
File formats and metadata conventions

Thanks to all contributors:

Alison Pamment, Sam Pepler, Ag Stephens, Stephen Pascoe,
Kevin Marsh, Anabelle Guillory, Graham Parton, Esther

Conway, Eduardo Damasio Da Costa, Wendy Garland, Alan
Iwi, Matt Pritchard and Sarah Callaghan.

Presenter
Presentation Notes
REVIEW: Title slide added

Overview
 Why use standard formats?

 netCDF file format

 CF conventions

 Text files

 NASA Ames

 BADC CSV

Presenter
Presentation Notes
REVIEW: Added second bullet point to give complete structure of the talk

Why use standard formats?
• Well documented
• Standard tools available to read them
• You/your program only has to learn to read

one file then you can read them all
• Ability to read/write data not dependent on

specialized application
• Easier to preserve long-term and convert to a

more modern formats (data curation as well
as preservation)

Presenter
Presentation Notes
Someone else took the trouble to decide all the important bits to include
Don’t need to re-invent the wheel

NetCDF

What is NetCDF ?

NetCDF stands for “Network Common Data Form”

1) It is a software toolbox for the creation, access, and sharing of
array oriented scientific data

● It is freely distributed and can be used with C, Fortran, C++, Java, Matlab,
Octave, IDL, Python, and other languages.

2) It is a file format (.nc) that can be manipulated by the software
toolbox

● Heavily used by atmosphere and ocean scientists, climate modellers,
software tool developers and data providers. It is easily convertible from
and into ASCII (text) format.

Presenter
Presentation Notes
REVIEW: Added notes here to use as script for presenter

In computer science an array is a data structure containing a series of data values which can typically be thought of as being arranged in columns and rows, e.g., global surface temperature measurements arranged on a grid of regularly spaced latitude and longitude grid points. Arrays may have one, two, three or more dimensions.

REVIEW: Added link to netcdf documentation on Unidata website

Why use NetCDF ?

The netCDF file format has been very
widely adopted by the environmental
science community:

Presenter
Presentation Notes
REVIEW: Switched order of slides 4 and 5 because it seems more logical to explain main advantages of file format before giving examples of use cases

REVIEW: Moved introduction of “data models” term to a later slide

REVIEW: Added notes here to use as script for presenter

Self-describing files mean that all the information that the user needs to understand the data inside the file are contained in the file itself. This means the data and the information don’t become separated, for example, when files are copied from one computer to another and it is convenient for the user to be able to find everything in one place.

NetCDF allows us to get around differences between the way computers store data internally. The person writing the file doesn’t need to worry about the exact details of the data storage and users working with the same file copied to different machines and using different operating systems will all be able to read the same data values.

The next slide shows an example of what can happen if you don’t use a file format that is portable and uses a well documented standard…

Why use NetCDF ?

• NetCDF is maintained by UNIDATA (Boulder,
USA: UCAR/Unidata Program Center)

● Users’ guides for C, Fortran, Java, C++ and
other languages interfaces to netCDF data;
tutorials for new users, workshop material
and program examples.

http://www.unidata.ucar.edu/software/netcdf/

Presenter
Presentation Notes
REVIEW: Switched order of slides 4 and 5 because it seems more logical to explain main advantages of file format before giving examples of use cases

REVIEW: Moved introduction of “data models” term to a later slide

REVIEW: Added notes here to use as script for presenter

Self-describing files mean that all the information that the user needs to understand the data inside the file are contained in the file itself. This means the data and the information don’t become separated, for example, when files are copied from one computer to another and it is convenient for the user to be able to find everything in one place.

NetCDF allows us to get around differences between the way computers store data internally. The person writing the file doesn’t need to worry about the exact details of the data storage and users working with the same file copied to different machines and using different operating systems will all be able to read the same data values.

The next slide shows an example of what can happen if you don’t use a file format that is portable and uses a well documented standard…

netCDF3 (“classic”) data model

var1

 di

m
2

di
m

2

dim1 dim1 dim1

di
m

3

netCDF file
fileattr1
fileattr2

att1
att2
att3

Var 1 Var 2
att4
att5
att6

Var 3
att1
att2
att5
att7

dim1(len1)
dim2(len2)
dim3(len3)

Presenter
Presentation Notes
REVIEW: Amount of text on original slide was reduced to make it bigger and less crowded. The text that was removed was used as the script for the diagram in slide 11.

REVIEW: Added notes here to use as script for presenter

In this context, a “data model” is simply a description of the general types of objects that one would expect to find within a data file.

For netCDF there are two data models, “netCDF classic” and the “CDM”. The model associated with a particular file depends on which version of the netCDF standard the file complies with. NetCDF3 has been around for more than a decade. NetCDF4 is more recent but it has some additional features which mean that producers of large datasets are gradually adopting it. The software to support netCDF4 is currently less mature than that for netCDF3, simply because it hasn’t been around for as long, although a lot of work is now being carried out to write software tools to support netCDF4. Most of this talk will be based on the netCDF classic model as this is a good way of introducing the important concepts.

How to read NetCDF files
 ncdump is a command line utility that can

produce human readable CDL text from a binary
netCDF3 or netCDF4 input

 Display the contents of the netCDF dataset
mydata.nc on the standard output:

 ncdump mydata.nc

 Display only the metadata in mydata.nc:
 ncdump –h mydata.nc

 Display only the data in mydata.nc:
 ncdump –c mydata.nc

Presenter
Presentation Notes
REVIEW: Split this slide across two to make text bigger. Took explanatory text off slide and used here as script for presenter.

The ncdump tool generates the CDL text representation of a netCDF dataset on standard output, optionally excluding some or all of the variable data in the output. The output from ncdump is intended to be acceptable as input to ncgen. Thus ncdump and ncgen can be used as inverses to transform data representation between binary and text representations.

ncdump may also be used as a simple browser for netCDF datasets, to display the dimension names and lengths; variable names, types, and shapes; attribute names and values; and optionally, the values of data for all variables or selected variables in a netCDF dataset.

