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CHAPTER 1
Adiabatic Formulation

1.1 INTRODUCTION

In this volume the technical details of the adiabatic part of the ECMWF
operational model are described. The first two chapters describe the
governing equations, the coordinates and the discretization schemes used in
the operational ECMWF model. Attention is concentrated on the representation
of the explicitly resolved adiabatic processes, but a derivation of the
equations including terms requiring parametrization is included in Appendix
A1. Detailed descriptions of the parametrizations themselves are given in the

Physical Parametrization Manual (RM-3).

The ECMWF model is formulated in spherical harmonics. After the inter-model
comparisons by Jarraud et al. (1981) and Girard and Jarraud (1982) truncated
expansions in terms of spherical harmonics were adopted for the representation
of dynamical fields. The transform technique developed by Eliasen et al.
(1970), Orszag (1970) and Machenhauer and Rasmussen (1972) is used such that
non-linear terms, including parameterizations, are evaluated at a set of

almost regqularly distributed grid points.

In the vertical, a flexible coordinate is used, enabling the model to use
either the usual terrain-following sigma coordinate (Phillips, 1957), or a
hybrid coordinate for which upper-level model surfaces "flatten" over steep
terrain, becoming surfaces of constant pressure in the stratosphere (Simmons
and Burridge, 1981, Simmons and Strifing, 1981). Moist processes are treated
in a consistent way in both the dynamical equations and parameterization

schemes.

The second section chapter 1presents the continuous form of the governing
equations. Chapter 2 gives details of the spectral discretization and of the
vertical coordinate and its associated vertical finite difference scheme. The
temporal finite-difference scheme, which includes not only a conventional
semi-implicit treatment of gravity-wave terms (Robert et al, 1972) but also a
semi-implicit treatment of the advection of vorticity and moisture (Jarraud et
al, 1982), is also described, as is the formulation chosen for horizontal

diffusion.
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The third chapter deals with the non-linear normal mode initialization
procedure which is used to balance the fields of mass and winds in the initial

data, in order to suppress fast moving gravity waves in the forecast.

Chapter 4 contains a description of the structure of the model's computer
code. Flow diagrams are given to show the organisation of the model. The
subroutines dealing with the run control, the dynamics and the initialization

are described.

In chapter 5 the various diagnostics that can be extracted during a model run
are described. Finally the structure of the files used by the model, the
handling of input and output, and the memory manager designed to supervise the

use of the computer's central memory, are explained in chapter 6.

1.2



1.2 THE CONTINUOUS EQUATIONS FOR A GENERAL
PRESSURE~-BASED VERTICAL COORDINATE

Although the model has been programmed for one particular form of vertical
coordinate, which is introduced in Sect.2.2, it is convenient to introduce the
equations and their spectral discretization for a general pressure-based
terrain-following vertical coordinate, n(p,ps). This must be a monotonic
function of pressure, p, and depend also on surface pressure, | in such a
way that

n(O,ps) = 0 and n(ps, ps) = 1
For such a coordinate, the continuous formulation of the primitive equations
for a dry atmosphere may be directly derived from their basic height-
coordinate forms following Kasahara (1974).

During the design of the model, a detailed derivation of the corresponding
equations for a moist atmosphere, including a separation into terms to be
represented explicitly in the subsequent discretized form of the equations and
terms to be parametrized, was carried out. It is shown in Appendix A1 that
under certain approximations, the momentum, thermodynamic and moisture

equations may be written:

R.T
U _ . U dv 3fnp 13 -
e - EF OV ot TN taan (HE) SRy v Ky (1.2.1)
R,T
N W, dv o, 3mp (1-p?) 3 -
et £+ DU+ Agn+ = (1-ud) ST+ a  ap (#E) =P, + K,
(1.2.2)
KT w
aT U oT vV oT . oT v
cm— e —— — -—— e —— e —————————— <2,
T 2. a2 Taam "o T Tnengp frt¥ (.23
a(1=-p%)
and
g _ U &g Vi .3q_
e * ATzt T Bt Ky (1.2.4)

The continuity equation is

3 3 % .3 .3
e . + = = .2.
an (3t) + v (!h an) ™ (n an) 0 (1.2.5)
and the hydrostatic equation takes the form
R.T
¥__.dvie (1.2.6)
an p an
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The pressure coordinate vertical velocity is given by

n
)
= - Vo _E + . 007
w i (xh an)dn Y v ., (1.2.7)
and explicit expressions for the rate of change of surface pressure, and for
h, are obtained by integrating (1.2.5), using the boundary conditions n=0 at

=0 and rF1:

p 1
_s _ _ 9p
el c{v. (v, an)dn (1.2.8)
and
n
. 8p _ _ 8 _ 8p
R an 5% i’ v.otyy, an)dn (1.2.9)
(1.2.8) may also be written
alnp 1
s_ _ 21 Sp
e = . gv . (Yh an’d" {1.2.10)

Variables and constants are defined in Table 1.

In the special case of sigma coordinates (n = g = p/ps), the above equations
are the same as those used in the first operational ECMWF model, apart from
the factor (1 + (&-1)gq) in (1.2.3), which differs from unity by an amount of
the same order as the difference between temperature and virtual temperature,
and apart also from differences in the terms written symbolically on the
right-hand sides of (1.2.1) - (1.2.4), which are those requiring

parametrization. Following the derivation given in Appendix A1, the terms PU,

Pv, PT and Pq are written:
P = -geost (B) g (1.2.11)
4] g an an U
= - 2p,70 2 .2.12
P, gcos 8 (an) an Iy (1.2 )
P =t o +o +o -9 (2 )‘1[_3 3 —e (&N =3 I} (1.2.13)
T cp R L D an an s pd an q
p "t a3

P =8 - J ' (1.2.14)
q q 9 (an) an q

where c cpd (1+( &1)q)

In (1.2.11) - (1.2.14), JU, Jv Js and Jq represent net parametrized vertical
’

fluxes of momentum, dry static energy (cpT+¢), and moisture. They include
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fluxes due to convection and boundary-layer turbulence. QR, QL and Q
represent heatings due respectively to radiation, to internal phase changes
(including the evaporation of precipitation) and to the internal dissipation

of kinetic energy associated with the PU and Pv terms. Sq denotes the rate of

change of q due to rainfall and snowfall. Details of the calculation of these
terms are given in the ECMWF Physical Parameterization Manual (RM-3).

