
not only for each channel, but also for each antenna angle in the across-track scan individually. This 
results in a large number of results, especially since they also give tables for the slopes and intercepts 
for the channel bias corrections, again tabulated by channel and antenna beam position. 
 
 

 

Figure 3-17: The estimated observation errors (thick lines) and 12 h forecast errors (thin lines) in radiance 

space in the AMSU channels. The short horizontal bar represents the systematic error, the length of the 

vertical stick the random error. The beam position is indicated in the abscissa. 
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Figure 3-18: Estimated measurement and forward model errors for a select number of AMSU channels used 

in this study, also as a function of beam position. These numbers a higher than the NEBT figures for each 

channel, but are a more realistic estimate of a true measurement error. 

 

Figure 3-19: Error statistics for the background error of the same AMSU channels 
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3.3 MEASUREMENT ERROR ESTIMATES FOR AMSU AND MHS FROM COMPARISON TO 

FORWARD SIMULATIONS 

Global IASI, AMSU and MHS measurements have been provided by Eumetsat for this study for 3 

days: 17 April, 17 July and 17 October 2013. The RAL implementation of the retrieval code has been 

run to simulate measurements for all first guess states on all these days, using the built-in emissivity 

models of RTTOV for the given location and times. The comparison of these simulated 

measurements with the satellite observations, provides some insight into the AMSU and MHS 

measurement errors, though clearly differences can be expected due to errors in the first guess 

state, forward model errors, as well as the inherent measurement errors themselves.  

Figure 3-20-Figure 3-22 show the gridded mean radiance in each AMSU+MHS band, together with 

the mean difference between the observation and simulation and the standard deviation in that 

difference. Only scenes with IASI cloud fraction < 0.01 are considered. All of these scenes for all 3 

days (ascending and descending node) are included in the statistics. The following points are noted: 

- There are particular strong biases over ice/snow. Over sea there is a large negative bias in 

the simulations as sea-ice is neglected in the simulations. Over Antarctica, the RTTOV 

emissivities are used but lead to large positive bias.   

- There relatively small negative bias in simulations over sea in the window channels. 

- There is a relatively large standard deviation in the difference in coast grid-boxes. This will 

be due to using the IASI land flag to represent the fraction of land in the AMSU scene, which 

leads to significant error in pixels overlapping the coast. 

To summarise differences further, histograms of the differences between observations and 

simulations are constructed. Ice/snow scenes are avoided in this analysis by (a) restricting the 

analysis to latitudes between 60S and 60N (b) ignoring scenes over sea with a (first guess) surface 

temperature colder than 270K. Examples of these (considering observations over land only) are 

shown in Figure 3-23. In order to estimate the random error in the differences, without undue 

weight to outliers in the distributions, we fit a Gaussian function to these histograms and consider 

the mean of the fitted Gaussian as a measure of the bias in the simulations and the standard-

deviation as a measure of the random error. These mean and standard deviations of the Gaussian fit 

are then summarised in Figure 3-24. For reference, Figure 3-25 shows comparable statistics for a 

selection of IASI channels (regularly sampling 1 in 5 of the channels used in the retrieval).  

The estimated AMSU+MHS measurement errors obtained from the Met Office are compared to the 

derived standard deviations. As might be expected the diagnosed standard deviations are generally 

somewhat lower than the observed-simulated standard deviations (as some component of this 

variability will come from error in the first guess state). However, in general, results are quite 

consistent. Both measures indicate relatively high uncertainty in the window channels, presumably 

largely due to errors modelling the surface emissivity. Similarly the derived standard-deviations for 

IASI are typically slightly larger than the measurement errors used by the retrieval scheme. Standard 

deviations over land are particularly high in window channels (presumably again due to errors in 

modelling surface emissivity).  
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Figure 3-20: Mean observed radiance in all AMSU (top 3 rows) and MHS (bottom row) channels in 5x10 

degree latitude, longitude bins, considering scenes with IASI cloud fraction < 0.01 for all three days. 
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Figure 3-21: Mean difference between observations and simulations in 5x10 degree latitude, longitude bins, 

considering scenes with IASI cloud fraction < 0.01 for all three days. 
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Figure 3-22: Standard deviation of the difference between observations and simulations in 5x10 degree 

latitude, longitude bins, considering scenes with IASI cloud fraction < 0.01 for all three days. 
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Figure 3-23: Histograms of the differences between observed and simulated AMSU (top 3 rows) and MHS 

(bottom row) brightness temperatures. Different colours show results for different latitude bands: Black= 

60-30S; red=30S-30N; green=30-60N. Thin lines show a Gaussian function. Results shown are for scenes over 

land, with IASI cloud fraction < 0.01. 
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Figure 3-24: Summary of the comparison between AMSU+MHS radiances with simulations. Top panel shows 

the mean observed brightness temperatures in each channel (index 0-14 are AMSU-A and index 15-19 are 

MHS). Middle panel shows the mean difference (observation – simulation). Bottom panel shows the 

standard deviation in the difference. In each panel, different colours (black, red, green) correspond to 

different latitude bands. Solid lines show results over sea and dashed lines over land. In the bottom panel, 

estimates of AMSU+MHS noise from the Met Office are also shown for comparison. 
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Figure 3-25: As previous figure but comparing IASI observations and simulations. Bottom panel shows the 

square-root diagonals of the measurement covariance assumed in the operational Eumetsat scheme. 
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3.4 ESTIMATING THE CROSS-CORRELATIONS OF THE MEASUREMENT ERRORS OF 

AMSU/MHS 

The measurement errors for AMSU and MHS derived from the literature, and also the on obtained 

within this study from the MetOffice, only define the diagonal elements of the measurement 

covariance needed for the OEM. I.e. no error correlation between adjacent channels is present. 

Correlations are specifically assessed in the work at ECMWF reported in Bormann et al. Error! 

Reference source not found.This work is briefly summarised here. 

The three methods are used to assess measurement errors in the work: 

 Hollingsworth/Loenneberg Method 

 Desroziers Statistic 

 Backround Error Method 

A common denominator of all three methods is that they are based on a statistical ensemble of first 

guess (FG) or analysis departures of pairs of observations. The observations in each pair are required 

to be less than 1 hour apart and originate from the same instrument on the same satellite. All 

possible pairs were collected over the study period, and the pairs of observations were binned by 

separation distance, using a binning interval of 25 km unless indicated otherwise. 

A common assumption is that the FG is spatially correlated, whereas observation errors are not. By 

analysing the error contribution and arranging the results in increasing order of the norm of the pair 

of measurements from the statistical ensemble, a conclusion of the cross-correlation length can be 

drawn. The different approaches of the individual methods are summarised in short details in the 

following paragraphs. 

3.4.1 HOLLINGSWORTH/LOENNBERG METHOD 

This method is based on the assumption that true background errors are spatially correlated, 

whereas observation errors are spatially uncorrelated. As a result, observation errors can be 

estimated by calculating FG-departure covariances from pairs of FG departures as a function of 

separation distance (see, for instance, the black lines in Figure 3-30). Observation errors are 

estimated by extrapolating the covariance/separation relationship from non-zero separations to 

zero separation, so that the FG-departure variance at zero separation is split into a spatially 

correlated part and a spatially uncorrelated component. The latter is assumed to give the 

observation error. The method also assumes that observation and background errors are 

uncorrelated. 

3.4.2 BACKGROUND ERROR METHOD 

This method uses covariances of FGdepartures and subtracts from these the assumed background 

errors, mapped into radiance space, and possibly scaled as described below. The background-error 

estimates are taken from the assimilation system, and they have been derived using an ensemble 

method. The background-error-subtraction method assumes that observation and background 
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errors are uncorrelated, and that the assumed background errors provide good estimates of the true 

background errors. The method is applied to derive spatial and inter-channel observation-error 

characteristics. 

3.4.3 DESROZIERS METHOD 

Assuming that variational data-assimilation schemes broadly follow linear estimation theory, 

consistency diagnostics can be derived for observation, background and analysis errors in 

observation space from FG and analysis departures. These diagnostics have been derived and 

summarized by Desroziers et al., and the authors of Bormann et al. make use of the following 

relationships: 

R = E [da d
T

b] 

HBHT = E [db dT
b] − E [da d

T
b] 

where R is the diagnosed observation-error covariance matrix, B is the diagnosed background-error 

covariance matrix, H is the linearized observation operator, db are the background departures of the 

observations, da are the analysis departures of the observations and E [ ] is the expectation operator. 

Apart from the usual assumptions on Gaussian errors and no error correlations between FG and 

observation, etc., the diagnostic expressions also assume that the weight given to the observations 

in the analysis is in agreement with the true error covariances. 

While primarily introduced as a consistency diagnostic, Desroziers et alargue that the diagnostic 

equations may be used to estimate improved versions of the background- or observation-error 

covariances. They point out that the diagnostic equations formulate a fixed-point problem, and the 

solution may be derived iteratively by using the diagnosed values in a subsequent assimilation, 

which is then used again to calculate the diagnostics. The method has been used to estimate 

observation errors and inter-channel error correlations. 

Figure 3-26 up to Figure 3-29 show the measurement error estimates and also the measurement 

error cross-correlations from the the methods described above. The results are first given for the 

AMSU-A instrument, and then for MHS. It’s worth noting that the AMSU-A analysis is based on data 

from the NOAA satellite, whereas this study of “OEM retrievals of measurements from IASI, AMSU 

and MHS is” based on measurement data from the MetOp-A version of AMSU-A and MHS. Given 

that the instruments on all platforms are of identical design, and that all potential inter-channel or 

inter-spatial cross-correlations are design specific, and not instrument specific, the findings should 

be directly transferrable to MEtOp AMSU/MHS. 
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Figure 3-26: AMSU-A measurement error estimates from Hollingsworth/Loennberg, Desroziers and 

background error method. 

 

 

Figure 3-27: AMSU-A error covariance matrices for (a) Hollingsworth/Loennberg, (b) background error and 

(c) Desroziers. Note that from Desroziers statistics the resulting matrix is not generally square; it has been 

squared in this example. Generally though, the cross correlations for AMSU-A are diminuitive. 
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Figure 3-28: AMSU-A measurement error estimates from Hollingsworth/Loennberg, Desroziers and 

background error method. 

 

 

Figure 3-29: MHS error covariance matrices for (a) Hollingsworth/Loennberg, (b) background error and (c) 

Desroziers. Note that from Desroziers statistics the resulting matrix is not generally square; it has been 

squared in this example. As opposed to AMSU-A the channel cross-correlations of MHS are rather large, and 

the results from the three methods differ visibly.  
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Figure 3-30: Spatial observation-error correlation for AMSU-A channel 5 (a) and MHS channel 3 (b) with a 

12.5 km binning interval. (Note the smaller range of separation distances for MHS compared to AMSU-A). 

 

3.4.4 COMPARISON OF HOLLINGSWORTH, DESROZIERS, ETC. VS. RAL AND METOFFICE 

MEASUREMENT ERRORS 

The conclusion from Bormann et al. Error! Reference source not found.are that both the channel 

and spatial cross-correlations for AMSU-A are negligible. It is therefore not surprising that the 

measurement errors for the AMSU channels generally agree between all 4 datasets. It’s only in the 

few window channels (4, 5, 6) that the RAL analysis is slightly higher than both the 

Hollingsworth/Loennberg and the Desroziers method. That is less so for MHS on the other hand.  For 

MHS, Bormann et al. found more significant cross-correlations. Nevertheless, the measurement 

errors they derive lie between the RAL analysis (Hollingsworth/Loennber) and the MetOffice 

diagnosed error (Desroziers). The four different datasets are therefore reasonably self-consistent. 