Using CDL to describe NetCDF contents

Presenter
Presentation Notes
REVIEW: Split picture object across two slides by resizing and cropping to make text much bigger

REVIEW: Removed explanatory text from slide and added to notes for use as script for presenter

The previous diagrams concentrated on how the files are organized conceptually, but how does that translate into something that is more easily understood by a human working with real data? The answer is by using a text description of the file contents in a language known as CDL (network Common Data form Language)

Firstly there is an opening “netcdf” statement followed by the name of the file (in this case “example_1”) and then the curly brackets indicate the start of the file contents. Double forward slash anywhere on a line of CDL indicates that everything that follows is a comment which is added for explanation but is ignored by any program processing the file.

We start by declaring the dimensions used in the file. The keyword “dimensions” is followed by a colon and then a list of the dimensions themselves. Remember that these will be used to give the size and shape of the data variables. A line of CDL is terminated by a semicolon (unless the line contains a keyword in which case it is terminated by the colon). In this example there are two horizontal dimensions called lat and lon with sizes 5 and 10 respectively, a vertical dimension called level and a time dimension which is declared as “unlimited” allowing it to have an arbitrary size that can be increased as necessary. The values of the other dimensions must be integers.

Having given the name and size of the dimensions we then introduce some data variables. Any variable using all the declared dimensions will therefore by 4 dimensional in space and time. NetCDF doesn’t place any limit on the number of independent dimensions for a data variable so more than four would be perfectly OK within the data model.

The keyword “variables” comes next, followed by another optional comment. A variable is first given a data type, such as float, and then it is declared with its name followed by the name of its dimensions listed in parenthesis and separated by commas). For example, the “temp variable” consists of floating point (decimal) numbers and is indeed 4 dimensional.

Beneath the temp variable its additional attributes are listed. We know that they are associated with that particular variable because the lines start with the variable’s name followed by a colon. After the colon is the name of the attribute itself. Remember that an attribute describes some property of the data in the variable. Here an attribute called “long_name” is used to give something a bit more human readable than just “temp”. This attribute has a value of “temperature” and it is contained in inverted commas to show that the value has a data type of “character”, sometimes also referred to as “string” (which just means a collection of characters one after another”. We are also told that the units of the data in the temp variable are degrees Celsius. Other data variables are declared in simiar ways. In the second part of the talk on CF metadata conventions we will look in more detail as to what attributes can be added to a data variable.

Finally, we have a global attribute. This belongs to the file as a whole. We know it isn’t attached to any particular data variable because there is no name before the colon. We just have the attribute which applies to all the data in the file and in this case it has been given the string value of “Fictional Model Output”.

Using CDL to describe NetCDF contents

Presenter
Presentation Notes
REVIEW: Added notes here to use as script for presenter.

This is a continuation of the previous slide. You can think of the data variables with their associated attributes as empty containers of a particular shape and size. Now we want to put some actual data values into those containers.

We do this by using the “data” keyword followed by a colon and then the subsequent lines list the data values for the variables we have previously declared. We use variable name, “equals” and then a comma separated list of data values terminated by a semicolon. The data type of the values must match the type we used to declare the respective variables, so for example, level, lat and lon and time all contain integer values while rh (relative humidity) contains floating point values. You can see from the rh values that it is perfectly alright for the data statements to be spread over a number of lines. The final line is terminated by a semicolon.

How to write NetCDF files
 ncgen is a command line utility that can produce

binary netCDF-3 or netCDF-4 files from a CDL
input

 From the CDL file example_1.cdl, generate an
equivalent binary netCDF file named mydata.nc:

 ncgen -o mydata.nc example_1.cdl

 From the CDL file example_1.cdl, generate a C

program that will create an equivalent binary
netCDF dataset:

 ncgen –c example_1.cdl > write_netcdf.c

Presenter
Presentation Notes
REVIEW: Removed code example because previous slides already covered that in detail

REVIEW: Added notes here to use as script for presenter

The CDL example of the previous two slides could be created easily, for example by using a simple text editor, and is a human readable form of the data. How do we now convert that into a binary data file in netCDF format? We saw at the beginning of the presentation that netCDF is not only a file format but that the standard also comes with software tools. The first of these tools is called “ncgen” (short for “netCDF generate”). It can be used from the linux command line to produce either netCDF3 or netCDF4 files from a text input such as the example we have just looked at.

If we save the input text to a file called example_1.cdl, we can then use ncgen to turn that straight into a netCDF file. The “-o” option of ncgen is used to specify the name of the resulting output file. Note that it is conventional for netCDF files to have the “.nc” extension.

Supposing we wanted to generate the same data file but do it from a program written in the C language. Instead of specifying the –o option we use “-c” to indicate that we want a piece of C code that will write the file. We redirect the output of the command into “write_netcdf.c” which we can then compile and run at a later time. And having once generated some C code like this, it would be relatively easy to change that code to create files containing different data values and so we can begin to build up an automated system for creating files.

There are a number of other command line options for ncgen which allow the user to control the program’s behaviour. The full documentation is on the Unidata website.

How to modify pre-existing NetCDF files
 Command line tools exist for more sophisticated

interaction with netCDF files:
 NCO (NetCDF Operators)
 CDO (Climate Data Operators)

 Between them these tools allow the user to:
 modify variables, dimensions, attributes;
 modify record dimension;
 extracting geographical regions and time

periods of interest;
 append data to an existing file;
 read from a file, perform computations (e.g.

averaging), write the results to another file.

Presenter
Presentation Notes
REVIEW: Turned text into bullet points

Advanced NetCDF tools

 Many programming and scripting languages
contain libraries for interacting with netCDF
files.

