
Strings

Copyright © Software Carpentry 2010

This work is licensed under the Creative Commons Attribution License

See http://software-carpentry.org/license.html for more information.

Python

Python Strings

Strings are sequences of characters

Python Strings

Strings are sequences of characters

No separate character type: just a string of length 1

Python Strings

Strings are sequences of characters

No separate character type: just a string of length 1

Indexed exactly like lists

Python Strings

Strings are sequences of characters

No separate character type: just a string of length 1

Indexed exactly like lists

name = 'Darwin'

printprintprintprint name[0], name[-1]

D n

Python Strings

for iterates through characters

Python Strings

for iterates through characters

name = 'Darwin'

forforforfor c inininin name:

printprintprintprint c

D

a

r

w

i

n

Python Strings

Use either ' or " (as long as they match)

Python Strings

Use either ' or " (as long as they match)

printprintprintprint 'Alan', "Turing"

Alan Turing

Python Strings

Use either ' or " (as long as they match)

printprintprintprint 'Alan', "Turing"

Alan Turing

Strings are the same no matter how they're created

Python Strings

Use either ' or " (as long as they match)

printprintprintprint 'Alan', "Turing"

Alan Turing

Strings are the same no matter how they're created

printprintprintprint 'Alan' == "Alan"

True

Python Strings

Strings are compared character by character

from left to right

Python Strings

Strings are compared character by character

from left to right

print 'a' < 'b'print 'a' < 'b'print 'a' < 'b'print 'a' < 'b'

True

Python Strings

Strings are compared character by character

from left to right

print 'a' < 'b'print 'a' < 'b'print 'a' < 'b'print 'a' < 'b'

True

print 'ab' < 'abc'

True

Python Strings

Strings are compared character by character

from left to right

print 'a' < 'b'print 'a' < 'b'print 'a' < 'b'print 'a' < 'b'

True

print 'ab' < 'abc'

True

print '1' < '9'

True

Python Strings

Strings are compared character by character

from left to right

print 'a' < 'b'print 'a' < 'b'print 'a' < 'b'print 'a' < 'b'

True

print 'ab' < 'abc'

True

print '1' < '9'

True

print '100' < '9'

True

Python Strings

Strings are compared character by character

from left to right

print 'a' < 'b'print 'a' < 'b'print 'a' < 'b'print 'a' < 'b'

True

print 'ab' < 'abc'

True

print '1' < '9'

True

print '100' < '9'

True

print 'A' < 'a'print 'A' < 'a'print 'A' < 'a'print 'A' < 'a'

True

Python Strings

Strings are immutable : cannot be changed in place

Python Strings

Strings are immutable : cannot be changed in place

name = 'Darwin'

name[0] = 'C'

TypeError: 'str' object does not support item assignmentTypeError: 'str' object does not support item assignmentTypeError: 'str' object does not support item assignmentTypeError: 'str' object does not support item assignment

Python Strings

Strings are immutable : cannot be changed in place

name = 'Darwin'

name[0] = 'C'

TypeError: 'str' object does not support item assignmentTypeError: 'str' object does not support item assignmentTypeError: 'str' object does not support item assignmentTypeError: 'str' object does not support item assignment

Immutability improves performance

Python Strings

Strings are immutable : cannot be changed in place

name = 'Darwin'

name[0] = 'C'

TypeError: 'str' object does not support item assignmentTypeError: 'str' object does not support item assignmentTypeError: 'str' object does not support item assignmentTypeError: 'str' object does not support item assignment

Immutability improves performance

See later how immutability improves programmers'

performance

Python Strings

Use + to concatenate strings

Python Strings

Use + to concatenate strings

name = 'Charles' + ' ' + 'Darwin'

printprintprintprint name

Charles Darwin

Python Strings

Use + to concatenate strings

name = 'Charles' + ' ' + 'Darwin'

printprintprintprint name

Charles Darwin

Concatenation always produces a new string

Python Strings

Use + to concatenate strings

name = 'Charles' + ' ' + 'Darwin'

printprintprintprint name

Charles Darwin

Concatenation always produces a new string

'Charles'originaloriginal = 'Charles'

Python Strings

Use + to concatenate strings

name = 'Charles' + ' ' + 'Darwin'

printprintprintprint name

Charles Darwin

Concatenation always produces a new string

'Charles'

name

originaloriginal = 'Charles'

name = original

Python Strings

Use + to concatenate strings

name = 'Charles' + ' ' + 'Darwin'

printprintprintprint name

Charles Darwin

Concatenation always produces a new string

original = 'Charles'

name = original

name += ' Darwin'

'Charles'

'Charles Darwin'name

original

Python Strings

Often used to format output

Python Strings

Often used to format output

printprintprintprint 'reagant: ' + str(reagant_id) + ' produced ' + \

str(percentage_yield) + '% yield'

Python Strings

Often used to format output

printprintprintprint 'reagant: ' + str(reagant_id) + ' produced ' + \

str(percentage_yield) + '% yield'

There's a better way...

