
Unix Shell Secure Shell

Advanced Shell Tricks

Copyright © The University of Southampton 2011
This work is licensed under the Creative Commons Attribution License

See http://software-carpentry.org/license.html for more information.

The Unix Shell

Unix Shell Secure Shell

“How should I do
this?”

Some
technical

problem…

Unix Shell Secure Shell

With smartphones, you’ll often hear
people say something like

“There’s an
app for that…
check this out!”

“How should I do
this?”

Unix Shell Secure Shell

With smartphones, you’ll often hear
people say something like

“There’s an
app for that…
check this out!”

“There’s a shell
trick for that…
check this out!”

Whereas Unix shell programmers
will say

“How should I do
this?”

Unix Shell Secure Shell

In previous episodes, we’ve seen how to:

– Combine existing programs using pipes & filters

$ wc –l *.pdb | sort | head -1

Unix Shell Secure Shell

In previous episodes, we’ve seen how to:

– Combine existing programs using pipes & filters
– Redirect output from programs to files

$ wc –l *.pdb > lengths

Unix Shell Secure Shell

In previous episodes, we’ve seen how to:

– Combine existing programs using pipes & filters
– Redirect output from programs to files
– Use variables to control program operation

$ SECRET_IDENTITY=Dracula
$ echo $SECRET_IDENTITY
Dracula

Unix Shell Secure Shell

In previous episodes, we’ve seen how to:

– Combine existing programs using pipes & filters
– Redirect output from programs to files
– Use variables to control program operation

Very powerful when used together

Unix Shell Secure Shell

In previous episodes, we’ve seen how to:

– Combine existing programs using pipes & filters
– Redirect output from programs to files
– Use variables to control program operation

Very powerful when used together

But there are other useful things we can do with
these – let’s take a look…

Unix Shell Secure Shell

First, let’s revisit redirection…

cubane.pdb

ethane.pdb

methane.pdb

octane.pdb

pentane.pdb

propane.pdb

data

Unix Shell Secure Shell

First, let’s revisit redirection…

$ ls *.pdb > files

list all pdb files
redirect to a file cubane.pdb

ethane.pdb

methane.pdb

octane.pdb

pentane.pdb

propane.pdb

data

Unix Shell Secure Shell

First, let’s revisit redirection…

$ ls *.pdb > files

list all pdb files
redirect to a file cubane.pdb

ethane.pdb

methane.pdb

octane.pdb

pentane.pdb

propane.pdb

data

The ‘redirection’
operator

Unix Shell Secure Shell

First, let’s revisit redirection…

$ ls *.pdb > files

But what about adding this together with
other results generated later?

list all pdb files
redirect to a file cubane.pdb

ethane.pdb

methane.pdb

octane.pdb

pentane.pdb

propane.pdb

data

butane.ent

heptane.ent

hexane.ent

nonane.ent

decane.ent

Unix Shell Secure Shell

First, let’s revisit redirection…

$ ls *.pdb > files

But what about adding this together with
other results generated later?

$ ls *.ent > more-files

list all pdb files
redirect to a file cubane.pdb

ethane.pdb

methane.pdb

octane.pdb

pentane.pdb

propane.pdb

data

butane.ent

heptane.ent

hexane.ent

nonane.ent

decane.ent

Unix Shell Secure Shell

First, let’s revisit redirection…

$ ls *.pdb > files

But what about adding this together with
other results generated later?

$ ls *.ent > more-files

list all pdb files
redirect to a file cubane.pdb

ethane.pdb

methane.pdb

octane.pdb

pentane.pdb

propane.pdb

data

butane.ent

heptane.ent

hexane.ent

nonane.ent

decane.ent

We just want
the ent files

Unix Shell Secure Shell

First, let’s revisit redirection…

$ ls *.pdb > files

But what about adding this together with
other results generated later?

$ ls *.ent > more-files
$ cat files more-files > all-files

list all pdb files
redirect to a file cubane.pdb

ethane.pdb

methane.pdb

octane.pdb

pentane.pdb

propane.pdb

butane.ent

heptane.ent

hexane.ent

nonane.ent

decane.ent

data

append files
into a single
new file

Unix Shell Secure Shell

First, let’s revisit redirection…

$ ls *.pdb > files

But what about adding this together with
other results generated later?