 For example:
 IDL
 MATLAB
 PYTHON
 OCTAVE
 R

Presenter
Presentation Notes
REVIEW: Just list the tools – it isn’t possible to include code examples of them all in an introductory presentation. Training module 5 contains some details on “Data analysis, format conversion and visualisation”.
Further online examples can be developed at a later stage to cover some of the scripting tools.

Metadata Conventions

 Just as we have standard file formats to

facilitate data exchange we can also
standardize the way we provide metadata

 In the atmospheric and earth system

science the CF (Climate and Forecast)
metadata conventions are an important aid
to data sharing

Presenter
Presentation Notes
(This slide is self explanatory).

What do the CF metadata conventions
allow us to do?

 Extend the netCDF metadata conventions

 Provide a detailed description of the contents
of a file, thus allowing unambiguous
interpretation the data

 All the the standard netCDF file tools still work

 Additional standard tools can be used to read
and write the metadata and exploit the
information it carries

Presenter
Presentation Notes
By setting the data in context, CF enhances the ability to interpret the data inside netCDF files while still allowing the use of all the standard netCDF tools. You can think of it as an additional layer that sits on top of the netCDF file structure.
Just as having a standard file format allows us to develop software tools for file manipulation, a metadata convention, or standard, means we can develop standard tools which help us to read and write the metadata. This speeds up the process of properly labelling all the data which can seem like a tedious job, but is nevertheless vitally important if you want others to be able to make the best use of your data.

Goals of CF
(as stated by Jonathan Gregory)

Locate data in space–time and as a function of other
independent variables, to facilitate processing and
graphics
Identify data sufficiently to enable users of data from
different sources to decide what is comparable, and
to distinguish variables in archives
Framed as a netCDF standard, but most CF ideas
relate to metadata design in general, hence can be
contained in other formats such as XML

Presenter
Presentation Notes
(This slide is self explanatory)

Presenter
Presentation Notes
(This slide is animated so the pictures appear one per mouse click).

The CF conventions now cover the metadata requirements of many scientific areas that are relevant to climate science and weather prediction. Indeed as climate models become increasingly complex and are now sometimes described as ‘Earth system models’, so the number and range of science areas to which CF is applicable continue to expand. For example, CF metadata can now be used to describe data covering:
1. Atmospheric physics, e.g, the dynamics of the atmosphere, the radiation budget, cloud microphysics, and many more processes.
2. Physical Oceanography
3. Atmospheric chemistry and air quality
4. Ocean biogeochemistry (How small organisms such as plankton and bacteria affect ocean chemistry and vice versa).
5. Land vegetation and it’s role in the carbon cycle
6. Cryosphere – both sea ice and land ice.
7. Sea surface waves, for example sell waves, wind driven waves and tides.
8. Hydrology – including precipitation in all its phases, evaporation, and processes such as groundwater runoff and river flow.

File attributes
conventions E.g. conventions = “CF1.0”
title What's in the file
institution* Where it was produced
source* E.g. Name of model, instrument
history Audit trail of processing
references* Publications, web pages
comment* Miscellaneous information

Presenter
Presentation Notes
“File attributes” are elements of metadata that apply to the file as a whole and therefore to all the data contained within the file. For example, data that all came from the same NWP forecast or were all measured using the same instrument can be gathered together in one file with a single “source” attribute.

The conventions attribute is one of the few compulsory attributes within a CF compliant file. It states which version of the conventions the file uses. Most attributes are optional – you choose to include them if they add useful information about your data, but leave them out if you really don’t need them.

All the file attributes in the CF conventions are string valued.

The attributes marked with an asterisk can be attached to individual data variables as well as the file as a whole. This is one of the few examples where metadata redundancy or contradiction is possible. The conventions state that the attribute attached to the individual variable overrides the file attribute of the same name if there is any conflict of meaning.

Variable attributes
 standard_name from standard name table
 units mandatory unless dimensionless quantity
 long_name not standardised
 cell_methods variation within a cell e.g. max, mean
 cell_measures area or volume of a cell
 valid_max, valid_min, valid_range for numeric

variables
 _FillValue, missing_value CF deprecates

missing_value in favour of _FillValue
 flag_values, flag_meanings to make “flag”

variables self describing

Presenter
Presentation Notes
The CF conventions describe many possible data attributes and the values they are allowed to take. This presentation can’t cover them all, but the next few slides will describe the most frequently used attributes. As with the file attributes, the variable attributes are optional. It is considered “best practice” to make your metadata as complete as possible, so you should include any attributes that will help someone else (or yourself at a later date) to interpret your data, but leave out any that simply don’t apply.

“Standard name” gives the name of the geophysical parameter contained in the data variable, such as temperature or pressure. It’s value must be chosen from a prescribed list. We’ll look at that in more detail in a few slides time.

“Units” describe the unit of measure associated with the standard name. If no unit is included then the data variable is assumed to be a dimensionless quantity, i.e., it is a just a number with no associated physical units.

“Long_name” can be used to name the variable if no appropriate standard name is available, or it can be used to give an alternative description of what the variable contains. It must be a string, but the actual contents of the string can be anything you like.

The “cell_methods” attribute is used to describe any kind of statistical processing carried out at sub-grid scale level to arrive at the data value for a particular point. For example, a temperature value might be representative of a specific location (that is, a “point” value) or it may be a mean value representing the whole area covered by a climate model grid cell, which may be a degree or more in latitude or longitude. Again, we’ll look at some particular examples in later.

“Valid_min”, “valid_max” and “valid_range” can be used to describe the numerical values you would expect to find within your data. For example, cloud cover values are often expressed as a fraction between zero (meaning clear-sky) and one (meaning completely cloudy). A value of “2” in those circumstances would be regarded as a suspicious data value and you would probably want to exclude it.

“_FillValue” and “missing_value” can be used to indicate points for which there are no data. For example, a variable containing sea ice thickness would have no meaning over the land, so you can mask out land points by giving them a distinctive data value such as -999. To avoid any confusion, the missing data value should not fall within the possible valid_range of real data points.