Python Strings

Use string % value to format output

Python Strings

Use string % value to format output

output = 'reagant: %d' % 123

printprintprintprint output

reagant: 123

Python Strings

Use string % value to format output

output = 'reagant: %d' % 123

printprintprintprint output

reagant: 123

percentage_yield = 12.3

printprintprintprint 'yield: %6.2f' % percentage_yield

yield: 12.30

Python Strings

And string % (v1, v2, ...) for multiple values

Python Strings

And string % (v1, v2, ...) for multiple values

reagant_id = 123

percentage_yield = 12.3

printprintprintprint 'reagant: %d produced %f%% yield' % \

(reagant_id, percentage_yield)

reagant: 123 produced 12.30% yield

Python Strings

And string % (v1, v2, ...) for multiple values

reagant_id = 123

percentage_yield = 12.3

printprintprintprint 'reagant: %d produced %f%% yield' % \

(reagant_id, percentage_yield)

reagant: 123 produced 12.30% yield

% operator turns double '%%' into single '%'

Python Strings

Use \n to represent a newline character

Python Strings

Use \n to represent a newline character

Use \' for single quote, \" for double quote

Python Strings

Use \n to represent a newline character

Use \' for single quote, \" for double quote

printprintprintprint 'There isn\'t time\nto do it right.'

There isn't time

to do it right.

Python Strings

Use \n to represent a newline character

Use \' for single quote, \" for double quote

printprintprintprint 'There isn\'t time\nto do it right.'

There isn't time

to do it right.

printprintprintprint "But you said,\n\"There is time to do it over.\""

But you said,

"There is time to do it over."

Python Strings

Use \\ for a literal \ character

Python Strings

printprintprintprint 'Most mathematicians write a\\b instead of a%b.'

Most mathematicians write a\b instead of a%b.

Use \\ for a literal \ character

Python Strings

printprintprintprint 'Most mathematicians write a\\b instead of a%b.'

Most mathematicians write a\b instead of a%b.

Use \\ for a literal \ character

Common pattern with escape sequences

Python Strings

printprintprintprint 'Most mathematicians write a\\b instead of a%b.'

Most mathematicians write a\b instead of a%b.

Use \\ for a literal \ character

Common pattern with escape sequences

– Use a character to mean "what follows is special"

Python Strings

printprintprintprint 'Most mathematicians write a\\b instead of a%b.'

Most mathematicians write a\b instead of a%b.

Use \\ for a literal \ character

Common pattern with escape sequences

– Use a character to mean "what follows is special"

– Double it up to mean "that character itself"

Python Strings

Use triple quotes (either kind) for multi-line strings

Python Strings

Use triple quotes (either kind) for multi-line strings

quote = '''We can only see

a short distance ahead,

but we can see plenty there

that needs to be done.'''

Python Strings

quote = '''We can only see

a short distance ahead,

but we can see plenty there

that needs to be done.'''
d , \n b u

Use triple quotes (either kind) for multi-line strings

Python Strings

quote = '''We can only see

a short distance ahead,

but we can see plenty there

that needs to be done.'''

quote = 'We can only see\na short distance ahead\n' + \

'but we can see plenty there\nthat needs to be done.'

Use triple quotes (either kind) for multi-line strings

Python Strings

Strings have methods

Python Strings

Strings have methods

name = 'newTON'

printprintprintprint name.capitalize(), name.upper(), name.lower(), name

Newton NEWTON newton newTON

Python Strings

Strings have methods

name = 'newTON'

printprintprintprint name.capitalize(), name.upper(), name.lower(), name

Newton NEWTON newton newTON

dna = 'acggtggtcac'

printprintprintprint dna.count('g'), dna.count('x')

4 0

Python Strings

Strings have methods

name = 'newTON'

printprintprintprint name.capitalize(), name.upper(), name.lower(), name

Newton NEWTON newton newTON

dna = 'acggtggtcac'

printprintprintprint dna.count('g'), dna.count('x')

4 0

printprintprintprint dna.find('t'), dna.find('t', 5), dna.find('x')

4 7 -1

Python Strings

Strings have methods

name = 'newTON'

printprintprintprint name.capitalize(), name.upper(), name.lower(), name

Newton NEWTON newton newTON

dna = 'acggtggtcac'

printprintprintprint dna.count('g'), dna.count('x')

4 0

printprintprintprint dna.find('t'), dna.find('t', 5), dna.find('x')

4 7 -1

printprintprintprint dna.replace('t', 'x'), dna

acggxggxcac acggtggtcac

Python Strings

Strings have methods

name = 'newTON'

printprintprintprint name.capitalize(), name.upper(), name.lower(), name

Newton NEWTON newton newTON

dna = 'acggtggtcac'

printprintprintprint dna.count('g'), dna.count('x')

4 0

printprintprintprint dna.find('t'), dna.find('t', 5), dna.find('x')

4 7 -1

printprintprintprint dna.replace('t', 'x')

acggxggxcac acggtggtcac

printprintprintprint dna.replace('gt', '')

acggcacacggcacacggcacacggcac

Python Strings

Can chain method calls together

Python Strings

Can chain method calls together

element = 'cesium'

printprintprintprint element.upper().center(10, '.')

Python Strings

Can chain method calls together

element = 'cesium'

printprintprintprint element.upper().center(10, '.')

convert to upper case

Python Strings

Can chain method calls together

element = 'cesium'

printprintprintprint element.upper().center(10, '.')

center in a field

10 characters wide

Python Strings

Can chain method calls together

element = 'cesium'

printprintprintprint element.upper().center(10, '.')

..CESIUM..

October 2010

Copyright © Software Carpentry 2010

This work is licensed under the Creative Commons Attribution License

See http://software-carpentry.org/license.html for more information.

narrated by

Dominique Vuvan

