
Module 6:
 Parallel processing large data

Thanks to all contributors:

Alison Pamment, Sam Pepler, Ag Stephens, Stephen Pascoe,
Kevin Marsh, Anabelle Guillory, Graham Parton, Esther

Conway, Eduardo Damasio Da Costa, Wendy Garland, Alan
Iwi and Matt Pritchard.

Overview of presentation
• Traditional parallel processing and parallelising data

analysis

• Parallel processing on JASMIN / LOTUS

• Examples of running parallel code (on LOTUS)

• Re-factor your code for efficiency

What is Big Data?

1 ZETTABYTE = 1,000,000,000 TERABYTES

Processing big data: the issues
• Parallel processing in the Environmental Sciences has

historically focussed on highly-parallel models.
• Data analysis was typically run sequentially because:

– It was a smaller problem
– It didn’t have parallel resources available
– The software/scientists were not equipped to work in parallel

• But now we generate enormous datasets (e.g.
UPSCALE – around 300Tb) means that:

– Processing big data requires a parallel approach, but
– Platforms, tools, and programmers are becoming better

equipped

The traditional view of parallel processing

• It’s what models do on High Performance
Computing (HPC) platforms

• Modellers may work with…

The traditional view of parallel processing

… shared memory (e.g. OpenMP)

The traditional view of parallel processing

… distributed memory (e.g. MPI)

The traditional view of parallel processing

… or shared distributed memory

It’s a complex subject...which we
mainly intend to avoid!

Some Terminology
Concurrency: A property of a system in which multiple

tasks that comprise the system remain active and
make progress at the same time.

Parallelism: Exploiting concurrency in a programme
with the goal of solving a problem in less time.

Race condition: A race condition occurs within
concurrent environments: where the output is
dependent on the sequence or timing of other
uncontrollable events. It can lead to bugs when parts
of the code complete in an unexpected order.

How does a single processor do three
things at once?

Even on a single processor modern operating systems
can give the illusion that multiple tasks are running
at the same time by rapidly switching between many
active threads.

This is because the modern

CPU clock is measuring time
in nanoseconds whereas we

can only keep track of
milliseconds.

Picture: http://www.python-course.eu/threads.php

(Almost) everything is parallel these days

It runs a multi-core processor...
...which means you can speed up processing by asking

different parts of your programme to run on different
cores.

“But what about race conditions?”...
...True: you still need to design your approach to avoid

things getting out of hand!

YOUR DESKTOP MACHINE IS
A PARALLEL COMPUTER!

Parallel processing for data analysis

• Data analysis tools do not (typically) do
parallelisation automatically.

• But parallelisation is normally achievable at a
small price.

• A lot can be done with:
– Batch processing
– Decomposition of large jobs into smaller jobs
– Understanding tools and schedulers

We will look at these and show examples.

Simple parallelism by hand (1)

• Running on a multi-core machine you can
exploit local processes, e.g.:

Long list (100,000)
of text files: each
file contains the
text from a whole
book.

A text file: listing
all lines in all
books that match
the word “dog”

Some
processing

code

#!/bin/bash
input_file=$1
while read FILENAME; do
 grep dog $FILENAME >> ${input_file}_result.txt
done < $input_file

grep_for_dog.sh

Simple parallelism by hand (2)

• A simple re-factoring splits the job into five
parts:

 List (20,000) of text files
A text file: listing
all lines in all
books that match
the word “dog”

Some
processing
code (x 5)

$ split –l 20000 –d list_of_files.txt # Writes to “x00”, “x01”, ..., “x04”
$ for i in x??; do grep_for_dog.sh $i & done
$ cat *_result.txt > output.txt

List (20,000) of text files

List (20,000) of text files

List (20,000) of text files

List (20,000) of text files

Group
together

Result 1

Result 2

Result 3

Result 4

Result 5

Simple parallelism with Jug (1)

• Jug is a Python library that:
– allows you to write code that is broken up into

tasks and
– run different tasks on different processors.