“Flag_values” and “flag_meanings” are usually used together to describe data where numeric values have been used to represent where a particular condition applies. For example, imagine a satellite dataset in which the data have been used to classify the surface type within each pixel as either “land”, “open sea” or “ice_covered”. You can assign a number such as 1, 2 or 3 to each of those classifications. Then your data will simply be an array of ones, twos and threes rather than having to use a string to label each point. The flag_values and flag_meanings attributes are used to list the numbers that have been used and explain the meaning of each one.

longitude(longitude)
:units =
''degrees_east''
:axis = ''x''

1.0

0.95

0.85

0.5

si
gm

a(
si

gm
a)

:p

os
iti

ve
 =

 ''
do

w
n'

'
:a

xi
s

=
''z

''
:c

oo
rd

in
at

es
 =

 ''
m

od
el

 le
ve

l n
um

be
r''

Coordinate Variables

1

2

3

4

m
od

el
_l

ev
el

_n
um

be
r(

si
gm

a)

dimensions:
 latitude 360;
 longitude 180;
 sigma 100;

Presenter
Presentation Notes
The COARDS netCDF convention introduced the idea of a special type of variable called a coordinate variable. The CF conventions took this concept and uses coordinate variables that are compatible with COARDS and then also added some extensions to the idea.

Within the netCDF file structure a coordinate variable is a variable like any other, but as the name suggests it is used to provide information about the coordinates, or independent axes, that apply to variables containing the data themselves. For example, model data will typically exist on a fully populated 2-D spatial grid such as, latitude and longitude, with a third geospatial dimension in the vertical. This is illustrated by the diagram.

Coordinate variables have a name and a size, i.e., how many distinct points are labelled along the axis. In CF parlance, the size of the coordinate variable is called its “dimension”. The dimensions are declared at the beginning of the netCDF file as shown in the CDL example in the bottom left corner. A dimension has a name and a value, e.g, latitude 360.

A coordinate variable is special in CF metadata because it has the same name as its dimension, e.g. latitude(latitude) and longitude(longitude) as shown in the diagram. The only exception to that rule is if one of the dimensions is declared as UNLIMITED, which allows it to be extended at a later date. Remember that there can only be one UNLIMITED dimension in a netCDF 3 file. Programs such as ncdump and ncgen can recognise that variables named in this way contain coordinate information rather than ordinary data values. Similarly, software written to display CF compliant netCDF files can extract the coordinate information in an automated way and immediately use it to produce a sensible looking plot.

The CF conventions require that coordinate variables have numeric values that either increase or decrease monotonically. This is required for backwards compatibility with COARDS.

However, one of the CF extensions to COARDS is the use of something called “auxiliary coordinate variables” and that is also illustrated on this slide. Auxiliary coordinate variables can be used when there are alternative ways of representing the coordinates along a particular axis. In the slide, the primary coordinate variable in the vertical is sigma – it is identified by having the same name as its dimension. “Sigma” coordinates are a particular kind of vertical coordinate often used in climate and NWP models in which the horizontal levels follow the surface terrain and therefore you don’t get the situation where some grid points are actually under the surface in areas of mountainous terrain. However, often modellers simply like to number the levels counting up from the surface to the top of the atmosphere, so another possible vertical coordinate for this dataset would be model level number which is shown on the right. We know it is an auxiliary coordinate variable because although it has the same dimension (sigma) as the main coordinate variable, it has a different name. CF stipulates that there can only be one coordinate variable along any axis of the data, but there is no limit on the number of auxiliary coordinate variables that can share that dimension. There is a metadata attribute called “coordinates” which can be used to show the link between main coordinates and auxiliary coordinates and we’ll see an example of that in a later slide.

Coordinate variables
 Label coordinates, e.g. place

names, surface types
 Standardized regions
 Index coordinates
 Scalar (size 1) coords
 Non geospatial coords, e.g.

electromagnetic frequency

Presenter
Presentation Notes
This slide shows some more of the ways in which the CF conventions extend the COARDS idea of a data variable:

COARDS requires numeric valued coordinates, but CF introduces the idea of string valued coordinates which are very useful, for example, if you have a set of observations not on a lat-lon grid but at individual named observing points on the Earth’s surface. The diagram on the left shows four place names along the horizontal axis. Label coordinates are technically auxiliary coordinates because they don’t strictly follow the COARDS definition. They have two dimensions, one giving the number of labels and the second giving the maximum length of the strings used in the labels. In this example, latitude and longitude are also auxiliary coordinate variables because they share a dimension with the label variable and not with their own name. So in fact there are three coordinates all lying along the same horizontal axis and all linked to the data variable using a coordinates attribute as shown in the CDL extract at the bottom of the diagram. In this case the second axis is not a geospatial one, but time. We’ll talk more about time coordinates in a minute.

As well as standard names for geophysical variables, CF contains another controlled vocabulary called “standardized region names”. This name large geographic regions to which data might apply, but which don’t have easily defined coordinate boundaries. For example, “Pacific Ocean” or “Africa”. Standardized region names can be used in label coordinates.

You can also have “index coordinates” in which there is no particular order to the data points, so they are simply assigned a number, which is then used to access elements of the data. For example, in a climate model ensemble containing many simulations there is no obvious ordering of the simulations but they can be distinguished for data processing purposes by simply assigning each of them an index number.

CF allows scalar coordinates which are coordinates with only one value. The COARDS conventions would force you to write that down as a coordinate variable with a matching name and dimension, where the dimension has a size of 1. CF allows you to simply name the coordinate and not give it a dimension, which is then just assumed to be 1. It is a convenient short-hand in the metadata. Scalar coordinate variables are another example of auxiliary coordinate variables.

Finally, it is worth mentioning that it is perfectly possible to have coordinate variables that are neither geospatial in nature, nor time related, but which in some way are useful for describing the structure of the data. For example, data from a multi-spectral satellite radiometer could be given a coordinate variable containing the values of electromagnetic frequency or wavelength at which observations were made.