The terms KU' KV' KT, and Kq in (1.2.1) - (1.2.4) represent the influence of

unresolved horizontal scales. Their treatment differs from that of the

PU' PV' PT and Pq terms in that it does not involve a physical model of sub
grid-scale processes, but rather a numerically convenient form of scale-
selective diffusion of a magnitude determined empirically to ensure a
realistic behaviour of resolved scales. These terms are specified in

sect.2.4.

In order to apply the spectral method, Egs. (1.2.1) and (1.2.2) are written in
vorticity and divergence form (Bourke, 1972). They become

98 _ 1 3 1o
% ;??:;77 3 (F + P ) 2 ap (F + P ) + KE (1.2.15)
1
%%'= ;TTEEIT n (F + P ) + ;'2- (F + P ) - V%G + KD (1.2.16)
where
‘au Ra®v agn
Fy = (E+E)V = mpo = —— 33-2 (1.2.17)
L] R T
F, = - (£46)U - n%% - dav (1-p2) %%23 (1.2.18)
and
G= ¢+ E (1.2.19)

We also note that a streamfunction ¢ and velocity potential y may be

introduced such that

=1 2
U= {(1u)au },
=1 3 w2y X
v=< {55+ (-ud) au} ] (1.2.20)
£= 92y ,
and
D = ¥y .
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Table 1 List of constants and symbols

Unit

Meaning Value
radius of the earth 6.371x106

constant defining the vertical
coordinate

constant defining the vertical
coordinate

normal mode coefficient

= de[1+(6—1)q]: specific heat of

moist air at constant pressure

specific heat of dry air at constant 1005.46
pressure
specific heat of water vapour at 1869.46

constant pressure

= -;-(:1‘; -g{- + -g%) divergence

1l

%(U2+v2)/(1-u2): kinetic energy/unit mass

2{isinH: Coriolis parameter
acceleration of gravity 9.80665

= ¢+E: total dry energy per unit mass

horizontal diffusion coefficient

tendency of variable X due to
horizontal diffusion

zonal wave number

meridional index

auxiliary potential for initialisation
pressure

associated Legendre function of the first kind
reference pressure for vertical coordinate
surface pressure

parametrized tendency of variable X

gas constant for dry air 287.05

1.6

Pa

m2g-2

Pa

Pa
Pa
(x)s~!

J kg‘l x-!

Section

1.2

1.2



Table 1 continued

Symbol Meaning Value Unit Section
Rv gas constant for water vapour 461.51 J kxg=! k-1 n1.6
q specific humidity kg/kg 1.2
q specific ice content kg/kg Al1.7
q, specific liquid water content kg/kg Al1.7
QY heating rate due to physical process Y K s-! 1.2
Sq rate of change of humidity due to precipitation s-1 1.2
t time s 1.2
T temperature K 1.2
Ty = T[1+(-1-e - 1)ql: virtual temperature K 1.2
u zonal wind m s—! 1.2
U = ucosf: scaled zonal wind m s-! 1.2
v meridional wind mn s~! 1.2
Y (u,v): horizontal wind vector m s~1
v = ycos0: scaled meridional wind m s-1 1.2
wl(y ) quadrature {(or Gaussian) weight - 4.3
z height m 1.2
8 = Cpy/Cpa - 1.2
€ = Rd/Rv - A1.2
n n = Ak/p° + B generalized vertical - 1.2
coordinate
n = %f: mcoordinate vertical velocity s-1 1.2
0 latitude - 1.2
X - Ra/cpd - 1.2
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continued

Meaning

longitude

It

sin@

% 1—2— -g—‘i— - -g—%): relative vorticity
-y

i

horizontal normal mode

density

i

p/pg

gz: geopotential height

surface geopotential height

velocity potential

streamfunction

vertical normal mode

= %f-: p-coordinate vertical velocity

angular velocity of earth

1.8

Value

Unit

7.292x10~5

Section

1.2

1.2

1.2

3.2

A1.1

1.2



CHAPTER 2
The Discrete Equations

2.1 HORIZONTAL DISCRETIZATION

2.1.1 Spectral representation

The basic prognostic variables of the model are §, D, T, q and lnps. They,

and the surface geopotential ¢s, are represented in the horizontal by
truncated series of spherical harmonics:

M N(m) m o ima
X(hunt) = T ] X (nt) P (ue (2.1.1)
m=-M n=m

where X is any variable. The Pﬁ(u) are the Agssociated Legendre Functions of
the first kind, defined here by

- m/2 ;n+m
P = v{zmn {n-m)! ; (1-p2) & (u2=1)" , m>0

’
(n+m)! L dun+m
and (2.1.2)
-m m

P (m) = Pn(u)

This definition is such that
1
1 m m -
> L P (W P_(wdu= 8§ (2.1.3)

where Gns is the Kronecker delta function.

The x: are the complex-valued spectral coefficients of the field X, and they

are given by

m 1 1 27 m -im)
X (nt) ==— [ [ X(Aunt) P (ne dx dy (2.1.4)
n an 10 n
Since X is real
-m m *
Xn = (Xn) P (2.1.5)

where ( )* denotes the complex conjugate. The model thus deals explicitly

only with the x: for m>0.



The Fourier coefficients of X, xm (u,n,t) are defined by

1 27n -im\
X, (wont) = o= c{ X (A u ntle TN ax , (2.1.6)
or using (2.1.1), by
N(m)
X (pmt)= L X" (nt) Pw (2.1.7)
m n n
n=mn
with
M im
X hunt) = T X (p,mt)e ™ (2.1.8)
m=-M

Horizontal derivatives are given analytically by

ﬁ = 01.9
(a)‘)m im xm (2 )
m
N(m)
and & - g 2 (2.1.10)
su'm n 4dp
n= m

where the derivative of the Legendre Function is given by the recurrence
relation:

ap"
-y?) —B = . m m m pt 2.1.11)
(1-v%) 33 D€ g Pyt (nt) e P, (
with
172
2.m2
em= (n m )] (2.1.12)
4n2-1
An important property of the spherical harmonics is:
. + :

Relationships (1.2.20) may thus be used to derive expressions for the Fourier
A m
velocity coefficients, Um and Vm, in terms of the spectral coefficients En and

D:. It is convenient for later reference to write these expressions in the

form:
= (2.1.14)
Um U&n+ UDm
= (201015)
Vm v + VDm



where .
N(m)

1 m
U= 2 I o) E:Hn(u) (2.1.16)
n=m
Ni{m) im m_m
UDm = ~a _r ;T;:TT Dn Pn(u) (2.1.17)
n= m
N(m) im m
Vea= 3 I toay e’:pn(u) (2.1.18)
n=s nmn
N(m)
_ 1 m _m
va = a L ;T;;TT'Dn Hn(u) (2.1.19)
n=m
and
m
m = = - 2 n
Hn(u) (1-p“) 3;-' (2.1.20)

The H: can be computed from the recurrence relation (2.1.11).