Only the operational MetOffice error is significantly larger than the others, but we have to recall that 

the operational error will include systematic error components (i.e. forward model errors).   

 

 

Figure 3-31: Comparison of AMSU/MHS measurement errors with the RAL methods described in Section 

Error! Reference source not found. as well as the MetOffice operational measurement errors. Where data is 

present, both the Desroziers and the Hollingsworth/Loenneberg method produce errors similar to the RAL 

method. Only in the window channels does the RAL method result in slightly larger measurement errors. 
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The MetOffice operational errors are larger overall, but they do include forward model errors which skews 

the comparison.  

 

4 TASKS 2 & 3: OEM(MWIR/METOP-B) OVER OCEAN, CLEAR-SKY AND LAND, CLEAR-

SKY 

In task 2, an OEM scheme for IASI which matches the Eumetsat product processing facility (PPF) 

settings is implemented at RAL. After vertifying the performance of the scheme, we then apply it to 

Eumetsat selected days of IASI and AMSU/MHS cloud-free data over ocean (Task 2) and land (Task 

3), to generate results for IR only and MW+IR (MWIR). Fixed surface emissivities as defined by 

RTTOV are assumed in this task. Results are evaluated by comparison to ECMWF analyses using a 

range of diagnostics. 

4.1 DERIVATION OF BIAS CORRECTION AND OBSERVATIONAL ERROR COVARIANCE FOR 

AMSU+MHS, BASED ON IASI RETRIEVALS 

IASI only retrievals based on the Eumetsat OEM have been used to derive a bias correction and 

observation error covariance for AMSU+MHS, under the assumption that the retrievals provide the 

best estimate of the true atmospheric state on which to base radiative transfer simulations of the 

AMSU+MHS observations. The following approach is implemented: 

 Results from the IASI-only scheme for all three days (17 April, 17 July, 17 October 2013) are 

used to simulate measurements in the AMSU+MHS channels. 

 The mean differences between these simulations and observations are determined 

separately for scenes over land and over sea. Only cloud-free scenes (according to the 

provided cloud mask) between latitudes 60 S and 60 N are considered (to avoid ice and snow 

covered cases, for which the emissivity is not well defined by RTTOV).  

 Differences are computed in 6 bins of across-track (and detector) pixel index, regularly 

spaced from 0-119 in steps of 20 across-track pixels (there are 120 IASI observations across 

track, i.e. 30 scans and 4 detectors). 

 This results in a 20 (AMSU+MHS channel) times 6 (across-track bins) times 2 (land, sea) 

dimension array, which is bi-linearly interpolated (in across-track pixel index and land 

fraction) to give the bias correction to be applied to a given observation.  

An approach based on view zenith angle (as provided by Eumetsat for IASI) was also tested, however 

some channels (particularly 8-14) appear to have bias which is not symmetric from the nadir, hence 

across-track index is considered more suitable. 

The binned differences are illustrated in Figure 4-1. This also shows the standard deviation in the 

differences (derived from a Gaussian fit to the histogram of differences). Standard deviations are 

also compared to the estimates of AMSU+MHS measurement errors from the Met Office. Generally 

the values derived here and from the Met Office are comparable, and lie between the analysed 

differences and the inferred contribution from observation / forward model errors. It is however 
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noted that the standard deviation is relatively large in channels 4 and 5 at the edges of the swath 

and all standard deviations are relatively large in channels 0-2. 

Figure 4-2 shows a similar comparison but from simulations based on the PWLR first guess (instead 

of IASI retrieval). It is noted that bias over sea in window channels 0-2 and 14 is smaller in this case 

(and this is also true for the corresponding standard deviations). 

The observation covariance for retrievals is then derived from the difference between the 

simulations and the bias corrected observations (considering all across-track pixels). A 3-sigma test is 

applied to exclude outliers, based on the standard deviation of the Gaussian fit to the histogram of 

all deviations (as described under Task 1, above). A separate covariance is computed for land and 

sea. The standard deviations are illustrated in Figure 4-3 (in which results are compared to the 

estimated values from the Met Office). Solid lines in this figure show the standard deviation of a 

Gaussian fit to the histogram of deviations; dashed lines show the standard deviation of the 

distribution derived from the covariance matrix (which are very similar to each other). Note that 

standard deviations are larger (by up to factor 3) in window channels over land.  

The correlation matrices in Figure 4-4. These reflect expected correlations in the window channels, 

arising from spectrally correlated errors in the modelling of surface emissivity. 

 

 

Figure 4-1: Statistical comparison of simulated and observed AMSU+MHS radiances, as a function of across-

track scan index. Simulations based on IASI-only retrievals. 
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Figure 4-2:  Statistical comparison of simulated and observed AMSU+MHS radiances, as a function of across-

track scan index. Simulations based on PWLR state. 
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Figure 4-3:  Statistical comparison of simulated and observed AMSU+MHS radiances, after bias correction of 

AMSU+MHS. Simulations based on IASI-only retrievals. Statistics are derived based on Gaussian fit to 

histograms and directly as mean and standard-deviations, after applying a 3-sigma test to exclude outliers. 
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Figure 4-4: Derived observation correlation matrices for Ocean (top) and Land (bottom), based on 

differences between AMSU+MHS observations and simulations based on IASI-only retrievals. Solid 

vertical/horizontal line in both plots separate AMSU and MHS channels. 
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4.2 IASI OEM RETRIEVALS (IR AND MWIR): RESULTS 

Retrievals have been run for all three selected days, globally over both land and sea for three 

retrieval configurations: 

- IASI only (which can be compared directly to the Eumetsat ODV results). 

- IASI+AMSU+MHS, using the bias correction described in section 4.1 and full estimated 

covariance. 

- IASI+AMSU+MHS, as above, but setting off-diagonal elements of the covariance to 0. 

To illustrate the information added by AMSU+MHS, four scenes, corresponding to mid-latitude land 

and sea and tropical land and sea, have been selected from observations on 17 April 2013. Scenes 

for which and ODV retrieval with relatively small cost and near-nadir observing conditions are 

selected. For these scenes, plots of the full averaging kernel, and estimated error profiles are shown 

in section 8 of the plot Annex to this report. These show linear retrieval results based on the PWLR 

(first guess / prior) profile (no iteration of the state is performed). For these examples, a forth 

retrieval option is tested in which the IASI+MHS measurement errors are assumed to be 0.2 K NEBT, 

an optimistic case corresponding to an assumption that the surface emissivity is perfectly known and 

hence no corresponding forward model errors need be considered. This indicates the maximum 

potential information gain that can be reasonably expected. 

The changes in degrees of freedom for signal (DOFS, the trace of the averaging kernel) for 

temperature and water vapour are summarised in Table 2 and Table 3 

 IASI-only MWIR 
full covariance 

MWIR  
no correlations 

MWIR 
0.2K NEBT 

Mid-latitude land 6.2 8.2 8.1 9 
Tropical land 6.9 8.9 8.8 9.9 
Mid-latitude 
ocean 

5.6 8.7 8.6 9.5 

Tropical ocean 6.9 9.2 9.1 10 

Table 2: Degrees of freedom for signal for temperature for 4 retrieval options and 4 example observations. 

 IASI-only MWIR 
full covariance 

MWIR  
no correlations 

MWIR 
0.2K NEBT 

Mid-latitude land 4 4.6 4.5 5 
Tropical land 5.5 5.9 5.9 6.4 
Mid-latitude 
ocean 

3 3.8 2.8 4 

Tropical ocean 5.4 6.1 6.1 6.5 

Table 3: Degrees of freedom for signal for water vapour for 4 retrieval options and 4 example observations. 
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Generally speaking, the following points can be concluded: 

- Using the derived observation errors, IASI+MHS add 2 degrees of freedom to temperature 

and about half a degree of freedom to water vapour. Effects on ozone are negligible. 

- Neglecting off-diagonals reduces DOFS on temperature and water vapour by about 0.1 (a 

small effect). 

- For temperature, the improvements are related mainly to the stratosphere though some 

improvement is also noticeable in the troposphere, in particular over the ocean (where the 

assumed measurement covariance is relatively low). 

- For water vapour improvements are mainly related to the upper troposphere, and penetrate 

to relatively low altitudes in the mid-latitudes. 

- Assuming 0.2 K NEBT errors to apply to all channels adds an additional degree of freedom to 

temperature and an additional half a degree of freedom to water vapour. This additional 

information relates to the troposphere for both water vapour and temperature, in some 

cases considerably sharpening the near-surface averaging kernel. 

Global results have been systematically compared to the provided ECMWF analyses.  The following 

sub-set of scenes is generally used for this analysis: 

 The L2 (version 6) cloudiness flag must have a value of 1 or 2 (see further discussion on the 

cloud flags in section 6.3, below). The operational OEM is only performed on such scenes. 

Usually the term “cloud-free” in this report is taken to refer to these scenes, i.e. not strictly 

cloud-free but sufficiently so to allow reasonable OEM retrievals without taking cloud 

explicitly into account. 

 The scene does not contain sea ice according to a Eumetsat provided test (based on the 

AMSU radiances in channels 1-3) 

 The scene does not contain significant precipitation, according to a Eumetsat provided flag. 

Furthermore, when large scale averaging is performed, this is usually done over a latitude range of 

60S to 60N to avoid issues particular to polar regions (problems modelling ice emissivity, low signal 

to noise etc).  

Profiles are retrieved on a vertical grid which is generally much more finely spaced than the vertical 

resolution. In order to avoid resolution-related issues strongly dominating the comparison, we 

perform statistical comparisons on smoothed, vertically sub-sampled, versions of the profiles.  A 

vertical grid more consistent with the expected vertical resolution is defined for each species. 

Profiles values (retrieval and analysis) are obtained at each point, i, in the grid by taking the 

weighted average of the profile values between the grid point i-1 and i+1, weighted by a triangular 

function which is zero at grid points i-1 and i+1and peaks at grid point i. Grids are defined in terms 

the quantity z*, which is log pressure, scaled to correspond approximately to altitude: 

𝑧∗ =  16 ∗ ( 3 − log10 𝑝)   

Equation 2 

Where p is pressure in hPa. Grids are defined separately for each species as follows: 
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- Temperature: 0, 1, 2, 3, 4, 6, 8, 10, 12, 14, 17, 20, 24, 30, 35,40,50 km. 

- Water vapour: 0, 1, 2, 3,4, 6, 8, 10, 12, 14, 17,20 km 

-  Ozone: 0, 6, 12, 18, 24, 30, 40 km. 

 The grid is defined relative to the surface pressure / z*. 

Comparisons are also made between retrieved profiles and the analysis smoothed by the averaging 

kernel (determined at the retrieval solution state), x’, derived as follows: 

x’  = a + A ( t - a ) 

Equation 3 

Where a is the a priori profile from the PWLR, t is the supposed "true", A is the retrieval averaging 

kernel (transformed to represent derivatives of the retrieval on the 101 level RTTOV grid with 

respect to perturbations in the true profile on that same grid). 

These results are shown in the plot annex. Both maps of comparisons on individual sub-sampled 

levels and profile statistics are shown (in sections 6 and 10 of the annex, respectively). Maps are 

shown for averages of the following three layers 0-2km, 0-6km and 6-12km, defined in z* 

coordinates, relative to the surface pressure. 

Section  9 of the plot annex also shows some more comprehensive sets of OE diagnostics for some 

selected, representative individual scenes. Section 5 includes plots of nadir retrievals along 

individual orbits. The basic performance of the IR+MWIR schemes are also summarised here in  

Figure 4-5 and Figure 4-6. 

Note that the annex includes results also from the extended retrieval schemes discussed under tasks 

4-5 below. For now, we focus on points regarding the application of the standard OEM to IR and 

MW+IR measurements. 