Time
Time (year, month, day, hour, second) is
recorded as:
 time_unit since reference_time

e.g. days since 1990-1-1
 seconds since 2013-12-31 00:00

Presenter
Presentation Notes
This slide gives more detail about the use of time as a coordinate variable, which is of course a common requirement in almost every kind of data set.

A time coordinate variable would be declared in the file like any other coordinate variable, having a matching name and dimension such as time(time) or quite commonly, time(unlimited) because often people want to append to their files as more data are gathered over time.

The special thing about the time dimension is its units. It has a standard name of “time” and the canonical unit of time shown in the standard name table is the SI unit of the second, but in fact the picture is rather more complicated than that.

Just as the CF conventions rely on the UDUNITS package for units related processing, they also use it for processing of the time coordinate. This imposes a particular syntax on us of the form “time_unit since reference_time”. You can think of the reference time as being the point where the clock started ticking and the choice of what to use generally depends on experimental design, for example, for data gathered at one minute intervals during the day it would make sense to choose midnight of that day as a reference time. For long climate runs everything might be referred to the start of the 20th century. The time_unit is then determined by the frequency of collection of the data points.

Calendars
• The calendar is indicated by the calendar attribute of

the time coordinate variable

• Default is to use the “standard” calendar, but it is
good practice to always specify a value.

• Possible values are:

Gregorian or standard (the default) Proleptic_gregorian
Noleap or 365_day All_leap or 366_day
360_day julian

Presenter
Presentation Notes
(This slide is self-explanatory)

CF Standard Name Table
 Currently 2500+ names in the table – and

growing!
 Updated monthly
 Version numbers and date stamp

introduced in 2006
 Once names are added they are not

removed

Presenter
Presentation Notes
We’ve seen in some detail how coordinate variables work in CF metadata and they are all important for understanding and interpreting the data. Now lets look in more detail at metadata attributes that apply to the data variables themselves, such as standard_name, units, and so on.

As mentioned in a previous slide, “standard name” gives the name of the geophysical parameter contained in the data variable, such as temperature or pressure. The possible values of the standard name attribute are given in the CF standard name table which is published on the CF website. A list of terms such as CF standard names is referred to as a “controlled vocabulary”.

The standard name table is updated on an approximately monthly basis (whereas the CF conventions document tends to be updated less frequently, perhaps once or twice a year).

Each time the table is updated it is given a new version number and a date stamp so that users of the metadata can easily identify which version of the controlled vocabulary was used when a file was created.

New standard names can be requested by individual scientists or on behalf of projects. Once a name is added to the table it remains there in perpetuity, although names can be modified if necessary by making a new version of a name and identifying the old version as an “alias”. This avoids the need for data producers to change their metadata just because the standard name has been modified. It would be an unmanageable task for users to repeatedly rewrite potentially thousands of files to make minor changes to the metadata.

 Standard Name Canonical
 Units AMIP

 air_density kg m-3

 air_potential_temperature K theta 13

 air_pressure Pa plev 1

 air_pressure_anomaly Pa 26

 air_pressure_at_cloud_base Pa

GRIB

CF Standard Name Table

Presenter
Presentation Notes
This is an example of a few entries as they appear in the standard name table. The table shows the name itself and the “canonical units” which is usually, although not always, the SI unit of the quantity identified by the standard name. The last two columns show the equivalent of the standard names using some other controlled vocabularies. For example, “AMIP” is short for Atmospheric Model Intercomparison Experiment. The groups who took part in that project agreed some short names for the parameters they wanted to exchange, but they are considerably less self-explanatory than the CF standard name. “GRIB” is another standard file format that is often used for operational meteorological data exchange, such as sharing weather forecasts between national weather services. GRIB is an official format used by the World Meteorolgical Organisation, but the parameter names are just numbers and the user then has to look up the number in a published table to work out what parameter is actually contained in the data. This is one demonstration of how CF metadata aim to be human readable as well as machine readable.

Canonical units
 Canonical_units are agreed at same time as

standard name – they go hand in hand, e.g.
 mass_concentration → units = “kg m-3”
 mole_concentration → units = “mol m-3”
 String valued
 Must be supported by Unidata UDUNITS

package which converts between recognized

Presenter
Presentation Notes
It’s worth saying some more about the canonical units, because they go hand in hand with the standard name. When a new standard name is agreed and added to the table, the units are agreed at the same time. The units are called “canonical” because they set the physical dimensions of a quantity in terms of mass, length, time, temperature, etc. Two quantities that measure something very similar, but do so using different units, would need different CF standard names. For example, if you are measuring the abundance of carbon dioxide in a sample of air and wish to express it in units of kg m-3, the standard name would describe the quantity as a “mass_concentration” whereas the same quantity measured in units of mol m-3 would include the phrase “mole_concentration” in its standard name.

Within the CF metadata inside a netCDF file, the units attribute is a string valued quantity as shown on this slide.

The CF conventions rely on a software package called “UDUNITS” to support the processing of unit information, so the value of the units parameter has to be chosen from a list that is recognized by UDUNITS. In practice, this isn’t too restrictive as most of the widely used units are catered for. In fact, the use of UDUNITS allows some flexibility as to which units can be used in a data file because it allows conversion between physically equivalent units. For example, the standard name table says that the canonical unit for any temperature quantity is Kelvin, but temperatures are often measured in other units such as Celsius or Fahrenheit. UDUNITS recognizes those others as equivalent to the canonical unit and knows how to convert between them, so it is fine to record your units as Celsius in your metadata and it saves you having to convert all your measurements to be in Kelvin before you can put them in your data file.

Cell methods
 The cell_methods attribute of a data variable indicates

how variation within the cells is represented. The
method may be different for each axis.

 The order of cell_methods listed from left to right
indicates the order in which the operations were
applied to the data.