• Jug also saves all the intermediate results to
its backend in a way that allows them to be
retrieved later.
– The backend is typically the file system

Simple parallelism with Jug (2)

• Jug is useful for:
– Running parallel jobs on a multi-core machine
– Running parallel jobs on a cluster (such as LOTUS)

For more information, see:
http://pythonhosted.org/Jug/

http://pythonhosted.org/Jug/�

Jug Example
Jug allows you to turn a Python function into a parallel “Task”. It

handles the parallelisation for you.

from jug import TaskGenerator
from time import sleep

@TaskGenerator
def is_prime(n):
 sleep(1)
 for j in xrange(2, n-1):
 if (n % j) == 0:
 return False
 return True

primes100 = map(is_prime, xrange(2, 101))

Running Jug
Jug has a command-line tool that gives you interactive

information about the job:
 $ jug status primes.py

 $ jug execute primes.py & # Execute this line 4 times

 $ jug status primes.py

JASMIN & LOTUS

Main components of JASMIN
• ~10 Petabytes of high-performance parallel disk: for

archives, collaboration and data analysis

• A large compute platform for:
– Hosting virtual machines:

1. For specific projects/organisations
2. For generic scientific usage (transfer/analysis)

– Compute Cluster (LOTUS):
• For parallel and batch jobs
• For running models

...and a lot of other stuff not mentioned here.

JASMIN in pictures

The JASMIN Scientific Analysis Servers (1)

• A number of processing servers exist for
general data analysis tasks:
– jasmin-sci[12].ceda.ac.uk
– cems-sci[12].cems.rl.ac.uk

• These servers allow direct access to BADC and
NEODC archives as well as any “group
workspaces” - for authorised users.

The JASMIN Scientific Analysis Servers (2)

A common set of tools are installed (known as
the “JASMIN Analysis Platform”) including:

NCO, CDO, CdatLite, Python2.7, NetCDF4,

python-netcdf, Iris, Matplotlib, Octave, R, ...

See: http://proj.badc.rl.ac.uk/cedaservices/wiki/JASMIN/AnalysisPlatform/Packages

http://proj.badc.rl.ac.uk/cedaservices/wiki/JASMIN/AnalysisPlatform/Packages�

The LOTUS cluster on JASMIN

The JASMIN Scientific Analysis Servers are very
useful – but they are limited in resource and
may well be swamped by other users.

The LOTUS cluster is a far bigger resource.

We’ll see some examples later...

LOTUS: Queue configuration
Batch queues:
1. lotus: (8 Nodes with 2x6 Cores Intel 3.5GHz, 48G

RAM, 10G Networking, 10Gb Std latency TCP MPI)
= 96 Cores

2. lotus-g: (3..6 Nodes with 2x6 Cores Intel 3.0GHz 96G
RAM, 10G Networking, 10Gb Gnodal low latency TCP
MPI) = 36..72 cores

3. lotus-smp: (1 node with 4x12 cores AMD 2.6GHZ
256GB RAM, 10Gb Networking)

4. lotus-serial: (co-exists with lotus-smp and lotus
queue hardware)

LOTUS: System software
• RHEL6.2 Operating System
• Platform LSF batch scheduler
• Platform MPI (+/- OpenMPI)

– Full Support for MPI I/O on Panasas parallel file
systems

• Intel and PGI compilers
• Central repository for installed software
• Environment modules

http://proj.badc.rl.ac.uk/cedaservices/wiki/JASMIN/LOTUS

http://proj.badc.rl.ac.uk/cedaservices/wiki/JASMIN/LOTUS�

LOTUS: Data Analysis Software

All LOTUS nodes have the same software
packages available as the JASMIN Scientific
Analysis Servers.

This means you can:

1. Develop code on the generic Analysis Servers
2. Run in batch mode via LOTUS

LOTUS: Job Control

Submitting a job (you must SSH to lotus.jc.rl.ac.uk):

 $ bsub [options] <command>

View the status of jobs:
 $ bjobs
 JOBID USER STAT QUEUE FROM_HOST EXEC_HOST JOB_NAME SUBMIT_TIME

71880 fred PEND lotus lotus.jc.rl */hostname Mar 18 16:26

Cancel a job with:
 $ bkill <job_id>

See details at:

 http://www.ceda.ac.uk/help/users-guide/lotus/

http://www.ceda.ac.uk/help/users-guide/lotus/�
http://www.ceda.ac.uk/help/users-guide/lotus/�
http://www.ceda.ac.uk/help/users-guide/lotus/�

LOTUS: Where to read/write?

LOTUS can see:
– Home directories (read/write) – but 10Gb QUOTA!
– Group Workspaces (read/write)
– BADC & NEODC Archives (read-only)
– /work/scratch/<userid> (read/write) – but SMALL!
– /tmp (read/write) – but LOCAL TO NODE!

Group workspaces allow you to write large
volumes of data (and keep it!)

Parallel Processing Examples

Example 1: extracting CF standard names
from 200,000 files (1)

Requirement:
• Extract CF-netCDF standard name attributes from 200,000

netCDF files.