Differences between (RAL) retrievals and (Eumetsat) ODV are generally very small, particularly 

compared to the estimated retrieval error (from solution covariance). Some differences may be 

related to different measures of convergence. Some relatively large differences are seen over desert 

surfaces, where the retrieval cost function values are relatively high. These differences are 

attributed to the different convergence approaches implemented by the two schemes. In general 

the RAL scheme iterates further and reaches a slightly lower cost the ODV. 

According to the linear retrieval diagnostics (plots in section 8 of the annex), including AMSU+MHS 

measurements improves estimated errors slightly, however in real retrievals there is very little 

change in the agreement between retrievals and analysis (without using averaging kernels). 

Accounting for averaging kernels, the agreement with analysis is seen to degrade slightly (in terms of 

standard deviation) in general although the apparent degradation is worse for PWLR. The apparent 

degradation in performance in terms of agreement with analysis, accounting for kernels, is largely 

independent of viewing angle, latitude, and whether observations are over land or sea.  
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Including or not off-diagonals in the AMSU+MHS observation covariance has a minor effect on 

retrievals (confirming expectations based on the linear retrieval diagnostics for the four example 

scenes). For the remainder of the study, the MW measurement covariance with correlations was 

used in most retrieval runs.  

It is clear from the analysis that the PWLR results are already of rather high quality: Errors in 

temperature are around 1K and errors in humidity around 20-30% in most of the troposphere 

(reducing above). Performance is generally worse over land, particularly near (or at) the surface. It 

should however be noted that errors in the analysis (and its interpolation to the IASI location / time) 

will be larger near the surface over land, so some of this apparent degradation may reflect analysis 

error rather than retrieval error. It is a challenge for the OEM to significantly improve upon PWLR, 

however does do so, particularly for temperature over land. Some improvements can be seen near 

the surface, but it is also interesting to note the structure in the upper troposphere around 50N in 

the orbit cross-section (Figure 4-5) which is apparently better resolved in the analysis (similar 

features are seen in other orbits on this day). 

A couple of potentially misleading aspects of the comparison approach should be noted: 

 PWLR is trained using analysis. There may be situations in which the analysis is 

systematically wrong, and PWLR follows this incorrect behaviour, while the OEM is drawn 

towards the truth. In this situation the analysis approach here would indicate that the OEM 

performs worse than PWLR.   

 PWLR is used as a priori for the OEM. Some of the same measurement information has been 

used in the PWLR, so that the in principle the prior state depends on the measurements 

used in the OEM. This is not accounted for in the determination of the averaging kernels 

which may therefore under-represent the sensitivity of the end product to the truth. In 

practise this issue may not be too significant as the prior error covariance is large compared 

to the errors which would be expected purely on the basis of noise on the observations. It is 

estimated by comparison of PWLR retrieval to analysis and this includes a large contribution 

from analysis errors (including errors from sampling analysis to the time/place of the IASI 

observation, as well as inherent NWP error). Nevertheless, in some cases / regions, 

particularly for ozone, the prior constraint from the PWLR is rather strong, and the retrieval 

may not move far from the PWLR. Particularly in these situations (dominated by smoothing 

error), the PWLR may agree well with analysis smoothed by the kernels, because the latter 

tends to the prior (i.e. the PWLR). In the absence of information from the measurements 

PWLR and smoothed analysis will agree perfectly. Care should therefore be exercised in 

drawing conclusions from the relative performance of PWLR and retrieval in comparison to 

averaging kernel smoothed analysis. In order to avoid this issue and test some aspects of the 

OEM, in isolation from the PWLR, some retrievals are performed using a more simply 

defined, looser “climatological” prior state and covariance (see below).  

In general, it remains safe to say that if the retrieval improves over PWLR this can be considered a 

good result for the OEM. However, the converse does not necessarily imply the OEM is really worse 

than PWLR as PWLR is not independent of the analysis and may have errors in common.   
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The orbit cross section clearly illustrates the power of the PWLR approach, which allows retrievals of 

apparently similar (or only slightly degraded) quality to be performed in scenes also affected by 

cloud. In the later tasks of the study, we assess whether, via addition of the MW observations, the 

OEM can also be made to function in cloudy scenes. 

 

 

Figure 4-5: Example orbit cross-section from 17 April 2013. Top two panels show the difference from the 

analysis of the IR-only retrieved (RET-ANA) and PWLR (PWLR-ANA) temperature profiles (in K), respectively; 

bottom two rows show the corresponding differences for water vapour in %. Ribbons under each cross-

section show the land fraction, measurement cost (“jy”), L2 cloudiness flag (“flg_cldnes”) and the L2 cloud 

fraction. Panels on the right show the mean and standard deviations of the data in the cross-sections, 

however only including profiles for which the cloudiness flag is 2 or less (“C2” in legend) or 3 or less (“C3”).  
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Figure 4-6: Summary of differences between IR and MWIR retrieval, PWLR and analysis. Top two rows show 

results for temperature; bottom two rows for water vapour. Red curves show results for land and blue for 

sea. Dashed lines show the IR only results, solid lines MWIR. Panels are presented in pairs, with the left and 

right hand panel showing, respectively, the mean and standard deviation of the difference between retrieval 

and analysis (RET_ANA), PWLR and analysis (PWLR_ANA), retrieval and analysis smoothed by the averaging 

kernels (RET_ANA_AK), PWLR and analysis smoothed by the averaging kernels (PWLR_ANA_AK).  The 

analysis considers all scenes between 60S and 60N, with cloudiness flag 2 or less, and no precipitation or 

sea-ice, according to the flags provided by Eumetsat. 
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5 TASK 4: OEM (MWIR/METOP-B) OVER LAND, CLEAR-SKY, WITH VARIABLE 

EMISSIVITIES 

5.1 ADDITION OF LAND SURFACE EMISSIVITY TO STATE VECTOR 

 
Emissivity has been included in the state vector in terms of principle components, analogous to the 
approach use to represent the atmospheric profiles, and following an approach already 
implemented at RAL in our in-house retrieval schemes.  
 
For this project the principle components have been determined from the fields of assumed spectral 
emissivity which are used in Tasks 2-3. I.e. they are based on the values defined by RTTOV (v10.2) for 
the times and locations of the IASI measurements on the three days selected for this study. The 
spectral covariance of all these emissivity spectra (globally over both land and sea), jointly for 
AMSU+MHS and the selected IASI channels is determined. The eigenvectors and values of this 
covariance are obtained and used as the basis of the set of spectral patterns used, and the 
associated a priori covariance. Because RTTOV provides co-located emissivity spectra for both MW 
and IR ranges, the principle components include correlations between MW and IR, which could 
enable IASI measurement to constrain the emissivity used in the MW and vice-versa. Also because 
the values span global variation in a presumably realistic manner, the eigenvalues should provide 
suitable values to use as diagonal elements of the a priori covariance for emissivity. All off diagonal 
elements of the matrix are set to 0. 
 
Note that in RTTOV MW land emissivity can come from two atlases, either TELSEM [Ref:10] or CNRM 
[Ref:12]  (Sea emissivity is calculated using the FASTEM model independent of the selection of land 
atlas.) TELSEM is based on SSMI observations (and is the default setting for RTTOV v10.2). The CNRM 
atlas is based on AMSU A and B. Most work here (unless otherwise stated) is based on the TELSEM 
Atlas.  
 
Both databases are interpolated in RTTOV to define vales in the strong absorbing channels from 
measurements which are only available in the window channels. The spectral interpolation is 
(probably) of little importance for the simulation of radiances, but is found to introduce some 
(presumably numerical) artefacts into the spectral emissivity eigenvectors. We therefore simplify the 
representation of spectral emissivity in the MW before computing the covariance and eigenvectors 
as follows: 
 

 AMSU channels 1-3 and 15 are taken as provided by RTTOV. 

 AMSU channels 4-14 (all in range 52.8-57.3 GHz) are assumed to have the same emissivity as 
channel 3 (50.3 GHz) 

 MHS channel 1 is assumed to have the same emissivity as AMSU channel 15 (both 89 GHz). 

 MHS channel 5 is taken as provided by RTTOV. 

 MHS channels 2-4 (in range 157-183 GHz) are assumed to have the same emissivity as 
channel 5 (190 GHz). 

 
A similar approach is adopted in RTTOV for interpolation of the CNRM atlas, here we apply it to all 
emissivities (from both land atlases and over sea).  This means there are at most 5 independent 
values which define the emissivity in all 20 AMSU+MHS channels (and hence at most 5 eigenvectors 
are needed to be fitted in the retrieval). 
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For IASI, RTTOV uses the Borbas/ University of Wisconsin emissivity database [Ref:11] This is based 
on a set of 416 eigenvectors of the measured emissivity of a set of natural materials, defined on a 
416 point spectral grid spanning a spectral range of 699.3 to 2774.30 cm-1.  Emissivity values are 
extrapolated at fixed value for the channels in the CO2 band below 699.3 cm-1. Spatial distributions 
of emissivity are determined by fitting these eigenvectors to MODIS observations. Only the first 6 
spectral patterns are used for this (due to the limited number of MODIS channels), so only these 
spectral patterns are represented in the emissivity atlas.  
 
By deriving emissivity patterns from the RTTOV atlases, we can therefore obtain up to 6 
characteristic spectral patterns, together with realistic estimates of their variability to use in the a 
priori covariance. A few more patterns might be expected from the joint IASI+MW covariance 
(potentially adding 5 degrees of freedom), however in practise there is substantial correlation, and 
we therefore only take the first 6 spectral patterns from this matrix. IASI retrievals may well be 
affected by additional spectral patterns which are not represented in the atlases. In order to address 
this, further patterns from the set of 416 Wisconsin eigenvectors are added to the set of spectra to 
be fitted as follows: 
 

 The 416 Wisconsin patterns, in 416x416 matrix W, are interpolated onto the spectral 
sampling of IASI used in the retrievals (139 channels), defined in 139x416 matrix WI. 

 The first six Eigenvalues corresponding to the WI can be obtained from the variability of the 
associated patterns in the RTTOV climatology. The Eigenvalues associated with the 
Wisconsin patterns are not known however it is assumed that they should decrease in 
magnitude in the order in which they are provided by Wisconsin. For what follows it is 
mainly important that the order of the additional patterns is maintained (so the most likely 
spectral variations remain occur first in the final set of patterns). We assume that each 
pattern from number 7 onwards has an eigenvalue which is 1.3 times smaller than the 
previous pattern. 

 Having defined the Eigenvectors WI and associated Eigenvalues ωI. A new set of patterns 
which are orthogonal to the original six are obtained as follows 

o Each pattern (column i=1,416 of WI) is scaled by the square root of its Eigenvalue to 
obtain pi 

o The six original patterns are fitted to pi  to obtaining the residual pattern 
 

pi’ = pi - f(pi, RI) 

Equation 4 

where f(pi, RI) is a simple least squares fit of the six RTTOV based patterns (for the 
IASI channels), RI,  to pi. 

o A new spectral covariance is constructed from all 416 residual patterns (pi’ for 
i=1,N). 

o A new set of Eigenvectors, with appropriately ordered Eigenvalues are obtained by 
decomposing this covariance matrix to obtain WI’. 

 The patterns in WI’ are added to the 6 RTTOV based patterns, to obtain the full set W’ (for 
both MW+IASI). Elements corresponding to MW channels are assumed to be 0. The 
combined list of Eigenvalues is also obtained, ω’. 