$ ls *.ent > more-files
$ cat files more-files > all-files

Instead, we can do…

$ ls *.ent >> files

list all pdb files
redirect to a file cubane.pdb

ethane.pdb

methane.pdb

octane.pdb

pentane.pdb

propane.pdb

butane.ent

heptane.ent

hexane.ent

nonane.ent

decane.ent

data

append files
into a single
new file

Unix Shell Secure Shell

First, let’s revisit redirection…

$ ls *.pdb > files

But what about adding this together with
other results generated later?

$ ls *.ent > more-files
$ cat files more-files > all-files

Instead, we can do…

$ ls *.ent >> files

list all pdb files
redirect to a file cubane.pdb

ethane.pdb

methane.pdb

octane.pdb

pentane.pdb

propane.pdb

butane.ent

heptane.ent

hexane.ent

nonane.ent

decane.ent

data

append files
into a single
new file

Note the double >’s – the
append’ operator

Unix Shell Secure Shell

We know that…

Normally, standard output is directed to a display:

Unix Shell Secure Shell

shell

We know that…

Normally, standard output is directed to a display:

ls

Unix Shell Secure Shell

shell

We know that…

Normally, standard output is directed to a display:

But we have redirected it to a file instead:

ls

files

Unix Shell Secure Shell

But what happens with error messages?

Unix Shell Secure Shell

But what happens with error messages?

For example…

$ ls /some/nonexistent/path > files
ls: /some/nonexistent/path: No such file or directory

Unix Shell Secure Shell

But what happens with error messages?

For example…

$ ls /some/nonexistent/path > files
ls: /some/nonexistent/path: No such file or directory

No files are listed in files, as you might expect.

Unix Shell Secure Shell

But what happens with error messages?

For example…

$ ls /some/nonexistent/path > files
ls: /some/nonexistent/path: No such file or directory

No files are listed in files, as you might expect.

But why isn’t the error message in files?

Unix Shell Secure Shell

This is because error messages are sent to the
standard error (stderr), separate to stdout

Unix Shell Secure Shell

shell

This is because error messages are sent to
the standard error (stderr), separate to stdout

So what was happening with the previous
example?

ls

files

Unix Shell Secure Shell

This is because error messages are sent to
the standard error (stderr), separate to stdout

So what was happening with the previous
example?

stderr

stdout

files

stderr

stdout

shell

ls

Unix Shell Secure Shell

shell

This is because error messages are sent to
the standard error (stderr), separate to stdout

So what was happening with the previous
example?

ls

files

stderr

stdout

stderr

stdout

Unix Shell Secure Shell

We can capture standard error as well as standard output

Unix Shell Secure Shell

We can capture standard error as well as standard output

To redirect the standard error to a file, we can do:

$ ls /some/nonexistent/path 2> error-log

Redirect as before,
but with a slightly
different operator

Unix Shell Secure Shell

We can capture standard error as well as standard output

To redirect the standard error to a file, we can do:

$ ls /some/nonexistent/path 2> error-log

Now we have any error messages stored in error-log

Unix Shell Secure Shell

We can capture standard error as well as standard output

To redirect the standard error to a file, we can do:

$ ls /some/nonexistent/path 2> error-log

Now we have any error messages stored in error-log

To redirect both stdout and stderr, we can then do:

$ ls /usr /some/nonexistent/path > files 2> error-log

Unix Shell Secure Shell

We can capture standard error as well as standard output

To redirect the standard error to a file, we can do:

$ ls /some/nonexistent/path 2> error-log

Now we have any error messages stored in error-log

To redirect both stdout and stderr, we can then do:

$ ls /usr /some/nonexistent/path > files 2> error-log

We can use both stdout and stderr
redirection – at the same time

Unix Shell Secure Shell

We can capture standard error as well as standard output

To redirect the standard error to a file, we can do:

$ ls /some/nonexistent/path 2> error-log

Now we have any error messages stored in error-log

To redirect both stdout and stderr, we can then do:

$ ls /usr /some/nonexistent/path > files 2> error-log

Which would give us contents of /usr in files as well.