Details:
• Starting with a file containing a list of 200,000 netCDF files
• For each netCDF file:

– Run the “ncdump –h” command to extract the header as text
– Pipe that into the “grep” command to match only “standard_name”

#!/bin/bash
cd /group_workspace/jasmin/megalon/test
while read FILENAME; do
 ncdump –h $FILENAME | grep standard_name | cut –d: -f2 | cut -d; -f1 >> $2
 done < $1

grep_names.sh

Example 1: extracting CF standard names
from 200,000 files (2)

Running in parallel via LOTUS:
• Split the file containing a list of 200,000 netCDF files into 10:
 $ split -l 20000 -d input_file.txt
 Which writes files called: “x00”, “x01”, ..., “x09”

• Write a loop and submit 10 jobs to LOTUS:
 for input in x* ; do

 bsub ./grep_names.sh $input ${input}_result.txt
 done

Example 1: extracting CF standard names
from 200,000 files (3)

View progress of the jobs running on LOTUS:
 $ bjobs
 ...will print out details of jobs running...

When all jobs have run: merge results into one file:
 $ cat x??_results.txt > output.txt

“output.txt” contains all the results in one place.

NOTE: This example requires that all results are
collected before merging them into “output.txt”

Example 2: extract spatial subsets from
CMIP5 experiments (1)

Requirement:
Extract spatial subsets from CMIP5 a set of experiments.

Details:
• For each model:

– For each variable (hus, ps, ta, ua & va):
• Extract a spatial subset (80° to 140° Longitude; -30° to 40° Latitude)
• Where:

– Frequency: 6hr
– Realm: atmosphere
– Ensemble: r1i1p1

Example 2: extract spatial subsets from
CMIP5 experiments (2)

Basic Implementation:
Script 1 (bash):
• For each variable (hus, ps, ta, ua & va):

– Make output directory
– Glob all relevant input NetCDF files
– Call Python script; extract spatial subset; write output

Script 2 (Python):
– Read input file; extract spatial subset for variable; write output file.
– Main code used: cf-python library

import cf
f = cf.read(infile)
subset = f[2].subspace(latitude=cf.wi(bb.south, bb.north), longitude=cf.wi(bb.west, bb.east))
cf.write(subset, outfile)

Extract from: extract_cmip5_subset.py

Example 2: extract spatial subsets from
CMIP5 experiments (3)

Parallel Implementation using LOTUS:
Script 1 (bash):
• For each variable (hus, ps, ta, ua & va):

– Make output directory
– Find all relevant input NetCDF files
– Submit a job to the LOTUS scheduler that will call the Python script
– Use the “bsub” command:

Why use this approach?
– Because you can submit 200 jobs in one go.
– Lotus executes jobs when resource becomes available
– They will all run and complete in parallel

bsub -q lotus -o $outdir/`date +%s`.txt ~/extract_cmip5_subset.py $nc_file $this_dir $var

Example 3: chaining tasks with Jug: calculating
monthly means (1)

Requirement:
• Calculate a monthly mean from 6-hourly model data

Details:
• For each date in the month:

– Extract data for 00Z, 06Z, 12Z & 18Z
– Calculate daily average from them

• Gather all daily averages
• Calculate monthly average
• Write monthly average to netCDF file

Example 3: chaining tasks with Jug: calculating
monthly means (2)

Basic Implementation in Python (PART 1):
import cdms2

def calcDailyMean(date, var = "U10"):
 f = cdms2.open("/badc/ecmwf-era-interim/metadata/cdml/era-interim_ggas.xml")
 v = f(var, time = ("%s 00:00" % date, "%s 23:59" % date))
 total = sum([v[i] for i in range(4))
 f.close()
 return total

def calcMonthlyMean(data, date):
 total = sum([data[i] for i in range(len(data))])
 return total

def writeMonthlyMean(data, fname):
 f = cdms2.open(fname, "w")
 f.write(data)
 f.close()

Example 3: chaining tasks with Jug: calculating
monthly means (3)

Basic Implementation in Python (PART 2):

Run sequentially: $ python2.7 monthly_mean.py

(...continued...)

year = 2001
month = 1
all_days = []

for day in range(1, 32):
 d = "%.4d-%.2d-%.2d" % (year, month, day)
 all_days.append(calcDailyMean(d))

monthly_mean = calcMonthlyMean(all_days, "%.4d-%.2d-15" % (year, month))

output_path = "/group_workspace/jasmin/megalon/output.nc”
writeMonthlyMean(monthly_mean, output_path)

