
Module 6: 
 Parallel processing large data 
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Overview of presentation 
• Traditional parallel processing and parallelising data 

analysis 
 

• Parallel processing on JASMIN / LOTUS 
 

• Examples of running parallel code (on LOTUS) 
 

• Re-factor your code for efficiency 



What is Big Data? 

 
1 ZETTABYTE = 1,000,000,000 TERABYTES 



Processing big data: the issues 
• Parallel processing in the Environmental Sciences has 

historically focussed on highly-parallel models. 
• Data analysis was typically run sequentially because: 

– It was a smaller problem 
– It didn’t have parallel resources available 
– The software/scientists were not equipped to work in parallel 

 

• But now we generate enormous datasets (e.g. 
UPSCALE – around 300Tb) means that: 

– Processing big data requires a parallel approach, but 
– Platforms, tools, and programmers are becoming better 

equipped 



The traditional view of parallel processing 

• It’s what models do on High Performance 
Computing (HPC) platforms 
 

• Modellers may work with… 
 



The traditional view of parallel processing 

… shared memory (e.g. OpenMP) 

 



The traditional view of parallel processing 

… distributed memory (e.g. MPI) 



The traditional view of parallel processing 

… or shared distributed memory 

It’s a complex subject...which we 
mainly intend to avoid! 
 



Some Terminology 
Concurrency: A property of a system in which multiple 

tasks that comprise the system remain active and 
make progress at the same time. 

 

Parallelism: Exploiting concurrency in a programme 
with the goal of solving a problem in less time. 

 

Race condition: A race condition occurs within 
concurrent environments: where the output is 
dependent on the sequence or timing of other 
uncontrollable events. It can lead to bugs when parts 
of the code complete in an unexpected order. 



How does a single processor do three 
things at once? 

Even on a single processor modern operating systems 
can give the illusion that multiple tasks are running 
at the same time by rapidly switching between many 
active threads. 

 

 
This is because the modern 

CPU clock is measuring time 
in nanoseconds whereas we 

can only keep track of 
milliseconds. 

 

Picture: http://www.python-course.eu/threads.php 



(Almost) everything is parallel these days 

It runs a multi-core processor... 
...which means you can speed up processing by asking 

different parts of your programme to run on different 
cores. 

“But what about race conditions?”... 
...True: you still need to design your approach to avoid 

things getting out of hand! 

YOUR DESKTOP MACHINE IS 
A PARALLEL COMPUTER! 



Parallel processing for data analysis 

• Data analysis tools do not (typically) do 
parallelisation automatically.  

• But parallelisation is normally achievable at a 
small price.  

• A lot can be done with: 
– Batch processing  
– Decomposition of large jobs into smaller jobs 
– Understanding tools and schedulers 

We will look at these and show examples. 
 



Simple parallelism by hand (1) 

• Running on a multi-core machine you can 
exploit local processes, e.g.: 

 
Long list (100,000) 
of  text files: each 
file contains the 
text from a whole 
book. 

A text file: listing  
all lines in all 
books that match 
the word “dog” 

Some 
processing 

code 

#!/bin/bash 
input_file=$1 
while read FILENAME; do 
 grep dog $FILENAME >> ${input_file}_result.txt 
done <  $input_file 

grep_for_dog.sh 



Simple parallelism by hand (2) 

• A simple re-factoring splits the job into five 
parts: 

 List (20,000) of  text files 
A text file: listing  
all lines in all 
books that match 
the word “dog” 
 

Some 
processing 
code (x 5) 

$ split –l 20000 –d list_of_files.txt  # Writes to “x00”, “x01”, ..., “x04” 
$ for i in x??; do grep_for_dog.sh $i & done 
$ cat *_result.txt > output.txt 

List (20,000) of  text files 

List (20,000) of  text files 

List (20,000) of  text files 

List (20,000) of  text files 

Group 
together 

Result 1 

Result 2 

Result 3 

Result 4 

Result 5 



Simple parallelism with Jug (1) 

• Jug is a Python library that: 
– allows you to write code that is broken up into 

tasks and 
–  run different tasks on different processors. 
 