The model is programmed to allow for a flexible pentagonal truncation,
depicted in Fig. 2.1 (Baede et al, 1979). This truncation is completely
defined by the three parameters J, K and M illustrated in the Figure. The

common truncations are special cases of the pentagonal one:

Triangular M=J =K
Rhonrboidal K=J+M
Trapezoidal K= t K> M

The summation limit, N(m) is given by
N=J+ |m|] if J+ |m| <k,
and

N =K if  J+ |m] > k.

Operationally, the truncation is triangular, with J = K=M =N = 106.
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2.1.2 Spectral/grid-point transforms,
and the evaluation of spectral tendencies

The general form of the calculations follows that of the early multi-level
spectral models described by Bourke (1974) and Hoskins and Simmons (1975),
although the present model differs in its use of an advective form for the
temperature and moisture equations (1.2.3) and (1.2.4). The prognostic
equations for £, D, T, q and ans are (1.2.15), (1.2.16), (1.2.3), (1.2.4) and

(1.2.10). Equations for the corresponding spectral coefficients are obtained

by maltiplying each side of these equations by P: e-imx, and integrating over
the sphere. This yields, from (2.1.4),
m
3t 1 27
—n_ 1 1__ 39 _ 9 m -im)
% " im _f“{ (3557 55 (Fy * By) - o (Bg#py) JPhtwe™ M aau
m
+ (Kg)n (2.1.21)
m
aD 1 2n
—n__1 1 3. 2 m -im)
ot 4ma !1 6{ {1-u2 a (FU + PU) + 3u (FV+PV) }Pn( we didy
1 21
1 m -im) m
4“_1 g (VZG)P (ue dxdp + (K)) (2.1.22)
m
T 1 2x
—n__1_ m -im) m
= = a1 !1 i’ (Fy + Pp) PD(ule 'drdp + (K )2 (2.1.23)
m
aq 1 2n
n 1 m -im) m
— R w—— + el
ol !1 8{ (F + P Pruwe™ didu + (K )T (2.1.24)
and
3( aps)™ 1 2
n 1 m -imA
w—— =a [ [ F,yEjtwe anau (2.1.25)
-1o0
where FU' Fv and G are given by (1.2.17) - (1.2.19), and
KT,,w
U ar v ar _ . BT v
Fp® " a(1-ud) ax aaw "an’ (+(6~1)q)p (2.1.26)
= U N Vi _ .3
Fe ™ " a-yd A " adu "o (2.1.27)
1 3p
F =-—[9V. (v )dn (2.1.28)
P Ps o ~h 3n
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Equations (2.1.23) - (2.1.25) are in the form used in the model. The
corresponding forms for the vorticity and divergence equations are obtained

from (2.1.21) and (2.1.22) by integration by parts and use of (2.1.13):

35: 1 12T m m =im}
el — L g (1=u2)=Him(F, + PP (W) =(F+P )H (1) Je™ ™ Yarau
m
+ (KD, (2.1.29)
T m m, ) -im)
rraalresy .f1 g (=)~ Him(F, + PP (W)+(F 4P )H (1) Je ™ fax
+nhﬁﬁ f f“GPW )qudm R (2.1
4ma 218 n' W€ v D'n ' -1.30)

where Hz(u) is given by (2.1.20).

An outline of the model's computation of spectral tendencies may now be given.
First, a grid of points covering the sphere is defined. Using the basic
definition of the spectral expansions (2.1.1) and equations (2.1.14) -
(2.1.19), values of £, D, U, V, T, q and 2nps are calculated at the

ainp atnp
; & o 3a g s s
gridpoints, as also are the derivatives 3% ' 3’ 3’ Bp ' an and I

using (2.1.9) and (2.1.10). The resulting gridpoint values are sufficient to

calculate gridpoint values of F _, F _, F_, Fq, Fp and G, together with the

u v T

v’ PT and Pq, since prognostic surface flelds

associated with the parametrization are defined and updated on the same grid.

parametrized tendencies PU' P

The integrands of the prognostic equations (2.1.29), (2.1.30), (2.1.23),
(2.1.24) and (2.1.25) are thus known at each gridpoint, and spectral

tendencies are calculated by numerical quadrature.

The grid on which the calculations are performed is chosen to give an exact
(given the spectral truncation of the fields, and within round-off error)
contribution to spectral tendencies from quadratic non~linear terms. The
integrals with respect to A involve the product of three trigonometric
functions, and as shown by Machenhauer and Rasmussen (1972) they may be
evaluated exactly using a regularly-spaced grid of at least 3M+1 points. For
the latitudinal integrals, Eliasen et al. (1970) showed that quadratic non-

linear terms lead to integrands which are polynomials in u of a certain order.
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They may thus be computed exactly using Gaussian quadrature (e.g. Krylov,
1962), with points located at the (approximately equally-spaced) latitudes

which satisfy P: (u) = 0, for a sufficiently large integer NG. These
G

latitudes form what are referred to as the "Gaussian latitudes”.

In order to find the necessary number of Gaussian latitudes for the pentagonal
truncation, the product truncation for quadratic terms must be constructed.
The general form of this product truncation together with the original
truncation is shown in Fig.2.2 in which the quantity L is defined as:

L = K=J

It should be noted that the triangular indentation in the upper boundary
disappears if M-L»2L, i.e. if M>3L. From this figure and the exactness
condition for the Gaussian integration it may be shown that the number of
Gaussian latitudes NG must fulfil one of the following conditions:

+M+
if MQ(K-J) , N_» 22rKiMil
G 2
3K+1
if w32(x-3) , N> 2 i

These conditions reduce to the following for the common truncations:

4
triangular or trapezoidal: NG> 3551 (since M»2(KX-J)=0),
+2M+
rhomboidal: NG> 22_%!_1 (since 2(K-J)=2M>M).