Example 3: chaining tasks with Jug: calculating
monthly means (4)

Convert to Jug Tasks by adding:
from jug import TaskGenerator, barrier
import cdms2

@TaskGenerator
def calcDailyMean(date, var = "U10"):
 f = cdms2.open("/badc/ecmwf-era-interim/metadata/cdml/era-interim_ggas.xml")
 v = f(var, time = ("%s 00:00" % date, "%s 23:59" % date))
 total = sum([v[i] for i in range(4))
 f.close()
 return total

@TaskGenerator
def calcMonthlyMean(data, date):
 total = sum([data[i] for i in range(len(data))])
 return total

@TaskGenerator
def writeMonthlyMean(data, fname):

Example 3: chaining tasks with Jug: calculating
monthly means (5)

Add Jug “barriers” to wait for dependent tasks to
complete:

(...continued...)

year = 2001
month = 1
all_days = []

for day in range(1, 32):
 d = "%.4d-%.2d-%.2d" % (year, month, day)
 all_days.append(calcDailyMean(d))

barrier()
monthly_mean = calcMonthlyMean(all_days, "%.4d-%.2d-15" % (year, month))

barrier()
output_path = "/group_workspace/jasmin/megalon/output.nc”
writeMonthlyMean(monthly_mean, output_path)

Example 3: chaining tasks with Jug: calculating
monthly means (6)

Now we can run with Jug, locally (on 4 processors):

$ jug execute monthly_mean.py &
$ jug execute monthly_mean.py &
$ jug execute monthly_mean.py &
$ jug execute monthly_mean.py &

$ jug status monthly_mean.py # will report on status

Example 3: chaining tasks with Jug: calculating
monthly means (7)

Or run on LOTUS:
On LOTUS we can use the “Job Array” submission

feature to submit the same Jug script multiple times
to the cluster, e.g. Run 40 times (on 40 processors):

Each process will output to:
 - ${dir}/${job_id}-${array_count}.out

$ dir=/group_workspace/jasmin/megalon
$ bsub -e $dr/%J-%I.err -o $dr/%J-%I.out -J "jug[1-
40]" jug execute monthly_mean.py

So why did we use Jug?
• Jug makes it trivial to convert existing functions

into parallel “Tasks”.
• Jug allows simple management of race

conditions where dependencies exist between
tasks.

• Jug gives us a simple way of farming out our
workflows onto processing clusters (such as
LOTUS).

But clearly you could write it yourself...if you want.

What about using MPI?

Some background: What is MPI?
• MPI stands for Message Passing Interface.
• Explaining MPI is beyond our scope.
• MPI provides a standard specification that enables

message passing between different nodes of a
parallel computer system.

• It follows a distributed memory model.
So it maps nicely to use on the LOTUS cluster...and lots

of existing parallel code uses MPI (as implemented in
C, Fortran, Python etc).

Using MPI on LOTUS

The LOTUS User Guide provides detailed instructions on
how to:
• Load MPI modules
• Compile C/Fortran code to use MPI
• Log on to interactive nodes for compilation
• Submitting jobs using MPI

There is not time to cover this in detail, please see:
 http://www.ceda.ac.uk/help/users-guide/lotus/

http://www.ceda.ac.uk/help/users-guide/lotus/�

Re-factoring is important too!

Efficiency gains through re-factoring (1)
Major gains can be made by changing the order and

structure of your code.
Problems with your code might include:
1. Code will not run because of memory requirements
2. Code runs sequentially and takes a long time
3. Code does run but falls over because of resource

limits.

In some cases you can create loops that can be scripted
as separate processes (or JUG tasks) allowing you to
submit them in parallel.

Efficiency gains through re-factoring (2)
Here is a real-world example:

The Problem: Trying to run the NCO tool “ncea” to calculate an
average from a large dataset. It will not run!