 
In principle this results in a list of 422 patterns, however many of these have numerically negligible 
Eigenvalue. Only a limited number of these patterns are fitted in the retrieval. The retrieval fits the 
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weights (defined in vector v) of each pattern such that the emissivity modelled in RTTOV, e, is given 
by 
 

e =  v W’  

Equation 5 

The a priori errors for each element of v are assumed to be the minimum of the square root of the 
corresponding Eigenvalue in ω’ or 0.01 (values smaller than this are not allowed to prevent too tight 
a prior constraint). The a priori covariance is assumed to be diagonal. A priori values for v are set by 
fitting the chosen set of patterns to the standard emissivity given by the RTTOV emissivity atlas for a 
given scene. Differences between this fit and the RTTOV predicted emissivity are small. 
 
A number of options have been investigated as follows: 

 Correlations between IASI and MW emissivities can be included or not. In the latter case the 
first six patterns are determined independently from the IASI channels. Then the first 5 
patterns are taken from the RTTOV covariance for the MW channels. Then additional 
patterns for IASI are added to the list. The user controls the number of IASI patterns fitted 
the 5 MW patterns are counted in addition, so in results below a retrieval which indicates 20 
patterns always includes 20 patterns relevant to the IASI range. If MW correlations are not 
included then an additional 5 patterns will be included for the MW (25 patterns in all). Note 
that switching on or off the correlation affects the first 6 patterns in the IASI range, which in 
turn changes all patterns affecting the IASI range.  

 In test retrievals over desert (which are particularly prone to high cost due to presumed 
issues with RTTOV emissivity), it was noted that fit residuals could be significantly reduced if 
a pattern representing the first spectral derivative of the Wisconsin mean IASI emissivity 
spectrum was included in the fit (this has quite sharp gradients in the 10 micron region). This 
effectively corresponds to fitting a wavelength shift of the mean emissivity. Residuals 
improve further if pattern representing a wavelength stretch of the mean emissivity is 
included. We therefore include both these patterns in the main simulations reported here. 
These are inserted into W’ in order after the RTTOV based patterns, before the additional 
IASI patterns discussed above. 

 Tests have been run with 10, 20 or 30 patterns (columns of W’) fitted (including 6 RTTOV 
patterns and the 2 wavelength shift related patterns). 

 
The spectral patterns used are illustrated in Figure 5-1 and Figure 5-2. 
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Figure 5-1:  Bottom panels shows first 30 spectral patterns used to represent surface emissivity in the 

retrieval. Each eigenvector is shown offset by 0.25 with respect to the previous vector (for clarity). Only non-

zero MW Eigenvectors are shown. The top panels show the mean and standard deviation of the emissivity 

(note 1 minus the mean emissivity is shown).  



 

RAL Space 
STFC Rutherford Appleton Laboratory 
Harwell Oxford 
Chilton, OX11 0QX, United Kingdom 

Document:                     Final Report 
Customer Ref:                ITT 13/207194 
RAL Space Ref:               SSTD1569 

 2015-01-29 Page 74 of 120 

 

 
 

Figure 5-2:  As previous figure, when correlation between MW and IASI is ignored. 
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5.2 OEM RETRIEVALS OF MWIR AND STATISTICAL ANALYSIS 

5.2.1 OVERVIEW OF SIMULATIONS 

A series of retrieval experiments have been conducted to assess the performance of the retrieval 

scheme, with/without emissivity included and with/without MW measurements included. Results 

are presented here and in the annex to this report from the following retrieval configurations: 

In this task we discuss the following retrieval configurations: 

 standard: IR only, RAL retrieval as close as possible in setting to the EUMETSAT OEM. 

 MWIR: IR+MW retrieval (no emissivity, no cloud retrieval). 

 MW: MW only retrieval (no emissivity, no cloud retrieval). 

 Emis:20n: IR only retrieval, with 20 spectral emissivity patterns retrieved (no emissivity 

correlations between IR and MW). 

 MWIR; Emis:20: IR+MW retrieval, with 20 spectral emissivity patterns retrieved. Spectral 

correlations are assumed between emissivity in IR and MW. 

 MWIR; Emis:20n: IR+MW retrieval, with 20 spectral emissivity patterns retrieved. Spectral 

correlations are not assumed between emissivity in IR and MW. 

 Emis:10n: IR only retrieval, with 20 spectral emissivity patterns retrieved (no emissivity 

correlations between IR and MW). 

 Emis:30n: IR only retrieval, with 30 spectral emissivity patterns retrieved (no emissivity 

correlations between IR and MW). 

 MW; Emis:20: MW only retrieval, with 20 spectral emissivity patterns retrieved. 

All MW retrievals discussed here use full error correlations in the MW measurement covariance. 

When emissivity is also retrieved, two options are tested for the MW covariance over land: 

1) As described in the section 4.1, observation – simulation statistics (from the IR retrieval) are 

used to construct separate covariances and bias correction over land and sea. 

2)  The covariance and bias correction derived for observations over sea is used also over land 

(i.e. the same covariance and bias correction is used everywhere). This covariance has 

smaller errors; it is assumed that the larger observation/model deviations found over land 

are primarily caused by errors modelling emissivity, which should not be included now 

emissivity is retrieved. This may also be true over ocean, so it may be possible to further 

reduce the estimated measurement errors, however it is not straightforward to estimate the 

constribution of emissivity errors to the total estimated error over sea. (These retrievals are 

usually indicated in plots by the key “MWIR2”.)  

Differences between the two versions are usually small, though the second approach has slightly 

higher information content and slightly better performance; we therefore mainly refer to results 

from this scheme. 

Most retrievals have also been carried out with two prior assumptions: 
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 Eumetsat piece-wise linear regression (PWLR) used as to define the first guess and a priori, 

as used in the Eumetsat OEM. 

 A zonal mean climatology is used to define the a priori. This “climatology” is constructed as 

10 degree zonal means from the 3 days of ECMWF analysis data provided by Eumetsat for 

this study. In this case the mean of all profiles in each 10 degree zonal bin, over all three 

days, are used as the a priori profile for a given scene (the 10 degree profiles are assigned to 

the middle latitude of the bin and profiles are interpolated linearly to the latitude of a given 

observation). No time dependence is modelled in the climatology. The global covariance of 

differences between the zonal mean field and the individual ECMWF profiles is used as the a 

priori covariance. The state is actually represented in terms of eigenvectors of this 

covariance, with variances of the diagonal a priori covariance errors given by the 

corresponding eigenvalues. The profiles, eigenvectors and eigenvalues are shown in figure 

Figure 5-3. The same number of Eigenvectors are used as in the standard retrieval (28 for 

temperature, 18 for water vapour and 10 for ozone). No correlations between temperature 

/ water vapour / ozone are assumed. For surface temperature, a similar approach is used: 

The a priori values is the zonal mean value from the three days (interpolated in latitude), and 

the a priori error is the standard deviation of the individual values from this zonal mean, 

which is approximately 8.6K. 

This ``climatological’’ prior is used as an alternative here, to test the performance of the retrieval 

when given a looser (and less accurate) prior constraint that provided by the PWLR. Certain retrieval 

options may be expected to show greater impact under these conditions. It is also the case that the, 

with the climatological prior, the retrieval averaging kernels are unambiguously defined. When 

PWLR is used, measurements have been effectively used twice (once to obtain PWLR and once in the 

OEM). Averaging kernels are only determined for the OEM step and so do not characterise the full 

sensitivity of the result to the measurements and it is therefore not completely correct to expect 

agreement between the retrieval and the analysis smoothed by the averaging kernels (applying 

Equation 3) . Using the climatological constraint removes this ambiguity, but I might be expected 

that the absolute quality of results will be degraded (because in general the PWLR results are in very 

good agreement with analysis). 

Results from all these retrievals are shown in the plot annex to this report. 

5.2.2 COMPARISONS OF OBSERVED AND SIMULATED SPECTRA USING DIFFERENT 

EMISSIVITIY ATLASES 

Section 4 of the plot annex contains additional plots comparing observations with simulations. 

Results are shown for spectra binned by latitude, view zenith angle and by solar zenith angle. 

Comparisons are made between measurements and simulations based on the PWLR profiles and on 

retrieved profiles from a range of options.  PWLR simulations are performed using either the TELSEM 

of CNRS MW emissivity atlas. All retrievals are performed using TELSEM. 

From these figures, the following points are noted: 
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 Simulations with PWLR show that mean agreement with observations is different over land 

and sea. This is the case for both TELSEM and CNRS (land) atlases. The difference in bias is 

slightly smaller for CNRM, however the CNRM atlas leads to generally higher standard 

deviation in the differences (more scatter). Since we apply bias correction to MW 

observations used in retrievals, we prefer to continue using the TELSEM atlas as the 

improved standard deviation is most likely more useful than the slightly smaller bias before 

correction. 

 The bias over land depends strongly on solar zenith angle, i.e. on whether observations are 

made the day-time or night-time overpass. A corresponding pattern in bias is also present 

for the IASI simulations from PWLR (e.g. see fig 13 of the annex). IASI window channels have 

a positive bias over land in day-time, while the first two AMSU channels are negatively 

biases with respect to the night-time case (actually bias is positive at night and close to zero 

during daytime).  This difference is difficult to reconcile physically, and the day/night 

difference is not currently included in the bias correction applied in retrievals (this only 

models land/sea and view zenith dependent bias).  

 As might be expected from the above, when results from IASI retrievals are used to model 

MW radiances, the divergence in MW bias between day and night increases (fig 15). 

 The joint MWIR retrieval also cannot resolve this issue, and day/night differences in bias 

over land remain, while those over sea are reduced to near zero (fig 16).  

 When emissivity is jointly retrieved however the window channels are much better fitted 

(figs 17 and 18), with reduced bias land/sea/day and night, and reduced standard deviations. 

Results are slightly better when correlations are not assumed between the MW and IR 

emissivity patters (fig 18).  However it is unlikely that this improvement has been made with 

consistent values of retrieved emissivity over the same land locations when observed in 

daytime vs night-time. I.e. there remains an unresolved inconsistency in the diurnal variation 

observed over land in the IASI and MW window channels, which probably affects the quality 

of combined retrievals over land in particular.  

 The bias in IASI window channels during day time could be caused by errors in the RTTOV 

predicted emissivity (which one would hope retrieval of emissivity might correct), or could 

be explained by errors in the PWLR. One mechanism for errors in PWLR could involve error 

in representing the diurnal variation of surface (or near-surface) temperature in the training 

data, which would particularly affect day-time retrievals over land. 

We currently keep the approach adopted in task 2 and 3, and used the TELSEM emissivity in 

retrievals (when emissivity is not retrieved). We also continue to bias correct the MW radiances 

using the differences of MW observations from simulations based on the IR only retrieval (as 

described in section 4.1).  
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Figure 5-3: Zonal mean fields (left) and Eigenvectors/values of the departures of the ECMWF analysed 

profiles from the zonal mean, as used to define the “climatological” prior constraint used in some retrievals. 
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5.2.3 EXAMPLE RETRIEVALS WITH EMISSIVITY INCLUDED 

Retrievals over desert are particularly problematic for the standard OEM, particularly in the day-

time. Typically retrievals lead to relatively high cost, and anomalously high values of tropospheric 

ozone are retrieved. This behaviour is likely to be related to the strong spectral variations of the 

desert surface emissivity, particularly in the 10 micron region (around the ozone band). 

Initial test of the emissivity retrieval were therefore carried out for a selected desert scene (mainly 

over Egypt). Results from some tests are shown in figures Figure 5-4- to Figure 5-7. Each figure 

shows the following: 

 Top left: “pink” false colour plot constructed from IASI channels near 8.9, 11 and 12 microns. 

This is a standard false-colour combination used for SEVIRI, in which desert dust plume tend 

to appear as pink/magenta.  