An asymptotic property of the Legendre functions which may be derived directly
from the definition (2.1.2) is

2) m /2 as u+t1.

p:( W ~(1-y
Thus for large m the functions become vanishingly small as the poles are
approached, and the contributions to the integrals (2.1.21) - (2.1.25) from
polar regions become less than unavoidable round-off error for sufficiently
large zonal wavenumbers. This means that in practice 3M+1 longitudinal points
may not be needed at all latitudes, and a decreasing number of points may be
used as the poles are approached without significant loss of accuracy in the

calculation of quadratic terms (Machenhauer, 1979). An option for the model
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to use a different number of longitudinal points at different latitudes has
yet to be fully developed.

Operationally, the number of longitudinal points is 320 for each line of
latitude. The number of latitudes, NG, is 160. These latitudes are specified

in Table 2.1, and are approximated (in a least-squares fit) by a regular
latitudinal spacing of 1.121° starting from 89, 16°N.
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Table 2.1. The "Gaussian" latitudes of the computational grid
of the operational model.

No. from pole

W OO WUNhH W =

Lat(°)

89.14
88.03
86.91
85.79
84.67
83.55
82.43
81.31
80.19
79.06
77.94
76.82
75.70
74.58
73.46
72.34
71.21
70.09
68.97
67.85
66.73
65.61
64.49
63.36
62.24
61.12
60.00
58.88
57.76
56.64
55.51
54.39
53.27
52.15
$1.03
49.91
48.78
47.66
46.54
45.42

No. from pole

41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80

Lat(°)

44.30
43.18
42.06
40.93
39.81
38.69
37.57
36.45
35.33
34.21
33.08
31.96
30.84
29.72
28.60
27.48
26.36
25.23
24.11
22.99
21.87
20.75
19.63
18.50
17.38
16.26
15.14
14.02
12.90
11.78
10.65

9.53

8.41

7.29

6.17

5.05

3.93

2.80

1.68

0.56



2.2 VERTICAL DISCRETIZATION

2.2.1 The hybrid vertical representation

To represent the vertical variation of the dependent variables g, D, T and q

the atmosphere is divided into NLEV layers as illustrated in Fig.2.3. These

layers are defined by the pressures of the interfaces between them (the "half
levels"), and these pressures are given by

A

K+} + Bk+§ ps (2.2.1)

Pk+§ =

for k=0, 1, 2, ...NLEV. The A and B are constants whose values

k+4 k+$
effectively define the vertical coordinate. Necessary values are

A* = B} = ANLEV+§ =0 , BNLEV+* =1 (2.2.2)

The usual sigma coordinate is obtained as the special case
A = 0 ’ k = 0, 1' ZOOOONLEV (2.203)

This form of hybrid coordinate has been chosen because it is particularly
efficient from a computational viewpoint. It also allows a simple direct
control over the “flattening" of coordinate surfaces as pressure decreases,
since the A's and B's may be determined by specifying the distribution of
half-level pressures for a typical sea-level surface pressure and for a
surface pressure typical of the lowest expected to be attained in the model.
Coordinate surfaces are surfaces of constant pressure at levels where Bk+§ =

0.

The prognostic variables £, D, T and q are represented by their values at
intermediate ("full-level") pressures, P - Values for p, are not explicitly

required by the model's vertical finite-difference scheme, which is described

in the following section, but they are required by parametrization schemes, in
the creation of initial data, and in the interpolation to pressure levels that
forms part of the post-processing. Alternative forms for Py have been

discussed by Simmons and Burridge (1981) and Simmons and Strufing (1981).

Little sensitivity has been found, and the simple form

1
P =3 Py ¥ Py_y) (2.2.4)

has been adopted, where half-level values are as given by (2.2.1).
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The explicit relationship between p and ps defined for model half levels
implicitly determines a vertical coordinate n. The model formulation is in
fact such that this coordinate need not be known explicitly, as demonstrated
in the following section. However, it is computationally convenient to define
n for the radiative parametrization and for the vertical interpolation used in

the post-processing. The half-level values are given by

nk+* = Akﬂ/p° + Bk+* (2.2.5)

where P, is a constant pressure. From (1.5.1) it is seen that this coordinate
is identical to the usual ¢ when Ak+} = 0, and in general equals ¢ when ps=p°.
n=p/p°at levels where coordinate surfaces are surfaces of constant pressure.

Values of n in between half-levels are given by linear interpolation:
LR W (P-pk+f’("k+} - nk_+)/(pk+* - pk-i’ for P 3PS Pyyy

(2.2.6)

A 19-layer version is used operationally, and the corresponding values of the
Ak+§ and Bk+§ are given in Table 2.2. The distribution of full-level

pressures is shown in Fig.2.4. The top two layers are at constant pressures,

and the lowest two layers are pure sigma layers. The value of P, used for the

definition of n is the reference sea-level pressure of 101325 Pa.
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Table 2.2 Parameters gspecifying the vertical coordinate
of the 19-layer operational model

k A (p_) B
a

k+¢ k+¢

0 0.000000 0.0000000000

1 2000.000000 0.0000000000

2 4000.000000 0.0000000000

3 6046.110595 0.0003389933

4 8267.92756 0.0033571866

S 10609.513232 0.0130700434

6 12851.100169 0.0340771467

7 14698.498086 0.0706498323

8 15861.125180 0.1259166826

9 16116.236610 0.2011954093

10 15356.924115 0.2955196487

11 13621.460403 0.4054091989

12 11101.561987 0.5249322235%

13 8127.144155 0.6461079479

14 $125.141747 0.7596983769

15 2549.969411 0.8564375573

16 783.195032 0.9287469142

17 0.000000 0.9729851852

18 0.000000 0.9922814815

19 0.000000 1.0000000000
10 :
2
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2.2.2 The vertical finite-difference scheme

The vertical finite~difference scheme is a generalization to the hybrid
coordinate with form (2.2.1) of the scheme adopted in the first operational
ECMWF model (Burridge and Haseler, 1977), apart from a small modification
concerned with the conservation of angular momentum. The generalized scheme
has been discussed by Simmons and Burridge (1981) and by Simmons and Str¥fing
(1981), and the presentation here is restricted to a prescription of the
finite~diffference forms of the various terms of the continuous equations that

involve n.