Unix Shell Secure Shell

So why a ‘2’ before the ‘>’ ?

Unix Shell Secure Shell

So why a ‘2’ before the ‘>’ ?

Both stdout and stderr can be referenced by numbers:

$ ls /usr /some/nonexistent/path 1> files 2> error-log

Unix Shell Secure Shell

So why a ‘2’ before the ‘>’ ?

Both stdout and stderr can be referenced by numbers:

$ ls /usr /some/nonexistent/path 1> files 2> error-log

Refers
to stderr

Refers to
stdout

Unix Shell Secure Shell

So why a ‘2’ before the ‘>’ ?

Both stdout and stderr can be referenced by numbers:

$ ls /usr /some/nonexistent/path 1> files 2> error-log

To just redirect both to the same file we can also do:

$ ls /usr /some/nonexistent/path &> everything

With ‘&’ denoting both stdout and stderr

Unix Shell Secure Shell

So why a ‘2’ before the ‘>’ ?

Both stdout and stderr can be referenced by numbers:

$ ls /usr /some/nonexistent/path 1> files 2> error-log

To just redirect both to the same file we can also do:

$ ls /usr /some/nonexistent/path &> everything

With ‘&’ denoting both stdout and stderr

We can also use append for each of these too:

$ ls /usr /some/nonexistent/path 1>> files 2>> error-log

Unix Shell Secure Shell

> 1> Redirect stdout to a file

2> Redirect stderr to a file

&> Redirect both stdout and stderr to the same file

Unix Shell Secure Shell

> 1> Redirect stdout to a file

2> Redirect stderr to a file

&> Redirect both stdout and stderr to the same file

>> 1>> Redirect and append stdout to a file

2>> Redirect and append stderr to a file

&>> Redirect and append both stdout and stderr to a file

Unix Shell Secure Shell

We’ve seen how pipes and filters work with
using a single program on some input data…

Unix Shell Secure Shell

We’ve seen how pipes and filters work with
using a single program on some input data…

a_program 1 2 3

Unix Shell Secure Shell

We’ve seen how pipes and filters work with
using a single program on some input data…

But what about running the same program
separately, for each input?

Unix Shell Secure Shell

We’ve seen how pipes and filters work with
using a single program on some input data…

But what about running the same program
separately, for each input?

a_program 3

a_program 1

a_program 2

...

Unix Shell Secure Shell

We’ve seen how pipes and filters work with
using a single program on some input data…

But what about running the same program
separately, for each input?

a_program 3

a_program 1

a_program 2

...
We can use loops for this…

Unix Shell Secure Shell

So what can we do with loops?

Unix Shell Secure Shell

So what can we do with loops?

Let’s go back to our first set of pdb files,
and assume we want to compress each
of them

cubane.pdb

ethane.pdb

methane.pdb

octane.pdb

pentane.pdb

propane.pdb

data

Unix Shell Secure Shell

So what can we do with loops?

Let’s go back to our first set of pdb files,
and assume we want to compress each
of them

We could do the following for each:

$ zip cubane.pdb.zip cubane.pdb
 adding: cubane.pdb (deflated 73%)

cubane.pdb

ethane.pdb

methane.pdb

octane.pdb

pentane.pdb

propane.pdb

data

Unix Shell Secure Shell

So what can we do with loops?

Let’s go back to our first set of pdb files,
and assume we want to compress each
of them

We could do the following for each:

$ zip cubane.pdb.zip cubane.pdb
 adding: cubane.pdb (deflated 73%)

cubane.pdb

ethane.pdb

methane.pdb

octane.pdb

pentane.pdb

propane.pdb

data

typical output
from the zip
command

Unix Shell Secure Shell

So what can we do with loops?