Presenter
Presentation Notes
The standard_name, units and long_name attributes all help us to identify the kind of data contained within our data variable, but to enhance the usefulness of the data, particularly when sharing with others, we can add further metadata attributes that explain the real nitty-gritty of how the data values were obtained.

The first such attribute is called cell_methods. It allows the data producer to specify any statistical processing that may have been applied to a particular data point at the sub-grid scale level. For example, in a weather forecast the temperature given at a particular gridpoint actually describes a mean value that applies to a limited area surrounding that point. So a cell_method value of “mean” should be specified in the metadata.

The diagrams give a graphical representation of two more examples. On the left is an example of specifying a cell_method on the time axis. Values of some parameter have been collected at intervals over a number of days as indicated by the dates along the bottom. Over time the parameter, temperature say, varies between values of roughly +10 and -7, but the data are then processed to pick out the daily maximum values and these are the values that are actually recorded in the file. So in this instance, the cell_methods attribute would say “time”, to show which axis data processing applies to, and “maximum” to say what kind of processing has been applied.

The diagram on the right shows a variable which varies with latitude – the data values suggest it might be something like poleward heat transport in the oceans (with large positive values near the Equator decreasing rapidly towards the poles) – but the main point is that no longitudinal variation is shown because the data have been averaged around the globe. This is indicated by the cell_methods of “longitude: mean”.

Another very important point to note is that different types of sub-grid scale processing can be applied independently along each axis and cell_methods allows the data producer to record that fact and the order in which the processing was carried out. For example, the daily maximum of a zonally (i.e. across lines of longitude) averaged surface temperature will be quite a different value to the zonal maximum of the daily mean temperature. A user trying to interpret the data and compare it to their own may not be able to draw sensible scientific conclusions unless he or she knows exactly how the original processing was done.

Cell Bounds
 cell_bounds attribute describes the extent of a

cell
 E.g. area of lat-lon grid box, thickness of a

vertical layer, length of a time-mean period
 Can be especially important for size-one

coordinate variables

Presenter
Presentation Notes
The last slide talked about cell_methods where we apply some sort of statistical processing within a grid cell. But how do we know the areal extent, or period of time, over which the processing was applied? The answer is to use a cell_bounds attribute. This can describe where the boundaries between data points lie, such as the start and end of a time averaging period.
The diagrams show that bounds can be used to describe the extent of everything from one dimensional data to grid cells with quite complicated shapes. The bounds can also help the data user to determine whether the data point sits in the centre of the grid cell, in one corner of it, or anywhere else.
Cell_bounds can be particularly important where a size-1 coordinate variable is used. For example, if a rainfall rate is observed at a single surface station, cell_bounds can describe the size and shape of the area over which the measured value is considered to be a valid representation of reality.

Ancillary variables

t1 t2

t3 t4

t5 t6

n(t1) n(t2)

n(t3) n(t4)

n(t5) n(t6)

t(lat,lon)
t:standard_name = ''air_temperature''
t:ancillary_variables = ''numt''
t:units = ''K''

numt(lat,lon)
numt:standard_name = ''air_temperature number_of_observations''
numt:units = ''1''

Presenter
Presentation Notes
All the metadata we have considered so far apply either to the whole data variable, or at least to a whole dimension of the variable.

But what if we want to record point-by-point metadata? CF also gives us a method for doing that, at least for a limited set of circumstances.

Imagine a data variable containing air temperature measured on a lat-lon grid as illustrated in the top left diagram. For each grid cell, a different value of temperature, t1, t2, …, t6 is measured. Now let’s imagine that different numbers of observations were used to arrive at the data values in each cell – we might care about this if having a larger number of observations meant that the data values were more reliable, for example. We can record the number of observations contributing to each data point by using another data variable of exactly the same size and shape as our main temperature variable.

In our netCDF file, how do we express the fact that the second variable gives metadata about the data in the first variable? We do it using a “standard_name modiifier”. The main temperature variable has a standard_name of air_temperature and units of Kelvin. Our variable containing the metadata is called “air_temperature number_of_observations”. Note how the words in each component of the name are joined by underscores (this is standard CF syntax) but the two components are separated by a single space. The use of the space means that oftware that is CF compliant will recognize that the second data variable uses a standard name modifier and therefore that it contains point by point metadata. Furthermore it can recognize that those metadata refer to the data variable whose standard name is simply “air_temperature”. The second variable has different units to the first.

There are currently five or six values of standard name modifier recognized in the CF conventions. The value of the modifier must be chosen from that list.

Map projections

float p (y,x)
p:standard_name=“air_pressure_at_sea_level”
p:coordinates=“lat lon”
p:grid_mapping=“polar_stereographic”
p:latitude_of_projection_origin=“=90.”
p:false_easting=“ ”
p:false_northing=“ ”
float lat(y,x)

Presenter
Presentation Notes
We’ve talked a lot about latitude and longitude data and indeed these are particularly well catered for by CF. This largely relates to CF historically being developed for model data. However, observations and even model data are sometimes expressed on grids other than that defined by latitude and longitude. CF deals with other types of grid using the concept of a grid_mapping. The slide here shows a simple example of a grid mapping in use.
The plot shows a “polar stereographic” map projection. This is often used as a convenient way of plotting data at the poles as though you are looking straight down from above the pole itself. This one shows the northern hemisphere, although exactly the same thing could be done if we were looking at the South Pole.
The CDL example shows a data variable called simply “p” which has a standard_name of “air_pressure_at_sea_level”. Instead of having latitude an longitude dimensions, this data variable has dimensions of “y” and “x” as shown in the first line of code.
The data variable “p” has been given a grid_mapping attribute whose value is “polar_stereographic” so that a human or a plotting program can quickly identify at least the type of map projection being used. There are currently a dozen or so possible values for the grid_mapping attribute listed within the CF conventions and anyone wishing to use a map projection that is not already catered for could propose an extension to the conventions so that it could be added.
Grid mappings require additional attributes to be specified so that if someone wanted to map the data back onto a lat-lon grid they would have the information necessary to do so. For example, the polar_stereographic projection requires additional attributes of false_easting and false_norhting. Other projections would require different additional attributes and these are all listed in one of the appendices to the CF conventions.