a) The surface-pressure tendency

The finite-difference analogue of (1.2.10) is

1
3t v. (!kApk) (2.2.7)
where the subscript "k" denotes a value for the k-th layer, and

bpy = Pyyy ~ Pyoy (2.2.8)

From (2.2.1) we obtain

alnps NLEV 1
—= - kg {5 Dy oy + (g, - Viup )8, } (2.2.9)
=1 s
where AB =B - B
k  ktd k-1 (2.2.10)
b) The continuity equation
(1.2.9) gives
p k
-3 ) - < A
(P et e T b T ey (2.2.11)
and from (2.2.1)
nég- aznps 1
* = - + L .
5 Foc NIY PolBisy 36 j£1 {ps Dyfp+(y,.Vonp )88, 11 (2.2.12)
32nps
where v is given by (2.2.9).
c) Vertical advection

computed from (2.2.12), vertical advection of a variable X is

Given (ng%)

k+}
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given by

. 3% 1 .3 .3
(Tan’k 28p,_ {“‘5%)1«& K™ %) * ("Sﬁ)k-{ X, = X _}

(2.2.13)
This form ensures that there is no spurious source or sink of kinetic energy,

potential energy or moisture due to the finite-difference representation of

vertical advection.

4d) The_hydrostatic equation

The form chosen for the finite-difference analogue of (1.2.6) is

P
kty
Ry(Ty), I

¢k+* = ¢k_* = = pk-* (202-14)
which gives
NLEV P.
+
¢ =4 + ] R(T), tn L (2.2.15)
k+ d «2.
Pools oy @V Ry
Full level values of geopotential are given by
b = ey T %% RalTyly (2.2.16)
where a, = n2 (2.2.17)
and, for k>1,
P p
3 k+4
=1 - ;| ) (2.2.18)
% 8o, Py}

Reasons for this particular choice of the ® are given below.

e) The pressure gradient term

Tt is shown by Simmons and Strifing (1981) that if the geopotential is given
by (2.2.16), the form

R_(T, ) P
= a vk k+4
R, (T,Vnp), ———Apk {tm Py 1%y + g W o)} (2.2.19)

for the pressure-gradient term ensures no spurious source or sink of angular
momentum due to the vertical differencing. This expression is adopted in the
model, but with the a given by (2.2.18) for all k. This ensures that the

pressure—gradient term reduces to the familiar form Rd(Tv)kvznps in the case
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of sigma coordinates, and the angular momentum conserving property of the
scheme still holds in the case in which the first half-level below p=0 is a
surface of constant pressure. The choice u1=1 in the hydrostatic equation
would have given angular momentum conservation in general, but a geopotential
¢1 inappropriate to the pressure-level p = Py = Ap/2. 1f, alternatively, ¢1
were to be interpreted not as a value for a particular level, but rather the

mass-weighted layer-mean value, then the choice a, = 1 would be appropriate.

Using the form (2.2.1) for the half-level pressures (2.2.19) may be written

R (T ) P
d k k+4
R, (T Venp), = ———Ap {ABk +Cp Ap n 5 }vP (2.2.20)
k k-4
where
(£) Energy-conversion term

To obtain a form for the term xTvm/(1+(6-1)q)p in (1.2.3) we use (1.2.7) to

write
xT_w (T )
v vk
((1+(6-1)q)p]k B 1+(<‘S—1)qk (p)k (2.2.22)
where
o __21 _11
o) ~ pc{ V(g 3pan + (L Vinp)y (2.2.23)

An expression for (IL;’-)k is then determined by the requirement that the
difference scheme conserves the total energy of the model atmosphere for

adiabatic, frictionless motion. This is achieved by

(i) evaluating the first term on the right-hand side of (2.2.23) by

Ap {(mﬁi)XV.(VAp)‘*ukV-(gkAp } (2.2.24)
K

Pe-3 3=1

where the qk are as given by (2.2.17) and (2.2.18), and &s in (2.2.9) and
(2.2.11)

oty &) =D tp, +p_ (v, .Ve0p )aB, (2.2.25)



(ii) using the form of (2.2.20) to evaluate the second term on the right-

hand side of (2.2.23) by

P P
s 1 k+i
R o= — . «2.26
(v V!.np)k 5, {ABk + Cp 3 , £n Pt }vI Vanp (2.2.26)
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2.3 TIME SCHEME

A semi~-implicit time scheme is used for equations of divergence, temperature
and surface pressure, based on the work of Robert et al. (1972). The growth
of spurious computational modes is inhibited by a time filter (Asselin, 1972).
In addition, it uses a semi-implicit method for the zonal advection terms in
the vorticity and moisture equations, following results obtained by Robert
(1981, 1982), who showed that in a semi-implicit shallow water equation model
the time-step criterion was determined by the explicit treatment of the
vorticity equation. Facilities also exist for selective damping of short
model scales to allow use of longer timesteps. These are incorporated within
the horizontal diffusion routines of the model, and are described in

Sect.2.4.

The semi-implicit schemes are formally given by:
U _(u)

1 r ]
Gta 2T - %a BZQ T=vd) ax Attﬁ (2.3.1)
1 Ur(") )
§ea = QT = 2a Bz Tiud) ax el (2.3.2)
- - -1 2
8,0 = T - V% 5 Bop V2{Y8, T + R A tp } (2.3.3)
1
Gt'r = T -3 BoypT 84D (2.3.4)
1
§ top_ = PT = 2 BppV8,.D (2.3.5)

Here the terms 2T, QT, DT, G, TT, PT represent those on the right-hand sides
of equations (1.2.15),(1.2.4), (1.2.16), (1.2.3) and (1.2.10), apart from the
diffusion terms, which are neglected here. Adiabatic components are evaluated
at the current time, t, and parametrized components are generally evaluated
using values of fields at the previous timestep, t-At, full details of the
latter being given in the Physical Parametrization Manual. The treatment of
diffusion terms is described in the following section.