Let’s go back to our first set of pdb files,
and assume we want to compress each
of them

We could do the following for each:

$ zip cubane.pdb.zip cubane.pdb
 adding: cubane.pdb (deflated 73%)

cubane.pdb

ethane.pdb

methane.pdb

octane.pdb

pentane.pdb

propane.pdb

data

typical output
from the zip
command The zip file

we wish to
create

Unix Shell Secure Shell

So what can we do with loops?

Let’s go back to our first set of pdb files,
and assume we want to compress each
of them

We could do the following for each:

$ zip cubane.pdb.zip cubane.pdb
 adding: cubane.pdb (deflated 73%)

cubane.pdb

ethane.pdb

methane.pdb

octane.pdb

pentane.pdb

propane.pdb

data

typical output
from the zip
command The file(s)

we wish to
add to the
zip file

The zip file
we wish to
create

Unix Shell Secure Shell

So what can we do with loops?

Let’s go back to our first set of pdb files,
and assume we want to compress each
of them

We could do the following for each:

$ zip cubane.pdb.zip cubane.pdb
 adding: cubane.pdb (deflated 73%)

Not efficient for many files

cubane.pdb

ethane.pdb

methane.pdb

octane.pdb

pentane.pdb

propane.pdb

data

Unix Shell Secure Shell

Using a loop, we can iterate over each file,
and run zip on each of them:

$ for file in *.pdb; do zip $file.zip $file; done

Unix Shell Secure Shell

Using a loop, we can iterate over each file,
and run zip on each of them:

$ for file in *.pdb; do zip $file.zip $file; done

For each pdb
file in this
directory…

Unix Shell Secure Shell

Using a loop, we can iterate over each file,
and run zip on each of them:

$ for file in *.pdb; do zip $file.zip $file; done

Run this command

Unix Shell Secure Shell

Using a loop, we can iterate over each file,
and run zip on each of them:

$ for file in *.pdb; do zip $file.zip $file; done

This is the end of
the loop

Unix Shell Secure Shell

Using a loop, we can iterate over each file,
and run zip on each of them:

$ for file in *.pdb; do zip $file.zip $file; done

The semicolons
separate each part
of the loop construct

Unix Shell Secure Shell

Using a loop, we can iterate over each file,
and run zip on each of them:

$ for file in *.pdb; do zip $file.zip $file; done

This expands to a
list of every pdb file

Unix Shell Secure Shell

Using a loop, we can iterate over each file,
and run zip on each of them:

$ for file in *.pdb; do zip $file.zip $file; done

This variable holds
the next pdb file in
the list

Unix Shell Secure Shell

Using a loop, we can iterate over each file,
and run zip on each of them:

$ for file in *.pdb; do zip $file.zip $file; done

We reference the
‘file’ variable, and
use ‘.’ to add the
zip extension to the
filename

Unix Shell Secure Shell

Using a loop, we can iterate over each file,
and run zip on each of them:

$ for file in *.pdb; do zip $file.zip $file; done

We reference the
‘file’ variable again

Unix Shell Secure Shell

Using a loop, we can iterate over each file,
and run zip on each of them:

$ for file in *.pdb; do zip $file.zip $file; done
 adding: cubane.pdb (deflated 73%)
 adding: ethane.pdb (deflated 70%)
 adding: methane.pdb (deflated 66%)
 adding: octane.pdb (deflated 75%)
 adding: pentane.pdb (deflated 74%)
 adding: propane.pdb (deflated 71%)

Unix Shell Secure Shell

Using a loop, we can iterate over each file,
and run zip on each of them:

$ for file in *.pdb; do zip $file.zip $file; done
 adding: cubane.pdb (deflated 73%)
 adding: ethane.pdb (deflated 70%)
…

In one line, we’ve ended up with all files zipped

Unix Shell Secure Shell

Using a loop, we can iterate over each file,
and run zip on each of them:

$ for file in *.pdb; do zip $file.zip $file; done
 adding: cubane.pdb (deflated 73%)
 adding: ethane.pdb (deflated 70%)
…

In one line, we’ve ended up with all files zipped

$ ls *.zip
cubane.pdb.zip methane.pdb.zip pentane.pdb.zip
ethane.pdb.zip octane.pdb.zip propane.pdb.zip

Unix Shell Secure Shell

Now instead, what if we wanted to output the
first line of each pdb file?