• Jug also saves all the intermediate results to 
its backend in a way that allows them to be 
retrieved later. 
– The backend is typically the file system 



Simple parallelism with Jug (2) 

• Jug is useful for: 
– Running parallel jobs on a multi-core machine 
– Running parallel jobs on a cluster (such as LOTUS) 

 

For more information, see: 
http://pythonhosted.org/Jug/ 

 

http://pythonhosted.org/Jug/�


Jug Example 
Jug allows you to turn a Python function into a parallel “Task”. It 

handles the parallelisation for you. 

from jug import TaskGenerator  
from time import sleep  
 
@TaskGenerator  
def is_prime(n):  
     sleep(1)  
     for j in xrange(2, n-1):  
          if (n % j) == 0:  
                return False  
     return True  
 
primes100 = map(is_prime, xrange(2, 101)) 



Running Jug 
Jug has a command-line tool that gives you interactive 

information about the job: 
 $ jug status primes.py 

 

 

 

 
 

 

 $ jug execute primes.py &  # Execute this line 4 times 

 $ jug status primes.py 

 



JASMIN & LOTUS 



Main components of JASMIN 
• ~10 Petabytes of high-performance parallel disk: for 

archives, collaboration and data analysis 

• A large compute platform for: 
–   Hosting virtual machines:  

1. For specific projects/organisations 
2. For generic scientific usage (transfer/analysis) 

– Compute Cluster (LOTUS): 
• For parallel and batch jobs 
• For running models 

...and a lot of other stuff not mentioned here. 



JASMIN in pictures 



The JASMIN Scientific Analysis Servers (1) 

• A number of processing servers exist for 
general data analysis tasks: 
– jasmin-sci[12].ceda.ac.uk 
– cems-sci[12].cems.rl.ac.uk 

 

• These servers allow direct access to BADC and 
NEODC archives as well as any “group 
workspaces” - for authorised users. 
 



The JASMIN Scientific Analysis Servers (2) 

A common set of tools are installed (known as 
the “JASMIN Analysis Platform”) including: 

 
NCO, CDO, CdatLite, Python2.7, NetCDF4, 

python-netcdf, Iris, Matplotlib, Octave, R, ... 
 
 
See: http://proj.badc.rl.ac.uk/cedaservices/wiki/JASMIN/AnalysisPlatform/Packages 
 

 
 

 

http://proj.badc.rl.ac.uk/cedaservices/wiki/JASMIN/AnalysisPlatform/Packages�


The LOTUS cluster on JASMIN 

The JASMIN Scientific Analysis Servers are very 
useful – but they are limited in resource and 
may well be swamped by other users. 

 
The LOTUS cluster is a far bigger resource.  
 
We’ll see some examples later... 



LOTUS: Queue configuration 
Batch queues:  
1. lotus: (8 Nodes with 2x6 Cores Intel 3.5GHz, 48G 

RAM, 10G Networking, 10Gb Std latency TCP MPI)    
= 96 Cores  

2. lotus-g: (3..6 Nodes with 2x6 Cores Intel 3.0GHz 96G 
RAM, 10G Networking, 10Gb Gnodal low latency TCP 
MPI ) = 36..72 cores  

3. lotus-smp: (1 node with 4x12 cores AMD 2.6GHZ 
256GB RAM, 10Gb Networking)  

4. lotus-serial: (co-exists with lotus-smp and lotus 
queue hardware)  



LOTUS: System software 
• RHEL6.2 Operating System 
• Platform LSF batch scheduler  
• Platform MPI (+/- OpenMPI)  

– Full Support for MPI I/O on Panasas parallel file 
systems  

• Intel and PGI compilers  
• Central repository for installed software  
• Environment modules  

 

http://proj.badc.rl.ac.uk/cedaservices/wiki/JASMIN/LOTUS 
 

http://proj.badc.rl.ac.uk/cedaservices/wiki/JASMIN/LOTUS�


LOTUS: Data Analysis Software 

All LOTUS nodes have the same software 
packages available as the JASMIN Scientific 
Analysis Servers. 

 
This means you can: 

1. Develop code on the generic Analysis Servers 
2. Run in batch mode via LOTUS 



LOTUS: Job Control 

Submitting a job (you must SSH to lotus.jc.rl.ac.uk): 

 $ bsub [options] <command> 

View the status of jobs: 
 $ bjobs 
 JOBID USER STAT QUEUE FROM_HOST EXEC_HOST JOB_NAME SUBMIT_TIME 

71880 fred PEND lotus lotus.jc.rl */hostname Mar 18 16:26 

Cancel a job with: 
 $ bkill <job_id> 
 

See details at: 

 http://www.ceda.ac.uk/help/users-guide/lotus/ 

 

http://www.ceda.ac.uk/help/users-guide/lotus/�
http://www.ceda.ac.uk/help/users-guide/lotus/�
http://www.ceda.ac.uk/help/users-guide/lotus/�


LOTUS: Where to read/write? 