 Jy: measurement cost 

 Nstep: number of retrieval steps (including bad Marquardt Levenberg “tries”) 

 The for each state parameter TS (surface temperature), T (temperature profile), W (water 

vapour profile) and O (ozone profile): 

o Ret: The retrieved value. 

o Ret-ANA_AK: Difference between retrieval and analysis smoothed by averaging 

kernel. 

o PWLR-ANA_AK: Difference between PWLR and analysis smoothed by averaging 

kernel. 

For T,W and O the mean value and mean difference shown is averaged over the lower 

troposphere (LT), i.e. Z* is 0-6km above the surface. 

Figure 5-4 shows the standard retrieval, shows cost function values around 1000 (where 100 is more 

typical of other surface conditions). Sometimes many steps are needed to obtain convergence.  

Figure 5-5 shows the corresponding results with 10 emissivity patterns fitted (still only using IASI). 

Cost function values are typically halved, and the number of steps much reduced. Tropospheric 

ozone values are also reduced to somewhat more realistic values. 

Figure 5-6 shows results with 20 patterns fitted. Cost function values are further reduced (to around 

300), as is the tropospheric ozone. Figure 5-7 shows results with 30 patterns fitted. These are quite 

similar to those with 20 patterns fitted. Most retrievals have therefore been conducted with 20 

emissivity patterns. 

Water vapour and temperature are not strongly affected by the inclusion of emissivity, or the 

number of patterns fitted. 

Figure 5-8 shows measurements / simulations and fit residuals for the standard retrieval from one of 

the retrievals (near the centre of the scene). Figure 5-9 show corresponding results for the 20 

pattern emissivity retrieval, together with the fitted emissivity spectra, which are compared to that 

predicted by the RTTOV atlas.   
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The robustness of the emissivity retrieval has been tested by running retrievals in which the a priori 

emissivity spectrum is set to 1 (spectrally independent), as opposed to using the RTTOV atlas 

emissivity spectra as the prior state. Results from this retrieval for the example scene are shown in 

Figure 5-10. The retrieval gives a very similar emissivity spectrum fit cost (and solution atmospheric 

state) with this prior, confirming that the retrieval seems to be rather stable.  

Global maps of emissivity are presented in the plot annex, and are also illustrated in Figure 5-15. In 

general departures from RTTOV values are small; the emissivity tends to be bounded reasonably well 

in the expected range (values do not typically exceed 1 by more than ~0.02). Also departures from 

RTTOV show broadly similar patterns in the day and night overpasses. 

Despite the strong improvement introduced in desert scenes, systematic fit residuals remain, 

indicating scope for further work to improve the spectral patterns used in the fit. 

5.2.4 RETRIEVAL OF IR BIAS CORRECTION SCALE FACTORS    

While the addition of emissivity to the state vector is found to considerably reduce cost over desert, 

it was noted that cost remained relatively high over cold (ice/snow) surfaces. Some experimentation 

was carried out in an attempt to inject into the fitted patterns variations in ice/snow spectral 

emissivity based on available information from the literature, however it was confirmed that already 

the existing patterns contained the expected spectral shape of ice/snow (adding further patterns did 

not change the quality of the fit). It was however noted that residuals over ice/snow were smaller if 

the Eumetsat prescribed IR spectral bias correction was not applied, presumably indicating that the 

FM errors which this seeks to address are scene dependent, probably related to water vapour 

spectral features. To address this, the option to retrieve scale factors for the two bias correction 

vectors b0 and b1 (see section 2.4) was introduced into the retrieval. This resulted in a retrieval 

scheme which has generally reduced cost (see Figure 5-13). Introduction of the bias correction 

factors into the retrieval seems to have no adverse impact on the scheme, so this is enabled by 

default in most retrievals reported in later work, including task 5,6). The summary tables in section 7 

of the annex contain statistics which confirm this. Example maps of the fitted parameters are shown 

in Figure 5-14. As expected the scaling factor for pattern b0 has little scan angle dependence, 

whereas that for b1 clears shows across-swath structure. Both terms tend to low values towards high 

latitude. 
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Figure 5-4: Example retrieval over desert. Standard retrieval configuration (emissivity from RTTOV). 
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Figure 5-5: Example retrieval over desert. 10 emissivity patterns retrieved 
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Figure 5-6: Example retrieval over desert. 20 emissivity patterns retrieved 
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Figure 5-7: Example retrieval over desert. 30 emissivity patterns retrieved 
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Figure 5-8: Measurements and residuals for standard retrieval in centre of scene shown in Figure 5-4. 

AMSU+MHS not fitted. 

 

Figure 5-9: Measurements, residuals and RTTOV + fitted emissivity spectra for same scene as previous 

figure. For retrieval including 20 emissivity patterns. Dashed lines in the emissivity panels show the 

estimated error in the retrieved emissivity. AMSU+MHS also fitted. 
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Figure 5-10: Measurements, residuals and RTTOV + fitted emissivity spectra for same scene as previous 

figure. For retrieval including 20 emissivity patterns. A priori emissivity set to 1 (spectrally uniform). Dashed 

lines in the emissivity panels show the estimated error in the retrieved emissivity. AMSU+MHS also fitted. 

 

Figure 5-11: Measurements, residuals and RTTOV + fitted emissivity spectra for scene over Greenland. 

Emissivity retrieved. 
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Figure 5-12: Measurements, residuals and RTTOV + fitted emissivity spectra for scene over Greenland. 

Emissivity and bias correction scale factors retrieved. 

 

Figure 5-13: Measurement cost function values for the standard IR only scheme (left), IR scheme with fitted 

emissivity (centre) and IR scheme with fitted emissivity and IR bias correction scale factors (right). Maps 

consider results for all 3 Metop B days, day+night. 
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Figure 5-14: Maps of the retrieved bias correction scale factors for vectors b0 (left) and the scan dependent 

term b1, right. Results shown are 5 degree gridded means of cloud-free day time retrievals on 17 April 2013. 

 

 

Figure 5-15: Maps of the retrieved emissivity, compared to RTTOV atlas values. Top two rows show, 

respectively, results day-time and night-time at 25GHz; Bottom two rows show corresponding results at 12 

microns. From left-right panels show: retrieved emissivity; RTTOV emissivity; the ESD for emissivity; the 

difference between RTTOV and retrieved emissivity. 
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5.2.5 IMPACT OF EMISSIVITY RETRIEVAL ON TEMPERATURE AND HUMIDITY  

Figure 5-16 shows results analogous to those in Figure 4-6, but in this case MWIR results include 

joint retrieval of emissivity. Results for temperature are hardly changed at all, but for humidity there 

is a significant improvement from fitting emissivity in the lower troposphere (<3km), over land. 

Standard deviation compared to analysis is reduced from 25 to 20%. Results are shown here for the 

MWIR scheme, but similar performance is achieved for the IR-only scheme. Summary tables in 

section 7 of the annex show that this is a robust effect, independent of the whether PWLR or 

climatology is used as prior, or of the option selected for the MW measurement covariance.  
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Figure 5-16: Summary of differences between standard IR and MWIR retrieval, PWLR and analysis. MWIR  

includes joint retrieval of surface emissivity. Top two rows show results for temperature; bottom two rows 

for water vapour. Red curves show results for land and blue for sea. Dashed lines show the IR only results, 

solid lines MWIR. Panels are presented in pairs, with the left and right hand panel showing, respectively, the 

mean and standard deviation of the difference between retrieval and analysis (RET_ANA), PWLR and 

analysis (PWLR_ANA), retrieval and analysis smoothed by the averaging kernels (RET_ANA_AK), PWLR and 

analysis smoothed by the averaging kernels (PWLR_ANA_AK).  The analysis considers all scenes between 60S 

and 60N, with cloudiness flag 2 or less, and no precipitation or sea-ice, according to the flags provided by 

Eumetsat. 
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6 TASK 5: OEM(MWIR/METOP-B) IN PARTIAL OR FULL CLOUDY IFOVS 

In this work package cloudy pixels are introduced to the retrieval. Operational products are used to 

segment scenes by cloudiness. A series of flags are cloud related quantities are available in the IASI 

L1 and L2 products. Here we focus on a few of the parameters given by the version 6 L2 products 

(refer to the IASI level 2 Product Guide [Ref:3] ). The primary indicator of cloud used here is the 

cloudiness flag “FLG_CLDTST”. Possible values of this cloud flag are: 1 (clear), 2 (presumably clear), 3 

(partly cloudy), 4 (fully cloudy). In particular scenes with cloudiness flag 1 or 2 are analysed in the 

previous work of this study. The work of task 5 focuses on extending and characterising the 

performance of the OEM for scenes with cloudiness 3 and 4. In order to further segment scenes the 

L2 cloud fraction and cloud top pressure are also used. 

Within this task the OEM is extended to make allowance for the presence of cloud in two ways: 

 The method of McNally and Watts [Ref:14]  is used to identify channels which are affected 

by cloud, such that individual channels rather than whole spectra can be screened. 

 RTTOV’s simple black-body model for cloud is used in the FM and the fraction of pressure of 

the cloud is retrieved. 

The quality of the retrievals in cloudy scenes is assessed by comparison to ECMWF analysis, as in the 

previous tasks. 

6.1 MCNALLY-WATTS METHOD (WMC) 

The McNally-Watts cloud detection scheme (here referred to as the WMC scheme) attempts to 

identify spectral channels which are unaffected by cloud, rather than find completely cloud-free 

scenes. In this way observations in a sub-set of cloudy scenes can still be used, even if the 

information content of the observations is reduced compared to cloud-free conditions.  

The approach consists of three main steps (also illustrated in Figure 6-1): 

1. For a given measurement, a clear-sky RT simulation is performed based on the best available 

knowledge the atmospheric state. In [Ref:14] this is taken from short-range NWP forecasts. 

Here we use the PWLR results.  

2. Considering cloud as a black body situated at a given altitude, the sensitivity to cloud of each 

channel as a function of altitude is determined. This can be obtained from output, which is  

automatically computed by RTTOV at step 1 (overcast radiances). The lowest altitude at 

which each channel can be considered to be unaffected by cloud is identified.   

3. The difference between observations and measured radiances (i.e. departures) are ordered 

in decreasing order of the assigned channel cloud-altitude-sensitivity. In this ordering it is 

expected that differences will be small until the assigned channel altitude is at or below the 

altitude of a cloud (if present). At this point the difference should (mainly) increase or 

decrease monotonically (depending on the temperature of the cloud compared to the 

underlying surface).  The scheme attempts to identify where these cloud induced departures 
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start to occur. Channels with altitude sensitivity above this point can be considered cloud 

unaffected. 

Steps 2 and 3 are dependant of a number of settings, which can be varied to alter the sensitivity of 

the approach. This is particularly true for step 3, where a number of complicating factors arise, in 

particular: 

 Cloud extinction is wavelength dependent, so it may be beneficial to consider distinct 

spectral bands (e.g. long-wave CO2, short-wave CO2, water vapour bands, ozone band).  

 Vertical structure in cloud is coupled to vertical structure in temperature, and the T/p 

dependence of line-shapes means that departures are not strictly monotonic, so low pass 

filtering of the ordered radiances is required. Obtaining a clean monotonic signal may 

include tuning the channels, which are used as well the properties of the low pass filter.  

Once a clean signal is obtained, threshold values need to be defined (based on gradient and 

absolute departures) to identify where the departure occurs. 

To avoid a length exercise to optimise these settings for this particular application, we directly use 

the NWPSAF cloud detection code, obtained from 

(https://nwpsaf.eu/deliverables/IR_aerosol_cloud_detect/, together with its default settings for 

IASI. These are presumed to be the settings operationally used at ECMWF (tbc). This implements 

step 3 of the above scheme. Step 2 is implemented as described in [Ref:14] . Note the following 

aspects of this implementation: 

 For IASI, only long-wave CO2 channels are used in the test. The cloud-sensitivity-altitude 

derived from these channels is transferred to the other bands. 