Unix Shell Secure Shell

Now instead, what if we wanted to output the
first line of each pdb file?

We could use head -1 *.pdb for that, but it would
produce:

==> cubane.pdb <==
COMPND CUBANE

==> ethane.pdb <==
COMPND ETHANE

==> methane.pdb <==
COMPND METHANE
…

Unix Shell Secure Shell

Now instead, what if we wanted to output the
first line of each pdb file?

We could use head -1 *.pdb for that, but it would
produce:

==> cubane.pdb <==
COMPND CUBANE

==> ethane.pdb <==
COMPND ETHANE

==> methane.pdb <==
COMPND METHANE
…

head produces this
(it’s not in the file)

Unix Shell Secure Shell

Now instead, what if we wanted to output the
first line of each pdb file?

We could use head -1 *.pdb for that, but it would
produce:

==> cubane.pdb <==
COMPND CUBANE

==> ethane.pdb <==
COMPND ETHANE

==> methane.pdb <==
COMPND METHANE
…

head produces this
(it’s not in the file)
this is actually the first
line in this file!

Unix Shell Secure Shell

Now instead, what if we wanted to output the
first line of each pdb file?

We could use head -1 *.pdb for that, but it would
produce:

==> cubane.pdb <==
COMPND CUBANE

==> ethane.pdb <==
COMPND ETHANE

==> methane.pdb <==
COMPND METHANE
…

Perhaps we only want the actual first lines…

head produces this
(it’s not in the file)
this is actually the first
line in this file!

Unix Shell Secure Shell

However, using a loop:

Unix Shell Secure Shell

However, using a loop:

$ for file in *.pdb; do head -1 $file; done

Unix Shell Secure Shell

However, using a loop:

$ for file in *.pdb; do head -1 $file; done

We use $file as we
did before, but this
time with the head
command

Unix Shell Secure Shell

However, using a loop:

$ for file in *.pdb; do head -1 $file; done
COMPND CUBANE
COMPND ETHANE
COMPND METHANE
COMPND OCTANE
COMPND PENTANE
COMPND PROPANE

Unix Shell Secure Shell

What if we wanted this list sorted in reverse afterwards?

Unix Shell Secure Shell

What if we wanted this list sorted in reverse afterwards?

Simple!

$ (for file in ls *.pdb; do head -1 $file; done) | sort –r

Unix Shell Secure Shell

What if we wanted this list sorted in reverse afterwards?

Simple!

$ (for file in ls *.pdb; do head -1 $file; done) | sort –r

Using a pipe, we
can just add this on
the end

Unix Shell Secure Shell

What if we wanted this list sorted in reverse afterwards?

Simple!

$ (for file in ls *.pdb; do head -1 $file; done) | sort –r
COMPND PROPANE
COMPND PENTANE
COMPND OCTANE
COMPND METHANE
COMPND ETHANE
COMPND CUBANE

Unix Shell Secure Shell

zip Create a compressed zip file
with other files in it

for …; do … done; Loop over a list of data and run
a command once for each
element in the list

Unix Shell Secure Shell

July 2011

created by

Steve Crouch

Copyright © Software Carpentry and The University of Southampton 2010-2011
This work is licensed under the Creative Commons Attribution License

See http://software-carpentry.org/license.html for more information.

Unix Shell Secure Shell

More Tricks

From Alan Iwi at CEDA

Unix Shell Secure Shell

Operations on multiple files: xargs

 This does not work
$ find acsoe | ls
acsoe presentations
$

 Find pipes a list of files to ls.
 ls ignores input and just does a normal listing of the

current working directory.

 Lots of commands expect a list of arguments not
input. Is there anything to help?

Unix Shell Secure Shell

Operations on multiple files: xargs

 The “xargs” command runs the same
command on all files specified in the input.

 Usually used with “find” output, e.g.:
find . -name '*.nc' | xargs chmod u=rwx

Changes permissions on all .nc files.