LOTUS can see: 
– Home directories (read/write) – but 10Gb QUOTA! 
– Group Workspaces (read/write) 
– BADC & NEODC Archives (read-only) 
–  /work/scratch/<userid> (read/write) – but SMALL! 
–  /tmp (read/write) – but LOCAL TO NODE! 

 
 

Group workspaces allow you to write large 
volumes of data (and keep it!) 



Parallel Processing Examples 



Example 1: extracting CF standard names 
from 200,000 files (1) 

Requirement: 
• Extract CF-netCDF standard name attributes from 200,000 

netCDF files. 
 

Details: 
• Starting with a file containing a list of 200,000 netCDF files 
• For each netCDF file: 

– Run the “ncdump –h” command to extract the header as text 
– Pipe that into the “grep” command to match only “standard_name” 

 
 

#!/bin/bash 
cd /group_workspace/jasmin/megalon/test 
while read FILENAME; do 
      ncdump –h $FILENAME | grep standard_name | cut –d: -f2 | cut -d; -f1 >> $2 
 done < $1 

grep_names.sh 



Example 1: extracting CF standard names 
from 200,000 files (2) 

Running in parallel via LOTUS: 
• Split the file containing a list of 200,000 netCDF files into 10: 
 $ split -l 20000 -d input_file.txt   
 Which writes files called:   “x00”, “x01”, ..., “x09” 
 
• Write a loop and submit 10 jobs to LOTUS: 
 for input in x* ; do 

  bsub ./grep_names.sh $input  ${input}_result.txt 
 done 

 
 



Example 1: extracting CF standard names 
from 200,000 files (3) 

View progress of the jobs running on LOTUS: 
 $ bjobs 
 ...will print out details of  jobs running... 

 

When all jobs have run: merge results into one file: 
 $ cat x??_results.txt > output.txt 
 

“output.txt” contains all the results in one place. 
 

NOTE: This example requires that all results are 
collected before merging them into “output.txt” 

 
 



Example 2: extract spatial subsets from 
CMIP5 experiments (1) 

Requirement: 
Extract spatial subsets from CMIP5 a set of experiments. 
 

Details: 
• For each model: 

– For each variable (hus, ps, ta, ua & va): 
• Extract a spatial subset (80° to 140° Longitude; -30° to 40° Latitude) 
• Where: 

– Frequency: 6hr 
– Realm: atmosphere 
– Ensemble: r1i1p1 



Example 2: extract spatial subsets from 
CMIP5 experiments (2) 

Basic Implementation: 
Script 1 (bash): 
• For each variable (hus, ps, ta, ua & va): 

– Make output directory 
– Glob all relevant input NetCDF files 
– Call Python script; extract spatial subset; write output 

Script 2 (Python): 
– Read input file; extract spatial subset for variable; write output file. 
– Main code used: cf-python library 

import cf 
f = cf.read(infile) 
subset = f[2].subspace(latitude=cf.wi(bb.south, bb.north), longitude=cf.wi(bb.west, bb.east)) 
cf.write(subset, outfile) 

Extract from:   extract_cmip5_subset.py 



Example 2: extract spatial subsets from 
CMIP5 experiments (3) 

Parallel Implementation using LOTUS: 
Script 1 (bash): 
• For each variable (hus, ps, ta, ua & va): 

– Make output directory 
– Find all relevant input NetCDF files 
– Submit a job to the LOTUS scheduler that will call the Python script 
– Use the “bsub” command: 
 

 
 

Why use this approach? 
– Because you can submit 200 jobs in one go.  
– Lotus executes jobs when resource becomes available 
– They will all run and complete in parallel 

bsub -q lotus -o $outdir/`date +%s`.txt ~/extract_cmip5_subset.py $nc_file $this_dir $var 



Example 3: chaining tasks with Jug: calculating 
monthly means (1) 

Requirement: 
• Calculate a monthly mean from 6-hourly model data 
 

Details: 
• For each date in the month: 