The remaining terms on the right-hand sides of (2.3.1) - (2.3.5) are
corrections associated with the semi-implicit time schemes, and are discussed

more fully below. The operators Gt and Att are given by

+ -
stx = (X - xf)/zm: (2.3.6)



+ -
and Attx = (X '+ xf 2X) (2.3.7)

where X represents the value of a variable at time t, X* the value at time

t+At, and xf a time-filtered value at time t-At. A further operator that will
be used is

The time filtering is defined by

X, =X+ e (X, - 2X+ ), (2.3.9)
and it is computationally convenient to split it into two parts:

Xf = X + Ef(xf - 2X) (203-10)

Xe = Xg + EgX (2.3.11)

Operationally, At = 15 min, and € = 0.1 .

a) The semi-implicit treatment of vorticity and moisture

Referring to eguations (2.3.1) and (2.3.2), an explicit treatment of the
vorticity and moisture equations is obtained by setting BZQ = 0. Otherwise
BZQ = 1 and Ur(u) is a zonally-uniform reference zonal velocity, multiplied by
cosf. Terms describing advection by this reference velocity are represented
implicitly by the arithmetic mean of values at times t+At and t-At, while the
remainder of the tendencies are represented explicitly by values at time t.

Ur(u) may vary in the vertical.

Because of the use of integration by parts in the derivation of the
prognostic equation (2.1.29) for the spectral coefficients of vorticity, it is
necessary to treat the vorticity and moisture equations separately.

Considering first the moisture equation, we obtain from (2.3.2) and (2.3.6) -
(20308):

(1 + 2Ata(u)g—x') q+ = q; + 24t OT - 2A1:(!.(u)'g—X ztt'-l (2.3.12)
where
1 u_(w
a(u) = EE.BZQ -z (2.3.13)

2.20



Transforming to Fourier space then gives

+ - ~
q, = b (w {(q, + 22c oT) - 2imata(uw) A q | (2.3.14)
where
b (u) = (1 + 2imata(y))~! (2.3.15)

New values (q:)+ of the spectral coefficients of q are then computed by
Gaussian integration as described in Sect.2.12.

Por the vorticity equation, (1.2.15) is used to write

1 9 19
= — + - ——— + .3.

ZT ;T?:;IT a (Fv Pv) a an (FU PU) (2.3.16)
where the horizontal diffusion term has for convenience been neglected, since
as specified in the following section it merely modifies the value of
vorticity computed for time t+At. Proceeding as for the moisture equation, we
obtain

+ - . 2imAt ~
£, = bm(u){(gf *aiop?) By * Ry - 2imstalw A g

24t 3
-5 o Fyt Py} (2.3.17)

The factor bm(u) renders the right-hand side of this equation unsuitable for
direct integration by parts, but a suitable form is found from the relation

3 - O -
b (urgo (Fy + By) = oo {b (u)(F, + P} cplu(F, + B (2.3.18)

where

c_(u) =%me(u) (2.3.19)
This gives

+ ~ .§—. ~

= Tyl + oo zm(u) (2.3.20)
where

~ - (Fy + Pyly ~

Zyp (W) = b (W(E + 2At{imbm(u)[m - alwi, g ]

1
+ 2 Cplw(Fy + Py} (2.3.21)

o~ 24t

and Ztu) = - T by (Fy + Pylo (2.3.22)

2.21



4+
New values (Eﬁ) are obtained from (2.3.20) by Gaussian quadrature, using
integration by parts as illustated by {2.1.21) and (2.1.29) for the continuous

form of the equations.

Operationally, BZQ = 1. Ur(u) is the arithmetic mean of the maximum and

minimum velocities multiplied by cos@, as computed for each latitude and model

level at time step t-At. Different values are thus used for different levels.

b) The_semi-implicit treatment of divergence,

temperature_and_surface pressure

Referring to equations (2.3.3) - (2.3.5), an explicit treatment of the
divergence, temperature and surface pressure equations is obtained by setting
BDT=0. For BDT=1' the nature of the semi-~implicit correction is such that
gravity wave terms for small amplitude motion about a basic state with
isothermal temperature Tr and surface pressure P, are treated implicitly by
the arithmetic mean of values at times t+At and t-At, while the remainder of
tendencies are represented explicitly by values at time t. The choice of an
isothermal reference temperature is governed by considerations of the
stability of the semi-implicit time scheme (Simmons et al, 1978), while the
appropriate choice of p. for the hybrid vertical coordinate is discussed by
Simmons and Burridge (1981) and Simmons and Strifing (1981).

Y, T and v in equations (2.3.3) - (2.3.5) are operators obtained from
linearizing the finite-difference forms specified in Sect.(2.2.2) about the

reference state (Tr'Pr)' Their definitions are

r
NLEV P
(Yr), = o RT, + .2 RgT; o (—J—tr ) (2.3.23)
I=k+1 P.
i=%
pr
- (1 k+t, r r
(), =« {—5 (40 NS, + o D (2.3.24)
b, Pr_}
and
1 ¢
D b SNLEV+§ (2.3.25)



r r r

mk = pk"'i'- Pk-* (2.3.26)
r k r

sk+'} - j=21 b APJ'

and the u; are defined by (2.2.17) and (2.2.18), but with half-level pressures

replaced by reference values p:+*.

Expanding (2.3.3) - (2.3.5) using (2.3.6) and (2.3.7), and writing £ to denote
ans, we obtain

+ - 1 + -
= - 2 hl _
D =D, + 2486(DT) - 28eV2{6 + 5 B [v(T + T, = 2T)
+ -
+ R (L + 2, - 20 ]} (2.3.27)
Yoo - A o (2.3.2
T =T, By .3.28)
and
= -8 w 2.3.29
] - . (2.3.29)
where
T, = T, + 28(TT) - 6tR TA D (2.3.30)
and
£, = L + 286(PT) - MR VAD (2.3.31)

Substituting (2.3.28) and (2.3.29) into (2.3.27) then gives

2 + '
(1 - T 99)p = pT (2.3.32)
where
= 2 2
T= (By)2086)2 (YT + RGT_V) (2.3.33)
DT' = D'f' + 2At(DT) + V2R = 6A+Su+vza (2.3.34)



with

~ - 286 3 :
Py = B¢ * 201-ud) ax Fy * Pyl (2.3.3%)
~ 266 3
= _——— _— L] .36
D, " 5n (Fy * By) (2.3.36)
and
BDT
= - ————— . . 7
R 26e{e + == (yr, + RGT L)} (2.3.37)
Here
T, =T, + T, - 2T (2.3.38)
and = % 4 L - 22 (2.3.39)

The sequence of these semi-implicit calculations in the model is thus as
follows. The expressions (2.3.30), (2.3.31) and (2.3.37) - (2.3.39) are
computed on the Gaussian grid to form the gridpoint values of R. The spectral
expansion of DT' is then derived by Gaussian quadrature, using integration by

parts as illustrated by (2.1.22) and (2.1.30) for the continuous form of the
equations. Since

{1 - rv2)0+}: = (1 + "—(“—:1—12—)- 9 (D+): .

the spectral coefficients of divergence at time t+At are given from (2.3.32)
by

+
(0 )7 =1 4 MR

r)'l(o'r'): , (2.3.40)

where this operation involves, for each (m,n), multiplication of the vector of
NLEV values of (DT'): by a pre-computed NLEVXNLEV matrix whose elements are
independent of time and determined by writing the operators y, T and v in
matrix and vector form. Finally, (2.3.28) and (2.3.29) are applied in
spectral space to compute spectral coefficients of T and R.nps at time (t+At)

in terms of the spectral coefficients of T1 and 21 (again determined by

. +
Gaussian quadrature) and those of D .