Why? The “ncea” command reports this...and then exits:
– “unable to allocate 7932598800 bytes” (which is about 8 Gbytes)

Possible solutions:
1. Data files hold multiple variables: Operate on one at a time:

ncea -v vosaline means/199[45678]/*y01T.nc -o test.nc

2. Reduce the number of files (i.e. years) processed each time:
ncea means/199[45]/*y01T.nc -o test.nc

Other Python-based Parallel tools

The following page brings together details of many
different parallel tools available for python users:

• https://wiki.python.org/moin/ParallelProcessing

https://wiki.python.org/moin/ParallelProcessing�

Running “iPython Parallel” within JASMIN
iPython is a suite very powerful packages and tools to
extend the capability of python. This includes a
sophisticated architecture for parallel and distributed
computing able to support a range of styles including:

• Single program, multiple data (SPMD) parallelism.
• Multiple program, multiple data (MPMD) parallelism.
• Message passing using MPI.
• Task farming.
• Data parallel.

http://ipython.org/ipython-doc/stable/parallel/

http://ipython.org/ipython-doc/stable/parallel/�
http://ipython.org/ipython-doc/stable/parallel/�
http://ipython.org/ipython-doc/stable/parallel/�

The future of parallel data analysis

• Analysing Big Data is a challenge! Software
needs to adapt and scientists need to be able
to adapt their code to keep up!

Number of files 3,222,967
Number of datasets 54,274
Archive Volume (TB) 1,483
Models with data published 64
Models with documentation published in archive 38
Experiments 108
Modelling centres 32
Data Nodes 22

CMIP5 Status (early 2013)

The future of parallel data analysis

We are likely to see more:
• Parallel I/O in software libraries;
• Web processing services that do the parallel analysis

remotely;
• Analysis Platforms (like JASMIN) that allow scientists

to run code next to the data;
• Learning to write parallel code now is likely to be of

great benefit in future;

Further information

JASMIN Analysis Platform (software packages):
http://proj.badc.rl.ac.uk/cedaservices/wiki/JASMIN/AnalysisPlatf

orm/Package
LOTUS Overview:
 http://proj.badc.rl.ac.uk/cedaservices/wiki/JASMIN/LOTUS
LOTUS User Guide:
 http://www.ceda.ac.uk/help/users-guide/lotus/
Jug:
 http://pythonhosted.org/Jug/
Parallel processing:
 https://computing.llnl.gov/tutorials/parallel_comp/

http://proj.badc.rl.ac.uk/cedaservices/wiki/JASMIN/AnalysisPlatform/Package�
http://proj.badc.rl.ac.uk/cedaservices/wiki/JASMIN/AnalysisPlatform/Package�
http://proj.badc.rl.ac.uk/cedaservices/wiki/JASMIN/LOTUS�
http://www.ceda.ac.uk/help/users-guide/lotus/�
http://pythonhosted.org/Jug/�

	Module 6:� Parallel processing large data
	Overview of presentation
	What is Big Data?
	Processing big data: the issues
	The traditional view of parallel processing
	The traditional view of parallel processing
	The traditional view of parallel processing
	The traditional view of parallel processing
	Some Terminology
	How does a single processor do three things at once?
	(Almost) everything is parallel these days
	Parallel processing for data analysis
	Simple parallelism by hand (1)
	Simple parallelism by hand (2)
	Simple parallelism with Jug (1)
	Simple parallelism with Jug (2)
	Jug Example
	Running Jug
	JASMIN & LOTUS
	Main components of JASMIN
	JASMIN in pictures
	The JASMIN Scientific Analysis Servers (1)
	The JASMIN Scientific Analysis Servers (2)
	The LOTUS cluster on JASMIN
	LOTUS: Queue configuration
	LOTUS: System software
	LOTUS: Data Analysis Software
	LOTUS: Job Control
	LOTUS: Where to read/write?
	Parallel Processing Examples
	Example 1: extracting CF standard names from 200,000 files (1)
	Example 1: extracting CF standard names from 200,000 files (2)
	Example 1: extracting CF standard names from 200,000 files (3)
	Example 2: extract spatial subsets from CMIP5 experiments (1)
	Example 2: extract spatial subsets from CMIP5 experiments (2)
	Example 2: extract spatial subsets from CMIP5 experiments (3)
	Example 3: chaining tasks with Jug: calculating monthly means (1)
	Example 3: chaining tasks with Jug: calculating monthly means (2)
	Example 3: chaining tasks with Jug: calculating monthly means (3)
	Example 3: chaining tasks with Jug: calculating monthly means (4)
	Example 3: chaining tasks with Jug: calculating monthly means (5)
	Example 3: chaining tasks with Jug: calculating monthly means (6)
	Example 3: chaining tasks with Jug: calculating monthly means (7)
	So why did we use Jug?
	What about using MPI?
	Using MPI on LOTUS
	Re-factoring is important too!
	Efficiency gains through re-factoring (1)
	Efficiency gains through re-factoring (2)
	Other Python-based Parallel tools
	Running “iPython Parallel” within JASMIN
	The future of parallel data analysis
	The future of parallel data analysis
	Further information