– Extract data for 00Z, 06Z, 12Z & 18Z 
– Calculate daily average from them 

• Gather all daily averages 
• Calculate monthly average 
• Write monthly average to netCDF file 



Example 3: chaining tasks with Jug: calculating 
monthly means (2) 

Basic Implementation in Python (PART 1): 
import cdms2 
 
def calcDailyMean(date, var = "U10"): 
    f = cdms2.open("/badc/ecmwf-era-interim/metadata/cdml/era-interim_ggas.xml") 
    v = f(var, time = ("%s 00:00" % date, "%s 23:59" % date)) 
    total = sum([v[i] for i in range(4)) 
    f.close() 
    return total 
 
def calcMonthlyMean(data, date): 
    total = sum([data[i] for i in range(len(data))]) 
    return total 
 
def writeMonthlyMean(data, fname): 
    f = cdms2.open(fname, "w") 
    f.write(data) 
    f.close() 



Example 3: chaining tasks with Jug: calculating 
monthly means (3) 

Basic Implementation in Python (PART 2): 

 
 
 
 
 
 
 
Run sequentially:    $ python2.7  monthly_mean.py 

(...continued...) 
 
year = 2001 
month = 1 
all_days = [] 
 
for day in range(1, 32): 
    d = "%.4d-%.2d-%.2d" % (year, month, day) 
    all_days.append(calcDailyMean(d)) 
 
monthly_mean = calcMonthlyMean(all_days, "%.4d-%.2d-15" % (year, month)) 
 
output_path = "/group_workspace/jasmin/megalon/output.nc” 
writeMonthlyMean(monthly_mean, output_path) 



Example 3: chaining tasks with Jug: calculating 
monthly means (4) 

Convert to Jug Tasks by adding: 
from jug import TaskGenerator, barrier 
import cdms2 
 
@TaskGenerator 
def calcDailyMean(date, var = "U10"): 
    f = cdms2.open("/badc/ecmwf-era-interim/metadata/cdml/era-interim_ggas.xml") 
    v = f(var, time = ("%s 00:00" % date, "%s 23:59" % date)) 
    total = sum([v[i] for i in range(4)) 
    f.close() 
    return total 
 
@TaskGenerator 
def calcMonthlyMean(data, date): 
    total = sum([data[i] for i in range(len(data))]) 
    return total 
 
@TaskGenerator 
def writeMonthlyMean(data, fname): 



Example 3: chaining tasks with Jug: calculating 
monthly means (5) 

Add Jug “barriers” to wait for dependent tasks to 
complete: 

(...continued...) 
 
year = 2001 
month = 1 
all_days = [] 
 
for day in range(1, 32): 
    d = "%.4d-%.2d-%.2d" % (year, month, day) 
    all_days.append(calcDailyMean(d)) 
 
barrier() 
monthly_mean = calcMonthlyMean(all_days, "%.4d-%.2d-15" % (year, month)) 
 
barrier() 
output_path = "/group_workspace/jasmin/megalon/output.nc” 
writeMonthlyMean(monthly_mean, output_path) 



Example 3: chaining tasks with Jug: calculating 
monthly means (6) 

Now we can run with Jug, locally (on 4 processors): 

$ jug execute monthly_mean.py & 
$ jug execute monthly_mean.py & 
$ jug execute monthly_mean.py & 
$ jug execute monthly_mean.py & 
 
 
$ jug status monthly_mean.py    # will report on status 



Example 3: chaining tasks with Jug: calculating 
monthly means (7) 

Or run on LOTUS: 
On LOTUS we can use the “Job Array” submission 

feature to submit the same Jug script multiple times 
to the cluster, e.g.  Run 40 times (on 40 processors): 

 
 
 
Each process will output to: 
  - ${dir}/${job_id}-${array_count}.out 

$ dir=/group_workspace/jasmin/megalon 
$ bsub -e $dr/%J-%I.err -o $dr/%J-%I.out -J "jug[1-
40]" jug execute monthly_mean.py 
 



So why did we use Jug? 
• Jug makes it trivial to convert existing functions 

into parallel “Tasks”. 
• Jug  allows simple management of race 

conditions where dependencies exist between 
tasks. 

• Jug gives us a simple way of farming out our 
workflows onto processing clusters (such as 
LOTUS). 

But clearly you could write it yourself...if you want. 



What about using MPI? 