Recommended text file formats

What is a text file?

• Computers don’t do text, they only do binary
• 01001010011110110101 – does not mean

anything to humans
• “Hi there!” – does not mean anything to

computers
• One of the simplest bridges between

computers and people is simple standard text
encoding

• There are 2 main flavours – ASCII and Unicode

Presenter
Presentation Notes
Before we start talking about text file formats for science data lets just take a minute to look at what text files are more generally.
Computer do not understand text (or images, or sound) they only understand binary.
One of the simpilest, and earlyest bridges between computers and people was to encode the letters of the alphabet into binary.
This means the computer can produce something that a human can interperate as text and the human can produce text that can interperated by the computer.
As long as we stick to the same rules for encodeing the letter we can communicate.

A
ASCII Encoding
table

Presenter
Presentation Notes
This is a table of the ascii text codes. E.g. 83 (53 in hex, 01010011 bin) is “S”. This has been more or less the same since 1963.

A
ASCII Encoding
table

Numbers

Capital Letters Lower case
Unprintable
Characters

Printable Characters

Unicode (UTF-8) has
a similar concept but
extends to many
thousands of
characters

Presenter
Presentation Notes
Some of the charahers are printable
Some are about terminal control.
ASCII 2 and Unicode extend this into many more characters.

When to use text formats

• Ideal for Simple (smallish) measurement
datasets against one distinct, incremental
variable, like a time stamp

• Is the data just a table of stuff
• The users are most comfortable with data

they can see in a human readable form

The NASA Ames format
• Grew out of NASA aircraft campaigns and was first formalised at the Ames

Research Centre
• They needed to facilitate the data exchange between campaign

participants and …
• allow shared use of a minimised amount of software to analyse and

display different datasets.
• The format should be portable (readable on any machine by any

programming language) and self-describing (that is contain metadata);
• It had to be readable by humans.
• The portable and readable by humans requirements implied the adoption

of a text format (namely ASCII).
• The self-describing requirement was met by including in each data file a

header containing the metadata.
• Very well suited to field campaigns involving several teams that need to

share their observations, the NASA Ames Format is not well adapted to
very voluminous datasets. In this case, although less portable, a binary
format is recommended.

File structure - header and data

• All NASA-Ames files have a header and then the
data.

• The header has lines that describes the data in
the file – metadata.

• You can tell what each piece of metadata means
by the position in the file. For example - The
third line is always the Author’s institute.

• There are several sub-types for dealing with data
with different numbers of dimensions, but it’s
best to use it for the 1D, or possibly 2D data.

What’s in NASA Ames
Format specification
Number of header lines NASA-Ames Format Index
Author’s name
Author’s institute
Instrument name
Project name
1 1
Date of observations Date file produced
Size of intervals in time (use 0.0 if non-uniform)
Name for time variable with units
Number of variables for each time point
Scaling factors for each variable
Missing values for each variable
Name of first variable
Name of second variable
…
Number of lines of specific comments
Comment line 1
Comment line 2 etc
Number of lines of general comments
Comment line 1
Comment line 2
Comment line 3
Comment line 4 etc
Data
Data
Data
…

Who

How

Why
When
What

Extra Details

Data

A simple NASA Ames example
Example
27 1001
Whalley, Lisa
School of Chemistry, University of Leeds, UK
FAGE HO2
RHaMBLe Cape Verde 2007
1 1
2007 05 21 2013 05 29
0
Time (decimal days since 2007-01-01 00:00:00 +0.00)
1
1
9999999999
HO2 (molecule cm-3)
0
11
University of Leeds FAGE HO2 data
Campaign: Reactive Halogens in the Marine Boundary Layer
(RHaMBLe) Part of the UK SOLAS programme
"Instrument inlet was located on the FAGE container roof, approx
height = 3.5 m" LAT: 16.85 N LONG: 24.87 W
Units in molecule cm-3
This data is roughly a 7.5 minute average taking all data points in each
7.5 minute period Time represents mid time of data period
[HO2] 2 sigma standard deviation = 44%
Contact Lisa Whalley prior to use: L.K.Whalley@leeds.ac.uk;
decimal time HO2
140.478 4.54E+08
140.499 3.67E+08
140.504 4.20E+08
140.510 4.34E+08
140.515 4.62E+08
140 520 3 59E+08

Format specification
Number of header lines NASA-Ames Format Index
Author’s name
Author’s institute
Instrument name
Project name
1 1
Date of observations Date file produced
Size of intervals in time (use 0.0 if non-uniform)
Name for time variable with units
Number of variables for each time point
Scaling factors for each variable
Missing values for each variable
Name of first variable
Name of second variable
…
Number of lines of specific comments
Comment line 1
Comment line 2 etc
Number of lines of general comments
Comment line 1
Comment line 2
Comment line 3
Comment line 4 etc
Data
Data
Data
…

More NASA Ames info

https://badc.nerc.ac.uk/help/formats/NASA-Ames/

Go here for…
• Examples
• Code
• Documentation

https://badc.nerc.ac.uk/help/formats/NASA-Ames/

NASA Ames gotchas

• Time values must be monotonic and increasing.
• Missing values (same format but larger than any

possible data value)
• If exporting from excel watch out for excel

formatting of date
• No non-ASCII characters – cut and paste from

other places
• You can write valid NASA-Ames that’s no help to

anyone. Author’s name = Sam, Variable name =
sam3.