 The scheme depends on using a specific set of channels. Using the channels of the OEM 

scheme results in much degraded (less monotonic) sets of departures and hence poorer 

detection performance. We therefore run RTTOV for both sets of channels (the standard 

WMC channels and the OEM channels). The cloud-sensitivity-altitude is first identified from 

the WMC channels, after which all OEM channels with sensitivity below this value are 

subsequently ignored in the retrieval. 

Channels are “ignored” by setting their respective measurement errors to a very large value 

(variance 1x1019). 

https://nwpsaf.eu/deliverables/IR_aerosol_cloud_detect/
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Figure 6-1: From McNally & Watts paper: (a) Simulated clear radiances (open circles) and simulated cloudy 

radiances (solid circles) without noise, (b) the departure vector formed by the difference of cloudy minus 

clear, (c) the ranked departures and (d) the ranked/band-partitioned departures. 
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6.2 RETRIEVAL OF CLOUD IN THE OEM 

As an alternative to using WMC to screen cloud-affected channels, the potential to deal with cloudy 

scenes by include a simple cloud representation in the state vector/FM is tested. Here we adopt the 

simple blackbody cloud model built into RTTOV. The state vector is extended with the following 

parameters: 

 Logarithm of the cloud fraction (so the value is forced to be positive). A priori value is 

ln(0.01) (i.e. 1% fraction) with a priori error 10 (i.e. 1000% relative error on the prior 1% 

fraction). 

 Z* cloud pressure-height in km. A priori value is 5km, with error 5km. 

Sample results for a given scene are shown in Figure 6-2 over the isle of Kyushu (Japan). In the false 

colour infrared image (top centre) we can clearly see a homogeneous cloud cover over the southern 

part of Japan, extending to the west over the sea up to the shores of China. 

The retrieved cloud top fraction and height reflect this picture very well. Even some of the finer 

details and filament structures of the northern cloud boundary region are returned by the retrieval. 

The retrieved cloud top height of ~10km is realistic for that latitude; values around 5km in cloud-free 

regions reflect the prior value. 

Most importantly in this picture is the observation that the retrieved surface temperature (bottom 

centre) underneath the cloud layer also looks very credible. There are no artefacts in the surface 

temperature field at all at the demarcation line between the cloudy and the cloud free domains, as 

could reasonably be expected.  

Looking at the standard deviation of the retrieved surface temperature (bottom right) it is 

furthermore evident that the retrieval is challenged much more in the presence of clouds. The low 

values over cloud free regions are from regions where the infrared channels contribute all the 

information in the temperature retrievals. In these regions the infrared window channels can see all 

the way down to the surface. The regions of high estimated standard deviation (ESD) indicate 

situations where most information comes from either prior (PWLR) or MW channels. 
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Figure 6-2: Results of adding cloud fraction and cloud top pressure to the state vector. These retrievals are 

nominally restricted to cloud free views with the aim to test the retrieval mechanics, but due to unavoidable 

errors in the cloud-flagging, some views can still be affected by clouds as this example over the Kyushu 

region of Japan demonstrates. The retrieved cloud fraction and cloud top height are consistent with the 

false colour infrared picture (top centre). The retrieved surface temperature underneath the partially cloudy 

pixel appears reasonable, though the ESD reflects the lack of sensitivity of the IR observations to the 

surface. 

 

6.3 COMPARISON OF CLOUD MEASURES 

The modified OEM has been applied to process all scenes with both cloud treatment options, this 

results in a estimates of cloud height and fraction from the OEM scheme (when cloud is retrieved), 

and cloud height from the WMC approach. These are compared to the operational L2 quantities 

here. 

Figure 6-3 illustrates various cloud measures obtained during daytime from the Metop B data on 14 

April 2013. Quantities are averaged over 5x5 degree latitude longitude boxes: 

 RAL ZCLEAR: The WMC identified minimum cloud-sensitivity-altitude. 

 Eumetsat cloud flag: the Eumetsat flag (which can have value 1-4). 

 RAL cloud fraction: Retrieved cloud fraction from MWIR (also retrieving emissivity). 

 Eumetsat cloud fraction: Cloud fraction from operational L2 product. 

 RAL cloud-top height: Retrieved cloud-top pressure, converted to approximate altitude 

(scaled log(pressure)). 
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 Eumetsat cloud-top height: L2 cloud-top pressure, converted to approximate altitude as 

above. 

The bottom rows of Figure 6-3 (and following) show the cloud top height comparison again, but this 

time normalised by mean cloud fraction. This means that in the binning process each retrieved cloud 

top height is multiplied by the corresponding retrieved cloud fraction, and once the binning is 

completed the values are divided by the mean cloud fraction of the entire bin.  

Figure 6-4 shows similar data for nighttime measurements. Figure 6-5 and Figure 6-6 show, for cloud 

fraction and height respectively, the scatter density plots for RAL OEM vs. Eumetsat L2 products, 

split by land/sea and by latitude range. 

It is clear from these plots that: 

The general patterns of cloudiness from the schemes correlate well. 

The WMC scheme indicates a “clear” altitude, which is generally considerably (~factor 2) greater 

than the other measures of cloud height – it is therefore considered to provide quite a conservative 

cloud screening. 

The Eumetsat L2 and RAL OEM cloud fraction and height correlate very well. Over land there is little 

bias, and what bias there is, is introduced through some outliers in the height comparison. Over sea, 

the Eumetsat fraction is systematically (~0.1) larger than the RAL OEM result, with a compensation 

effect in height. 
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Figure 6-3: Comparison of retrieved cloud parameters for daytime orbit segments. 
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Figure 6-4: Comparison of retrieved cloud parameters for night-time orbit segments. 
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Figure 6-5: Correlations of retrieved cloud fraction by the RAL and EUMETSAT scheme, dissected in to 

various regions (sea/land and north/mid-latitude/south). 
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Figure 6-6: Correlations of retrieved cloud top height by the RAL and EUMETSAT scheme, dissected in to 

various regions (sea/land and north/mid-latitude/south). 
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6.4 OEM RETRIEVALS (MWIR) W/ CLOUDS AND STATISTICAL ANALYSIS 

The impact of cloud on the OEM retrievals has been assessed by running a series of retrieval 

experiments. The basic retrieval configuration used includes fitting surface emissivity (20 

components), with correlation between IR and MW (if MW fitted). We also include fitting of scale 

factors for the IASI bias correction spectral patterns. The following retrieval configurations are run 

on all scenes for which a PWLR result is present: 

 Cloud is neglected by the FM. PWLR used as a priori. 

 Cloud is neglected by the FM, but the WMC method is used to flag/ignore channels affected 

by cloud. PWLR used as a priori. 

 Cloud is included in the state/FM. In this case tests have been run using both PWLR as a 

priori and the climatological constraint. 

In all cases both IR only and MWIR retrievals have been run.  

Some example retrievals are illustrated in Figure 6-7 and Figure 6-8 which, analogous to Figure 4-5, 

shows cross sections of retrieval- analysis along an orbit, for a number of different retrieval 

configurations. Many more results are presented in sections 5 and 11 of the plot annex. Note that 

statistics are computed only for retrievals which have a final cost smaller than 500. Where cloud is 

neglected it is important to note that cloudy scenes give rise to high cost, so this screening tends to 

remove the most cloud affected scenes from statistics for the case in which all cloud is not treated at 

all. One of the main benefits of both cloud treatment approaches (WMC or cloud retrieval) is the at 

the number of scenes with acceptable retrievals increases greatly, and this should be noted when 

studying the summary tables in section 11 of the annex. For retrievals which treat cloud (WMC or 

cloud retrieval), most scenes converge to lower cost than 500.   

Tables are shown in Figure 6-9 - Figure 6-13, which show mean retrieval diagnostics and statistics for 

lower temperature and water vapour, for day-time land scenes only (all scene versions are included 

in the annex). The tables are colour coded by the value in the cell, to broadly indicate increasing 

values from purple-blue-green-red. In these figures scenes are summarised as a function of the 

cloudiness flag. Other tables and maps in the annex divided results up also by the Eumetsat cloud 

fraction and height. In the diagnostic summary table, the following key is used in the x-axis: 

 N: Number of scenes averaged in the sample (x1000) 

 JY: Measurement cost from (RAL) retrieval. 

 JX: State cost from (RAL) retrieval. 

 NI: Number of retrieval iterations in RAL retrieval. 

 T:DOFS: Number of temperature profile degrees of freedom for signal. 

 W:DOFS: Number of water vapour profile degrees of freedom for signal. 

 O:DOFS: Number of ozone profile degrees of freedom for signal. 

 TS:DOFS: Number of surface temperature degrees of freedom for signal. 

 EM:DOFS: Number of surface emissivity degrees of freedom for signal (if retrieved). 

 CFR:DOFS: Number of cloud fraction degrees of freedom for signal (if retrieved 
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The table for temperature uses the following key: 

 RET: Retrieved value 

 ANA: ECMWF Analysis 

 ESD: The estimated retrieval error (from the solution covariance). 

 RET - ODV: Difference between retrieval and the corresponding Eumetsat result. 

 RET - ANA: Difference between retrieval and analysis. 

 PWLR - ANA: Difference between the PWLR and ANA. 

 RET - ANAxAK: Difference between retrieval and analysis smoothed by the retrieval 

averaging kernel. 

 PWLR - ANAxAK: Difference between the PWLR and ANAxAK. 

Most mean quantities shown here are simple means over all samples, in a given layer (0-6km in the 

case of the example figure shown here). The standard deviation is a measure of the variation of the 

quantity (or difference) within the whole layer, including in the vertical. To avoid outliers these 

standard deviations are computed from accumulated histograms (probability distributions) of each 

quantity (see annex for more details). 

The following points are made with regard to handling of cloud in the OEM: 

 When cloud is ignored, cost is similar for cloud mask 1 or 2. However it can be noted that 

there is an increased negative bias in Retrieval – Analysis temperature for mask 2 cases 

compared to mask 1 (indicating cloud contamination to be an issue even for these cases).  

Cost increases greatly for cloud mask 3 and again for cloud mask 4 (as does the bias). Most 

scenes still pass the cost threshold (500) when only IR channels are fitted. However when 

MW is also fit, only around half the available mask-4 cases pass this test (indicating the MW 

and IR cannot be reconciled without accounting for cloud). 

 Ignoring cloud generally gives rise to a negative T bias and positive humidity bias in the 

lower troposphere, in particular at levels below the cloud, with decreasing magnitude as 

function of height above the cloud in both cases.  

 When applying McNally Watts almost all scenes converge. Cost is generally very low because 

the screening is conservative; all channels are used in only a small fraction of scenes (much 

less than would be indicated by the cloud mask). Biases vary weakly with cloudiness, though 

can be notable particularly in humidity when cloud fraction is very high and the cloud is 

above 4km altitude. This bias is quite different depending on whether MW is used or not, 

indicating error in either MW or analysis for high cloud amount/height. On the other hand, 

DOFS for all species is seen to degrade as cloudiness increases and so the retrieval will tend 

towards its (PWLR) prior. For this reason the contribution of the MW is particularly evident 

when WMC is used. MWIR DOFS are generally larger than IR DOFS. With WMC, MWIR 

T+H2O DOFS are comparable to those of IR only without the cloud screening. DOFS for 

surface temperature are very low for WMC if the MW is not used (even then they are 

significantly smaller than 1). DOFS for ozone are always small for WMC.  