Some background: What is MPI? 
• MPI stands for Message Passing Interface. 
• Explaining MPI is beyond our scope. 
• MPI provides a standard specification that enables 

message passing between different nodes of a 
parallel computer system. 

• It follows a distributed memory model. 
So it maps nicely to use on the LOTUS cluster...and lots 

of existing parallel code uses MPI (as implemented in 
C, Fortran, Python etc). 



Using MPI on LOTUS 

The LOTUS User Guide provides detailed instructions on 
how to: 
• Load MPI modules 
• Compile C/Fortran code to use MPI 
• Log on to interactive nodes for compilation 
• Submitting jobs using MPI 

 

There is not time to cover this in detail, please see: 
 http://www.ceda.ac.uk/help/users-guide/lotus/ 
 

http://www.ceda.ac.uk/help/users-guide/lotus/�


Re-factoring is important too! 



Efficiency gains through re-factoring (1) 
Major gains can be made by changing the order and 

structure of your code.  
Problems with your code might include: 
1. Code will not run because of memory requirements 
2. Code runs sequentially and takes a long time 
3. Code does run but falls over because of resource 

limits. 
 

In some cases you can create loops that can be scripted 
as separate processes (or JUG tasks) allowing you to 
submit them in parallel. 

 



Efficiency gains through re-factoring (2) 
Here is a real-world example: 
 

The Problem: Trying to run the NCO tool “ncea” to calculate an 
average from a large dataset. It will not run! 

Why? The “ncea” command reports this...and then exits: 
– “unable to allocate 7932598800 bytes” (which is about 8 Gbytes) 
 

Possible solutions: 
1. Data files hold multiple variables: Operate on one at a time: 

ncea -v vosaline means/199[45678]/*y01T.nc -o test.nc 
 

2. Reduce the number of files (i.e. years) processed each time: 
ncea means/199[45]/*y01T.nc -o test.nc 



Other Python-based Parallel tools 

The following page brings together details of many 
different parallel tools available for python users: 

 
• https://wiki.python.org/moin/ParallelProcessing 
 
 
 

https://wiki.python.org/moin/ParallelProcessing�


Running “iPython Parallel” within JASMIN 
iPython is a suite very powerful packages and tools to 
extend the capability of python.  This includes a 
sophisticated architecture for parallel and distributed 
computing able to support a range of styles including: 
 

• Single program, multiple data (SPMD) parallelism. 
• Multiple program, multiple data (MPMD) parallelism. 
• Message passing using MPI. 
• Task farming. 
• Data parallel. 

http://ipython.org/ipython-doc/stable/parallel/ 
 

http://ipython.org/ipython-doc/stable/parallel/�
http://ipython.org/ipython-doc/stable/parallel/�
http://ipython.org/ipython-doc/stable/parallel/�


The future of parallel data analysis 

• Analysing Big Data is a challenge! Software 
needs to adapt and scientists need to be able 
to adapt their code to keep up! 

Number of files 3,222,967 
Number of datasets 54,274 
Archive Volume (TB) 1,483 
Models with data published 64 
Models with documentation published in archive 38 
Experiments 108 
Modelling centres 32 
Data Nodes 22 

CMIP5 Status (early 2013) 



The future of parallel data analysis 

We are likely to see more: 
• Parallel I/O in software libraries; 
• Web processing services that do the parallel analysis 

remotely; 
• Analysis Platforms (like JASMIN) that allow scientists 

to run code next to the data; 
• Learning to write parallel code now is likely to be of 

great benefit in future; 



Further information 

JASMIN Analysis Platform (software packages): 
http://proj.badc.rl.ac.uk/cedaservices/wiki/JASMIN/AnalysisPlatf

orm/Package 
LOTUS Overview: 
  http://proj.badc.rl.ac.uk/cedaservices/wiki/JASMIN/LOTUS 
LOTUS User Guide: 
  http://www.ceda.ac.uk/help/users-guide/lotus/ 
Jug:  
 http://pythonhosted.org/Jug/ 
Parallel processing: 
     https://computing.llnl.gov/tutorials/parallel_comp/ 
 

 

http://proj.badc.rl.ac.uk/cedaservices/wiki/JASMIN/AnalysisPlatform/Package�
http://proj.badc.rl.ac.uk/cedaservices/wiki/JASMIN/AnalysisPlatform/Package�
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