Operationally, BDT= 0.75, Tr = 300K and p.= 800 hpa.



2.4 HORIZONTAL DIFFUSION

2.4.1 Basic scheme

The basic "horizontal” smoothing of vorticity, divergence and specific
humidity is represented by a simple linear 4th-order diffusion applied along

the hybrid coordinate surfaces:
K, = - KV% (2.4.1)
where X = g, D or q. It is applied in spectral space to t+At values such that

if x: is a spectral coefficient of X computed for timestep t+At prior to
diffusion, then the diffused value i: is given by

-m m n(n+1) 2 -m

xn xn 2K At (ﬂ—a ) Xn (2.4.2)
or

-“m _m n(n+1) 2,71

x =x {2kt 7 } (2.4.3)

A modified diffusion is used for temperature to avoid an unrealistic warming
of mountain tops and excessive summer precipitation associated with
substantial mixing in the vicinity of steep mountain slopes. A
computationally convenient form which approximates diffusion on pressure

surfaces is used. Equation (2.4.3) becomes

-m m m m n(n+1) 2,~1
T o= (T + (T - () ){1+2Rae (<o) |} (2.4.4)
where
- Sp_or
T (ps aps % ref !nps (2.4.5)
and ( )ref denotes reference values varying only with the model level. These

values are based on the standard ICAO atmosphere, and that for level k is
given by

% T -
(ps st 8p)ref 0.5 (Bk+} + Bk-{)u T cP /prk ¢ T 2 T ’

rctrs rt

(2.4.5)
= 0
Trc < Trt !
= 2.4.6
where Trc 'I‘rs (prk/prs) ( )
and
= l‘(A + ) + l‘(B + B ) (2.4.7)
Prg © 2 Brap ¥ M) 72 By ¥ By )P -4.
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A facility also exists to increase diffusion at stratospheric levels. The
coefficient K is multiplied at level N by a factor (edif)z, where 2=0 for N)Nz

and £=min{1+N2-N, 1+N2—N1} otherwise.

Operationally, K = 1015 mY s‘l, for all fields except divergence, for which
the value 2.5 x 1015 m* s-1 is used. The parameters of the ICAO reference

atmosphere are:

P.g = 1013.20 hrPa .
T = 288K ,
rs
= 1/5.256 ,
and T = 216.5 K .
rt

The increased stratospheric diffusion is specified by edif=2, N1=2 and N2=5.

2.4.2 Enhanced diffusion to enable use of longer timesteps

Experience with earlier versions of the operational forecasting system has
revealed two situations which limit the timestep possible in the model. The
first is the occurrence of a strong polar-night jet in the stratosphere during
late winter in the Southern Hemisphere. The second is a strong tropospheric
jet stream over the Western Pacific during the Northern Hemisphere winter.
Facilities now exist for selective enhancement of horizontal diffusion to
allow use of longer timesteps than would otherwise be possible in such

situations.

The first entails a general substantial increase in horizontal diffusion for
the smallest scales at upper model levels. For each level k, a critical total
wavenumber nk is defined. The diffusion coefficient K specified in Sect.2.4.1
is then used for n < n . while for n > n, the value K h€ is used, where ¢ is
the number of levels (below and including k) for which the level number, £, is

such that both & > k and n, < n . Operationally h = 10 and

g2, 84, 86, 88, 90, 93, 96, 100, 103, 105, 106,...106 for

"

k= %, 2, 3, 4, 5, 6, 17, 8, 9, 10, 11,.....NLEV.

This effectively acts as a reduction in model resolution at stratospheric
levels, without generating the noise found in tests in which the

highest-wavenumber components were simply set to zero at these levels.



The second option is to increase damping at model levels where the maximum
wind exceeds a critical value. For a particular model level, spectral
components whose total wavenumber exceeds a critical value Rorit (which
depends on the maximum windspeed at that level) are damped at the timestep in
question by a factor

1+ u;A-t- [Max{lu} })tn-n__, (2.4.8)

where

n__;. = &Max{|yl} (2.4.9)

Values a » 2 and B = a/At are sufficient to avoid exponential computational
instability for the linear advection equation for a wave of scale a/n and

advecting velocity Max{lgj]. In the model, B is defined through a critical
velocity, V

crit
Atono
8 = Vcrit At

where Ato = 1200s and n, = 63. Here Vc should correspond to a critical

rit
velocity for stability (with o=0) for a model resolution with Max {n}=63 and a

20 minute timestep. Operationally, a = 2.5 and Vc = 85 m 8!, the latter

rit
giving B = 1.009 a/At.

2.27



CHAPTER 3
Normal Mode Initialization

3.1 INTRODUCTION

Primitive equation models, unlike quasi-geostrophic models, generally admit
high frequency gravity wave solutions, as well as the slower moving Rossby
wave solutions. If the results of the analysis scheme are used directly as
initial conditions for a forecast, subtle imbalances between the mass and wind
fields will cause the forecast to be contaminated by spurious high-frequency
gravity-wave oscillations of much larger amplitude than are observed in the
real atmosphere. Although these oscillations tend to die away slowly due to
various dissipation mechanisms in the model, they make the forecast noisy and
they may be quite detrimental to the analysis cycle, in which the six-hour
forecast is used as a first-guess field for the next analysis. The synoptic
changes over the six-hour period may be swamped by spurious changes due to the
oscillations, with the consequence that at the next analysis time, good data
may be rejected as being too different from the first-guess field. For this
reason, an initialization step is performed between the analysis and the

forecast, with the object of eliminating the spurious oscillations.