 WMC clearly provides a very conservative (safe) cloud screening, to the extent that 

performance of the MWIR in cloud-free scenes (flag 1 or 2) is degraded by using the 
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approach. Clearly it would be desirable to optimise the use of McNally Watts, and only apply 

it in scenes which are considered to be sufficiently cloudy to justify it. As an initial suggestion 

it would seem reasonable to only apply McNally Watts when cloud mask is 3 or 4. 

 DOFS are larger when cloud is retrieved than when McNally Watts is applied. The benefit of 

MW channels is clear also in this case for cloudy scenes (mask 3 + 4). This can be seen in 

DOFS, but also in reduced bias in retrieved T, especially when the climatological constraint is 

used. 

 When cloud is retrieved DOFS for surface and temperature are reduced even in cloud free 

scenes, indicating that there is some cross-correlation between these variables (as might be 

expected). This is also reflected in the larger number of iterations required when cloud is 

retrieved. Nevertheless, the quality of the retrieved parameters in cloud-free scenes does 

not seem particularly adversely affected by introducing cloud parameters into the retrieval, 

even when the loose climatological prior is used (though this in itself does appear degrade 

end-end performance compared to the use of the PWLR prior). 

 Generally speaking bias and and standard deviations in Retrieval - Analysis are quite similar 

for WMC and cloud retrieval options, when PWLR is used as prior.  Biases and standard 

deviations are somewhat worse when the climatological prior is used. In that case MW is 

clearly helpful in reducing both bias and standard deviation. 

 For lower tropospheric temperature the retrieval of cloud seems clearly beneficial. When 

cloud is retrieved OEM improves on the PWLR, when that is used as prior, even for cloud 

mask 3  (as well as for cloud mask 1 or 2). This strongly increases (~ factor 2) the number of 

scenes for which the OEM result appears useful. If the climatological prior is used, the 

standard deviation of lower tropospheric T increases cf PWLR, however the effect is reduced 

if the MW is used, again clearly indicating the benefit of using the MW in the OEM. 

 For LT water vapour all retrieval configurations show performance degrading as the cloud 

flag increases; however this is also true of PWLR, and OEM performance with WMC or cloud 

retrieval remains comparable to that of PWLR for cloud conditions 3 (even if this is degraded 

in all cases compared to cloud flag 1 or 2). It may be that this reflects errors in analysis and 

or co-location with analysis which are particularly significant in cloudy scenes. 

 In the UT it can be seen that the OEM clearly outperforms the PWLR in standard deviation of 

T and H2O, at least for cloud mask 1,2 cases. Here the need to treat cloud is less marked – 

even when cloud is neglected it appears the OEM gives useful results above cloud. Using 

WMC or introducing cloud retrieval does increase the number of scenes which pass the cost 

function criterion however (and greatly reduced the average cost in cloudy scenes).  

 Surface temperature (see Figure 6-14) seems positively biased in OEM cf. PWLR, with 

generally larger standard deviation. Because this is particularly true over daytime land, 

specifically desert regions, It is suspected that this may reflect, at least in part, errors in 

analysis and/or interpolation to the MetOp observation time. 

 DOFS for most profile variables are increased when the climatological prior is used. 

Measurement cost function values are also slightly reduced (as expected). In many respects 

the retrievals with climatological prior perform rather well, in particular yielding agreement 

with analysis comparable to that of the OEM which uses PWLR as prior in cloud-free scenes. 

Iterations are increased, and standard deviations are greated in more cloudy scenes. There 
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may be a case for running the OEM with a climatological prior state and covariance, but 

using PWLR as first guess. This could avoid the difficulty in properly characterising the OEM 

sensitivity when PWLR is used as the prior profile (while also presumably reducing the 

number of iterations required for the OEM with climatological prior to converge).  
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Figure 6-7: Orbit cross section showing temperature differences between retrieval and analysis from 

different retrieval options, including those which model cloud. Cases shown are from top-bottomo: IR only 

(with bias correction fitted, but not emissivity or cloud); IR-only with emissivity fit; MWIR with emissivity fit, 

applied to all scenes; MWIR with emissivity, McNally Watts used to screen cloud; MWIR with emissivity and 

cloud parameters fit; same but with climatological prior instead of PWLR; PWLR compared to analysis. 
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Figure 6-8: Orbit cross section showing water vapour differences between retrieval and analysis from 

different retrieval options, including those which model cloud. Cases shown are from top-bottom: IR only 

(with bias correction fitted, but not emissivity or cloud); IR-only with emissivity fit; MWIR with emissivity fit, 

applied to all scenes; MWIR with emissivity, McNally Watts used to screen cloud; MWIR with emissivity and 

cloud parameters fit; same but with climatological prior instead of PWLR; PWLR compared to analysis. 
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Figure 6-9: Summary table showing basic retrieval diagnostics for different cloud-related options. Top row in 

table shows results for the standard IR only scheme (in cloud-free scenes). Then rows show, divided by 

cloudiness flag value (“cm:x”, where x=1-4), results from different retrieval options (all of which include 

fitting of emissivity and bias correction parameters), as follows: IR only scheme; MWIR scheme, IR only 

scheme with McNally Watts, MWIR scheme with McNally Watts; IR only with cloud retrieval; MWIR with 

cloud retrieval; IR only with cloud retrieval, starting from climatological prior; MWIR with cloud retrieval, 

starting from Climatological prior. Column headings are defined in the text. 
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Figure 6-10: Summary table for lower tropospheric temperature, comparing different options to deal with 

cloud. Top row in table shows results for the standard IR only scheme (in cloud-free scenes). Then rows 

show, divided by cloudiness flag value (“cm:x”, where x=1-4), results from different retrieval options (all of 

which include fitting of emissivity and bias correction parameters), as follows: IR only scheme; MWIR 

scheme, IR only scheme with McNally Watts, MWIR scheme with McNally Watts; IR only with cloud 

retrieval; MWIR with cloud retrieval; IR only with cloud retrieval, starting from climatological prior; MWIR 

with cloud retrieval, starting from Climatological prior. Column headings are defined in the text. 
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Figure 6-11: Summary table for upper tropospheric temperature, comparing different options to deal with 

cloud. Top row in table shows results for the standard IR only scheme (in cloud-free scenes). Then rows 

show, divided by cloudiness flag value (“cm:x”, where x=1-4), results from different retrieval options (all of 

which include fitting of emissivity and bias correction parameters), as follows: IR only scheme; MWIR 

scheme, IR only scheme with McNally Watts, MWIR scheme with McNally Watts; IR only with cloud 

retrieval; MWIR with cloud retrieval; IR only with cloud retrieval, starting from climatological prior; MWIR 

with cloud retrieval, starting from Climatological prior. Column headings are defined in the text. 
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Figure 6-12: Summary table for lower tropospheric water vapour, comparing different options to deal with 

cloud. Top row in table shows results for the standard IR only scheme (in cloud-free scenes). Then rows 

show, divided by cloudiness flag value (“cm:x”, where x=1-4), results from different retrieval options (all of 

which include fitting of emissivity and bias correction parameters), as follows: IR only scheme; MWIR 

scheme, IR only scheme with McNally Watts, MWIR scheme with McNally Watts; IR only with cloud 

retrieval; MWIR with cloud retrieval; IR only with cloud retrieval, starting from climatological prior; MWIR 

with cloud retrieval, starting from Climatological prior. Column headings are defined in the text. 
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Figure 6-13: Summary table for upper tropospheric water vapour, comparing different options to deal with 

cloud. Top row in table shows results for the standard IR only scheme (in cloud-free scenes). Then rows 

show, divided by cloudiness flag value (“cm:x”, where x=1-4), results from different retrieval options (all of 

which include fitting of emissivity and bias correction parameters), as follows: IR only scheme; MWIR 

scheme, IR only scheme with McNally Watts, MWIR scheme with McNally Watts; IR only with cloud 

retrieval; MWIR with cloud retrieval; IR only with cloud retrieval, starting from climatological prior; MWIR 

with cloud retrieval, starting from Climatological prior. Column headings are defined in the text. 
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Figure 6-14: Summary table for surface temperature, comparing different options to deal with cloud. Top 

row in table shows results for the standard IR only scheme (in cloud-free scenes). Then rows show, divided 

by cloudiness flag value (“cm:x”, where x=1-4), results from different retrieval options (all of which include 

fitting of emissivity and bias correction parameters), as follows: IR only scheme; MWIR scheme, IR only 

scheme with McNally Watts, MWIR scheme with McNally Watts; IR only with cloud retrieval; MWIR with 

cloud retrieval; IR only with cloud retrieval, starting from climatological prior; MWIR with cloud retrieval, 

starting from Climatological prior. Column headings are defined in the text. 
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7 TASK 6: RETRIEVALS WITH ONE OR MORE MISSING AMSU CHANNELS 

In this task, the OEM using IASI, MHS and AMSU data in synergy is applied under the assumption 

that certain AMSU channels are missing. This analysis is motivated by the failure of channel 7 on the 

Metop-A instrument, and the increasing noise levels in channels 3 and 8. Channels are effectively 

omitted from the retrieval by setting the corresponding measurement errors in the OEM to very 

large values. Two particular configurations are studied: 

 Without AMSU channel 7. 

 Without AMSU channels 3,7,8. 

The information loss is assessed for Metop-B so that results can be compared to the case with all 

channels present.  

For the assessment in this task the following configuration of the retrieval scheme is considered as 

the baseline: 

 MW+IR channels are used. 

 PWLR is used as a priori (as in the Eumetsat OEM) 

 IR bias correction scale parameters are retrieved. 

 Emissivity is retrieved; 20 patterns are fit, with correlations between MWIR and IR channels. 

 The MW bias correction and covariance derived from observation/model statistics over sea 

are used over both land and sea (under the assumption that the larger errors and different 

bias found over land are accommodated by the emissivity retrieval). 

 Cloud fraction and height are retrieved, as described in section 6.2. 

The impact of excluding channels is mainly considered for relatively cloud-free scenes, identified by 

L2 cloudiness flag 1 or 2.  
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7.1 LINEAR SIMULATIONS 

Linear retrieval simulations indicating the potential loss of information associated with the missing 

channels are illustrated in section 6 of the plot annex. As might be expected, changes mostly affect 

temperature. Changes to the degrees of freedom for signal for the example scenes are summarised 

in Table 4. Omission of channel 7 has a very small effect. Omitting channels 3,7,8 lead to the loss of 

half a degree of freedom for the MW only retrieval, though only around 0.2 in the joint retrieval. 

Changes to the estimated errors on retrieved profiles are also small (as shown by the figures in the 

annex). 

 MWIR MW only 

 All 
channels 

Excluding 
channel 7 

Excluding 
channels 
3,7,8 

All 
Channels 

Excluding 
channel 
7 

Excluding 
channels 
3,7,8 

Mid-latitude 
land 

8.25 8.22 8.05 5.82 5.74 5.22 

Tropical 
land 

8.93 8.91 8.78 6.09 6.01 5.46 

Mid-latitude 
ocean 

8.68 8.65 8.52 6.25 6.17 5.68 

Tropical 
ocean 

9.10 9.08 8.94 6.37 6.27 5.73 

Table 4: Changes to degrees of freedom for signal for temperature as certain channels are excluded. 