Presenter
Presentation Notes
The format insists on monotonic, increasing coordinate variables.
Non-ascii charaters are common in applications e.g. smart quotes.
Dates are in julian day. Not 2/4/2014

Tools list
• Nappy - python library
• Excel – use fixed with import
• Fortran – NASA-Ames was originally written with

Fortran import in mind
• Other languages, MatLab, IDL fairly easy to read NASA-

Ames data.
• Downloading data from the BADC? The data browser

that can give basic plot or allow file to be exported into
excel/CSV.

• Preparing data to archive? There is a web based file
format checker.

Encoding CF in NASA-Ames

• We recommend the use of CF standard names
and units where possible.

• Write information in the comment lines if you
need to

The BADC-CSV format

• The BADC has used NASA-Ames formatted data
for many years. But,
– NASA-Ames can be complex and confusing for users.
– Users have to strip the header off to import the text

file into Excel.
– A lot of effort to support data producers in the

creation of NASA-Ames files.
– Can't be simply written from spread sheet packages

like Excel.
– The metadata fields offered by NASA-Ames are fixed

and inflexible.

The BADC-CSV format
• Model data stored at the BADC often uses the NetCDF

format with CF conventions. This provides a format
framework with good flexible metadata. The format
can be read by a number of analysis programs
including FORTRAN, Matlab and IDL. It is however
difficult for a researcher with little technical knowledge
to use.

• To solve these problems a new file format was
developed to bring the advantages from the NetCDF
file format into a simple text file. The approach was to
use metadata conventions on top of comma separated
values files (CSV) as produced by applications like Excel.

Details of the BADC-CSV format
Conventions, G, BADC-CSV,1
title, G, My data file
creator, G, Prof W E Ather,Reading
contributor, G, Sam Pepler,BADC
creator, G, A. Pdra
long_name, x, time, days since 2007-03-14
long_name, y, air temperature
long_name, z, met station air temperature
creator, z, unknown, Met Office
coordinate_variable, x, x
location_name, G, Rutherford Appleton Lab
Data
x, y, z
0.8,2.4,2.3
1.1,3.4,3.3
2.4,3.5,3.3
3.7,6.7,6.4
4.9,5.7,5.8
end data

Who

How

Why
When
What
Extra Details
Data

Presenter
Presentation Notes
Key value pairs rather than position to work out what the data is. More flexibe. Write the most useful information.

Details of the BADC-CSV format
Conventions, G, BADC-CSV,1
title, G, My data file
creator, G, Prof W E Ather, Reading
contributor, G, Sam Pepler, BADC
creator, G, A. Pdra
long_name, x, time, days since 2007-03-14
long_name, y, air temperature
long_name, z, met station air temperature
creator, z, unknown, Met Office
coordinate_variable, x, x
location_name, G, Rutherford Appleton Lab
Data
x,y,z
0.8,2.4,2.3
1.1,3.4,3.3
2.4,3.5,3.3
3.7,6.7,6.4
4.9,5.7,5.8
end data

G = Global

Column names

Metadata
Data

Presenter
Presentation Notes
Key value pairs rather than position to work out what the data is. More flexibe. Write the most useful information.

More BADC-CSV info

http://badc.nerc.ac.uk/help/formats/badc-csv/

Go here for…
• Examples
• Code
• Documentation

http://badc.nerc.ac.uk/help/formats/badc-csv/

Where don’t text
formats work
• Met Office Model

data
• ECMWF data
• MST radar
• Satellite

observations

Where do people use
text formats?
• Aircraft data
• BADC data from Met

Office obs networks
• Clearflo – Air quality

time series
• MSTRF – surface obs

http://badc.nerc.ac.uk/browse/badc/mst/d
ata/surface-met/2014/02/met-
sensors_capel-dewi_20140211.na

• Ozone sonde profiles

Presenter
Presentation Notes
Work for 1d or 2d data, not to big.
Binary format for big, multi-dimentional, with defined tools

http://badc.nerc.ac.uk/browse/badc/mst/data/surface-met/2014/02/met-sensors_capel-dewi_20140211.na
http://badc.nerc.ac.uk/browse/badc/mst/data/surface-met/2014/02/met-sensors_capel-dewi_20140211.na
http://badc.nerc.ac.uk/browse/badc/mst/data/surface-met/2014/02/met-sensors_capel-dewi_20140211.na

Markup-based formats

• XML
• Good for complex data structures, but

cumbersome to interact with
programmatically

• Its semantic-less. There is nothing to stop you
writing data in XML, but you need to write the
tools too.

• If you do put meaning into the data you need
to find/write the schema too.

Presenter
Presentation Notes
Do you want to spend your time programming or doing science.

Excel format

• Why not keep data in excel format?
• Not very open (though that has changed in

recent years)
• Subject to change
• Not always implemented in the same one

from application to application
• There is a temptation to encode information

into the style – “All red, italics are invalid”. Just
hope the font has italics in the future.

Other text-based formats

• There are many other formats, but please use
ones that are
– metadata-rich
– Standardised (widely used)

	Slide Number 1
	Slide Number 2
	Why use standard formats?
	NetCDF
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Metadata Conventions
	What do the CF metadata conventions allow us to do?
	Goals of CF�(as stated by Jonathan Gregory)
	Slide Number 18
	File attributes
	Variable attributes
	Slide Number 21
	Slide Number 22
	Time
	Calendars
	CF Standard Name Table
	Slide Number 26
	Canonical units
	Cell methods
	Cell Bounds
	Ancillary variables
	Map projections
	Recommended text file formats
	What is a text file?
	A
	A
	When to use text formats
	The NASA Ames format
	File structure - header and data
	What’s in NASA Ames
	A simple NASA Ames example
	More NASA Ames info
	NASA Ames gotchas
	Tools list
	Encoding CF in NASA-Ames
	The BADC-CSV format
	The BADC-CSV format
	Details of the BADC-CSV format
	Details of the BADC-CSV format
	More BADC-CSV info
	Slide Number 50
	Markup-based formats
	Excel format
	Other text-based formats