The principle of the method is to express the analysed fields in terms of the
normal modes of free oscillation of the model atmosphere, then to modify the
coefficients of the fast moving gravity modes in such a way that their rate of

change vanishes.



3.2 COMPUTATION OF THE NORMAL MODES

The first step is to compute the modes of free oscillation of the model
atmosphere. For this purpose the model equations are linearized about a basic
state at rest, with a temperature profile T(n) function of height only.

The model equations can be written in matrix form:

aD

_;_f.§+ 8‘_1.+ ng_:

at =0

R,
ag

> * B+ =R =0 (3.2.1)

a®

3 tBR =R, =0
The terms on the right hand side contain all the nonlinear tendencies and are
here set to zero. The vector notation is used in (3.2.1) to represent the
values at all the model levels. The vertical structure matrix B is given in
Simmons and Strifing (1982, Eg.4.5). It depends on the basic state chosen and
on the numerical technique used in the vertical discretization. The auxiliary
potential P is defined as P = 3 + RT lnps. In the definition of the

geopotential of the mean state 3 a mean surface pressure Es is assumed.

In order to separate the vertical dependence from the horizontal in (3.2.1)
the model variables D, § and P are expressed in terms of the eigenvectors Qm

of matrix B. For example:

(3.2.2)

The equations obtained after substitution of 3.2.2 into 3.2.1 have the form of
M independent systems of shallow-water equations with equivalent geopotential

depth ¢m' equal to the eigenvalue corresponding to Qm'

After performing the vertical separation, the M two-dimensional systems may be
separated in the zonal direction by Fourier transforming the variables; thus
we write e.g.

N-1

om(x,e,u) = kzo Dm,k (8,t) exp (ik)) (3.2.3)



If we now call fm,k the vector which contains Dm,k' %n,k and Pm,k (scaled to

be non-dimensional), the system of linear equations becomes formally:

-m,k = 3
at t Enk Xm,x (3.2.4)
The matrix ém K is real and symmetric. Hence its eigenvectors are orthogonal.
14

They form a set of horizontal normal modes which can be used to express x

(dropping the indices m,k for simplicity of notation):

3L

x= J ¢,k (3.2.5)
=1 T

In fact these modes naturally divide into two classes: symmetric and
antisymmetric with respect to the equator. This property is used to reduce
the dimension of the matrix A when finding its eigenvectors which are the

normal modes required.
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3.3 THE INITIALIZATION PROCESS

Using (3.2.5), the equation (3.2.4) can now be written

dcz

EE— = i va c2 (3.3.1)
for each &, with vl being the eigenvalues of A.
Hence

x(€) = ] c (0) exp (ivpt) £ (3.3.2)

L

where the amplitudes cz(O) are determined by the values of D,{,P at t = 0. At
least for the first few vertical modes (with large equivalent depths ﬁm) there
is a clear distinction between low-frequency Rossby wave solutions (small vz)
and high frequency gravity wave solutions (large vz). Only solutions of the
former type are observed in the atmosphere with significant amplitude.

If the real model equations were linear, it would be easy to ensure that high
frequency gravity waves do not exist by simply reducing to zero the
corresponding normal mode coefficient CQ(O) of the analysis. But this method

does not work for the full nonlinear model.

The equivalent of (3.3.1) for the nonlinear equations is

dc2
I = i v, cz + rl(t) (3.3.3)

The term r, is the projection of the nonlinear terms of the model egquations

(computed by running one time step of the model) onto the normal modes.

If we simply make cz = 0 for t=0, very soon this mode will reappear, forced by

rﬁ. This was shown by Williamson (1976}.
Machenhauer (1977) has proposed an iterative scheme for removing the gravity-
mode oscillations by setting the initial time-derivatives of the gravity-mode

coefficients to zero. From (3.3.3),

dc r, (0)
A . £

— - 0 = -

3t Je=p = 0 1f o (O Ly,

. (3.3.4)

Since the nonlinear term rQ(O) depends partly on the gravity-mode coefficients

themselves, it is necessary to iterate the procedure; but for a barotropic
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model (or for the first few vertical modes of a multi-level model) the scheme

converges rapidly, and two iterations are perfectly adequate.

In the current version of the analysis cycle we perform two iterations of
Machenhauer's procedure, initializing just the first five vertical modes.
(The higher internal modes have very low frequencies and thus do not
contribute to the problem of spurious high-frequency oscillations). The
nonlinear forcing terms are computed by running the model itself for one

timestep at each iteration.

Although in principle the non-linear forcing can include the "physics" package
as well as the dynamics, in practice this leads to the immediate divergence of
the iteration process. Following Wergen (1987), an estimate dz of the
quasi-stationary part of the physical forcing is used, which is kept constant
for all iterations. This estimate is computed by time-averaging the physical
tendencies during a 2 hour forecast starting from an uninitialized analysis.
Only those components which force inertia-gravity waves with periods longer
than a certain cut-off period are retained, thus discarding less reliable
small-scale structures. Operationally this cut-off period is 11 hours. In
order to obtain only the stationary part of the physical forcing, the diurnal

cycle is switched off during this 2 hour forecast.

The filter condition (3.3.4) now reads:

rl(O) + dl

iv2

cz(O) = - (3.3.5)

Since the initialization condition (3.3.4) requires stationarity for the
initialization of inertia-gravity waves, it clearly mishandles the tidal
component of the atmospheric circulation. It should be allowed to propagate
westwards and therefore be excluded from the initialization process. Again,
following Wergen (1987), this is achieved by performing a time series analysis
of the total dynamical and physical tendencies for the ten days preceeding the
actual analysis time. The westward propagating component with a 24 hour

period for zonal wavenumber one and a 12 hour period for zonal wavenumber two



are excluded from (3.3.4) for all five vertical modes and for the eight
gravest meridional modes. With tz being the tidal component of the

tendencies, the initialization condition becomes:

d-
r (0) + ¢ tz

Ve

The steps of the initialization procedure can be summarized as follows:

1. Run model for 2 hours from the uninitialized analysis to compute time-
averaged physical forcing without diurnal cycle.

2. Filter physical forcing field.

3. Run adiabatic model for one timestep to compute non-linear terms.
4. Compute new gravity mode coefficients according to (3.3.6)

S. Restore analysed surface pressure after first iteration.

6. As 3 but starting from results of first iteration step.

7. As 4 (second iteration).