 

7.2 GLOBAL RETRIEVALS 

Results from three version of the MWIR retrieval, applied to Metop-B data on 17 October 2013, are 

shown in section 12 of the plot annex. Three versions of the MWIR scheme are shown: (i) with PWLR 

as prior, cloud parameters are not retrieved; (ii) with PWLR, cloud parameters retrieved; (iii) 

climatological prior constraint, cloud parameters retrieved. The third case would be expected to 

reveal most impact from the missing channels. (Channels which are omitted from the OEM may still 

contribute information via the PWLR when it is use as prior). Results from this case, considering 

missing channels 3,7,8 are summarised in Figure 7-1.  This shows, for the 0-2, 0-6 and 6-12km layers, 

gridded differences between the retrieval with missing channels and that with all channels, side-by-

side with the difference between retrieval and analysis (for the case with missing channels).  It is 

clear that the differences are very small, compared to the differences between the retrievals and 

analysis (or estimated errors in retrieved quantites). E.g. the standard deviations in the global 

differences are around 0.1K for temperature and 0.5% for water vapour. Differences introduced by 

omitting only channel 7 are much smaller still.  
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Figure 7-1: Comparison of Metop-B retrieval results with missing AMSU channels 3,7,8 to retrievals will all 

channels. Top row shows results for temperature; bottom row shows results for water vapour. Panels are 

shown in pairs for three layers (0-2, 0-6, 6-12km). In each pair, the left hand panel shows the difference 

between retrievals with channels 3,7,8 missing compared to those with all channels; the right hand panel 

shows the difference between retrieval and analysis, for comparison (though note the much larger range of 

the colour scale). Values under each panel indicate the mean (Mn) and standard deviation (SD) of the 

gridded values shown. 

7.3 COMPARISON OF METOP-A AND METOP-B RETRIEVALS 

In this task, the retrieval scheme was also applied to process data from Metop-A (for which AMSU 

channel 7 is not available). Results from Metop-A and Metop-B are then compared to establish their 

consistency. A set of results, for the three retrieval configurations discussed in the previous section, 

is presented in section 13 of the plot annex.   Two days of Metop-A data were provided for analysis 

by Eumentsat: 23 March 2010 and 17 October 2013. The latter is also one of the days analysed for 

Metop-B, allowing nearly direct comparisons, though it should be noted that the orbit tracks of the 

two satellites are interleaved (~50 minutes out of phase).  

Note, with the exception of channel 7, the same bias correction and measurement covariance are 

used for Metop-A and Metop-B. This is justified by plots presented in section 4.1 of the plot annex, 

which indicate similar observation-simulation departures for Metop-A (on both days) and Metop-B. 

Figure 7-2 compares the Metop-A and Metop-B retrievals on the 17 October 2013. Differences in 

temperature are small (mean difference < 0.1K and standard deviation over the globe < 0.7K); 

Differences in humidity over the globe are around 5-10% which is comparable to or slightly smaller 

than the differences between retrieval and analysies and the ESD on individual retrievals.  

The scheme has also been applied to Metop-A data on 23 March 2010. On this date it is noted that 

the Eumetsat cloudiness flag does not appear to detect cloud with the same efficiency as it does on 

Aother days. E.g. plots in the annex indicate the average Eumetsat cloud fraction in scenes with 

cloudiness flag 1 or 2 to be unusually high on this day, and the number of scenes with cloudiness flag 

1 or 2 is also much larger. For this reason results for 23 March 2010 are presented (in the plot annex) 
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for scenes with cloudiness flag 1 or 2, and cloud fraction less than 0.1. This yields retrieval 

performance of broadly comparable, bust still slightly degraded, quality compared to Metop-B and 

Metop A on 17 October 2013. The cost for MWIR (not IR-only) remains slightly higher than is the 

case for Metop-A or B in 2013, even when cloud is fitted. This probably indicates that the bias 

correction and/or measurement covariance used for Metop-A in 2010 underestimates actual errors. 

It is also noted that on 23 March 2010, a region of relatively high cost is seen off the coast of North 

Africa, presumably caused by the presence of desert dust, which is clearly not fit well be the OEM, 

even when cloud and emissivity are included in the state vector. 

Despite these anomalies with Metop-A data on 23 March 2010, we see no reason to suspect that the 

extended OEM should not be equally applicable to Metop-A and B, once issues associated with the 

cloudiness flag are addressed and more careful attention is given to temporal variations in the MW 

instrument errors. Certainly, the absence of channel 7 on Metop A has negligible impact on the 

consistency between retrievals from the two platforms. 

 

 

Figure 7-2: Comparison of Metop A and Metop-B retrieval results on 17 October 2013. Top row shows 

results for temperature; bottom row shows results for water vapour. Panels are shown in pairs for three 

layers (0-2, 0-6, 6-12km). In each pair, the left hand panel shows the difference between the Metop A and 

Metop B results; the right hand panel shows the difference between retrieval and analysis, for Metop A 

(same colour scale). Values under each panel indicate the mean (Mn) and standard deviation (SD) of the 

gridded values shown. 
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8 CONCLUSIONS 

8.1 SUMMARY AND CONCLUSIONS 

This study has explored the potential to improve on the operational IASI optimal estimation method 

(OEM) based retrieval by including information of the microwave sounders AMSU-A and MHS. This 

involved implementing the operational OEM at RAL and assessing its performance by comparison to 

ECMWF analyses, before proceeding to assess improvement to the scheme.  

Measurement errors for the MW channels have been determined by computing observation – 

simulation statistics, based on using the IR only retrievals, together with RTTOV. This has resulted in 

a specification of the MW errors which seems quite consistent with those currently used in NWP and 

elsewhere reported in the literature.  

The study has found that the Eumetsat OEM, and the piece-wise linear retrieval (PWLR) which is 

used as its prior, perform well in cloud free scenes over both ocean and land. The study extended 

the scheme to include the fittied of spectral emissivity and this was found to clearly improve 

retrievals in terms of cost (fit to measurements), and the agreement of lower tropospheric water 

vapour over land. The performance of the OEM for ozone was also improved over desert surfaces. 

The existing IR bias correction scheme was modified to include the retrieval of scale factors for the 

two bias correction spectra, leading to better fit costs over cold scenes in particular. 

The scheme was also extended to analyse cloudy scenes, using either joint retrieval of cloud 

parameters or the McNally/Watts approach to select cloud-unaffected spectral channels. With 

either approach the coverage of the OEM can be increased to a much larger number of partially 

cloudy scenes, though it would appear that the retrieval of cloud retains more information on the 

atmospheric state.   

The addition of the MW channels was found to have little impact (positive or negative) on the 

comparisons with analyses in cloud-free scenes (despite the potential for some gain in information 

being identified). However the benefit of using the MW instruments was quite clear in cloudy 

scenes. The impact of the missing AMSU channel 7 on the retrieval performance was found to be 

negligible. The absence (or degradation) of channels 3,7 and 8 is also considered to be small.  

On the basis of the study findings it seems clear to recommend that the operational OEM should be 

extended to include fitting of spectral emissivity. The scheme could also be extended to treat cloudy 

scenes (with L2 cloudiness flag 3 and 4), by adding MW observations and at least using the WMC 

approach and possibly by the more ambitious approach of including cloud in the state vector, 

although it is recognised that both approaches would benefit from further optimisation (see below) 

prior to operational implementation. 

It was found that the OEM could function quite well without the use of PWLR as the prior. Use of 

PWLR leads to slightly better results compared to the analyses, but the use of the climatological 

prior leads to results which are better represented by the associated reported errors and averaging 

kernels.  
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8.2 SUGGESTIONS FOR FURTHER WORK 

The following points are identified for further work: 

 The temperature, humidity and emissivity products by the PWLR and OEM, particularly after 

the extensions implemented in the study are clearly of very high quality. These products 

could potentially be used to improve trace gas retrievals from IASI. In particular, this 

potential has been recognised in a parallel study conducted by RAL to specify an OEM for 

methane retrievals from IASI. This scheme currently uses ECMWF analyses for temperature 

profiles and Wisconsin prescribed emissivity, and it is recognised that errors in these are 

limiting the quality of the methane retrieval in certain regions. The benefit of using the 

IASI(+MW) retrieved temperature and emissivity products in the methane scheme should 

certainly be tested. The same may be true for other trace-gas retrievals. 

 Ozone is also retrieved by the OEM and the products have been compared to analyses in this 

study. However this is not an ideal basis for assessing the ozone as the analyses themselves 

(particularly in the troposphere) are of relatively poor quality, at least compared to the 

situation for temperature and humidity. It is also noted that comparison to analysis is 

particularly problematic in this case since (a) the PWLR is trained using the analysis and (b) 

the degrees of freedom for ozone are low, when PWLR is used as the prior constraint. The 

OEM is strongly constrained to PWLR, which in turn may follow spurious features of the 

analysis. There are indications that reasonable ozone profiles are retrieved when a relatively 

loose, climatological a priori is used in the OEM, indicating that the scheme is certainly 

capable of extracting useful ozone profile information. Obvious issues in the ozone profiles 

associated with arid-land surfaces are also strongly mitigated by the joint retrieval of surface 

spectral emissivity. It therefore seems appropriate to conduct further work to (a) optimise 

the prior constraint used for ozone, to avoid too much constraint to PWLR/analysis (b) test 

the quality of the derived profiles by comparison to independent measurements. In this case 

comparisons to ozone-sonde measurements over extended periods of time, complemented 

by intercomparisons with chemical transport model fields and / or MACC analyses, sampling 

the seasonal cycle, would be recommended, rather than focussing on individual days, as has 

proved effective for temperature and humidity. 

 Although it is clear that joint retrieval of cloud improves retrievals in the presence of cloud, 

to the point where it makes sense to carry out the retrievals, it is also clear that product 

quality degrades with the amount and height of cloud. Further work would be required to 

establish appropriate quality control criteria for releasing profiles to users. Part of this may 

be to develop a proper error budget for cloudy scenes, e.g. by increasing measurement 

errors in cloudy scenes such that the errors reported by the OEM properly represent the 

differences between retrieved and true state. It is recognised however that this work would 

be complicated by the difficulty to unambiguously determine retrieval errors in cloudy 

scenes by comparison to analyses, which are themselves subject to error.   

 The McNally/Watts scheme seems to provide retrievals which function in most scenes, 

however the cloud detection seems too conservative. If this scheme were to be 

implemented in practise, it would be desirable to refine the various tuning parameters to 
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optimise the information extracted. As a minimum the scheme should only be applied in 

scenes which are flagged as cloudy, as otherwise it degrades too strongly the performance in 

cloud-free scenes (i.e. those with cloudiness flag 1 or 2). 

 The cloud model used in the retrievals is very simple. It neglects the effects of spectral 

structure in cloud optical properties (particularly important for ice cloud) and the effects of 

cloud vertical distribution on the radiative transfer. Although these effects are impossible to 

treat completely in a retrieval scheme of this kind, it seems probable that extending the 

cloud model to better represent these effects could further improve the trace-gas retrievals 

in currently difficult scenes. A next step would be to introduce a model for cloud which could 

represent the expected spectral variations in cloud optical properties, e.g. . Introducing a 

model like that used in Eumetsat OCA scheme and retrieving cloud phase/effective radius/ 

optical depth/height may improve the performance of the scheme.  This approach could be 

extended to also allow the model to represent optical properties of mineral dust aerosol, 

which has also been seen to affect retrievals (high cost function values caused by desert dust 

are seen off the coast of Africa in the Metop A results from 23 March 2010). 

 The surface emissivity retrieval developed here is certainly effective, however residuals 

remain over arid regions, which are presumably caused by the absence of real emissivity 

spectral structure in the fitted patterns. Further work to study the spectral emissivity of 

these regions and improve the approach is needed. 

 The study has only considered a few individual days. While it appears that IASI is extremely 

stable, it may well be that more effort is needed to deal with time dependent errors in the 

MW measurements. An analysis of the MWIR performance over an extended period of time 

should be carried out to assess the stability of the scheme and develop necessary long-term 

correction measures. 
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