Unix Shell Secure Shell

Operating on multiple files:
xargs (continued)

 by default splits the file list into batches:
chmod 644 file1 file2 … file100

chmod 644 file101 file102 …

 use “-n 1” if the command can only process
one file at a time:
find . -name '*.tar' | xargs -n 1 tar -tvf

 displays contents of all 'tar' files found

Unix Shell Secure Shell

The ssh agent

 Stores secret keys in memory.
 Avoids repeated typing of the pass phrases.
 Can talk to a forwarding mechanism.

For example:
− your workstation → jasmin-login1 → jasmin-sci1
− jasmin-login1 does not have the private key
− authentication traffic forwarded from end to end:

 jasmin-sci1 sends challenge
 workstation sends response, proving your identity

Unix Shell Secure Shell

The ssh agent (continued)

 To start the agent and load your secret key:
− Linux: session manager should start agent for

you. Use ssh-add to load key (if not done
automatically when ssh first used).

− Windows: launch Pageant and click “add key”.
− Enter your pass phrase.

 For authentication forwarding:
− Linux: use “ssh -A” (often the default)
− Windows: in PuTTY, go to Connection → SSH →

Auth, and “Allow agent forwarding”

Unix Shell Secure Shell

Other ways to move data around

There are a lot of tools to help you move data
from one machine to another. Common ones
are:

• FTP
• SFTP
• Rsync
• Wget
• Curl

Unix Shell Secure Shell

Transferring data with FTP

Can use most browsers to ftp
files

Can also use a command line
interface too (easy to script)

vpn-2-150:~ sjp23$ ftp ftp.ceda.ac.uk
Connected to ftp1.ceda.ac.uk.
220 JASMIN BADC/NEODC FTP server
Name (ftp.ceda.ac.uk:sjp23): spepler
331 Password required for spepler
Password:
230-Welcome to the CEDA ftp server.

 This server provides read-only access to the BADC and NEODC data
 archives and users 'requests' areas.

230 User spepler logged in
Remote system type is UNIX.
Using binary mode to transfer files.
ftp> ls
229 Entering Extended Passive Mode (|||65173|)
150 Opening ASCII mode data connection for file list
drwxr-xr-x 2 badc byacl 28672 Jan 17 09:28 badc
drwxrwxr-x 2 badc byacl 8192 Feb 26 09:11 neodc
drwxrwx--- 1812 badc byacl 249856 Mar 5 15:40 requests
drwxr-xr-x 2 badc byacl 4096 Feb 6 12:18 sparc
-rw-r--r-- 1 badc ftp 415 Feb 27 10:42 welcome.msg
226 Transfer complete
ftp>

Unix Shell Secure Shell

Transferring data with sftp

 Like scp, this uses ssh. However, gives an
interactive interface like ftp.

 Usage (Linux):
− “sftp host” or “sftp username@host”
− ftp commands e.g. cd, lcd, put, get

 Windows:
− psftp (in PuTTY suite) works similarly from

command line
− also Filezilla GUI

 As before, set up ssh keys first.

Unix Shell Secure Shell

Transferring data with rsync
 copies files over the network (or locally)
 where destination files already exist, copies

only what is required to update any
differences

 push / pull files over ssh:
rsync -e ssh user@host:remote_path local_path ← pull

rsync -e ssh local_path user@host:remote_path ← push

− requires no special configuration (though remember to set
up ssh keys)

− similar to scp syntax, e.g. remote path is relative to home
directory unless starts with /

Unix Shell Secure Shell

Transferring data with rsync
(continued)

 Useful flags for rsync:
-r (recursive) – go down the directory tree copying stuff.

-c (checksum) – when deciding what files to send, look not only at size
and timestamp but if necessary also file contents

--delete – remove files from destination not present at source end.
(Test with -n first!)

-v (verbose) – list files that are transferred (or deleted)

-n (dry run) – go through the motions but do not actually transfer (or
delete) files. Useful with -v.

-a (archive) – copy recursively and try to copy permissions, ownership,
etc.

Unix Shell Secure Shell

Pattern matching: globs

 Unix shells recognises various wildcards in filenames. We have seen
these two:

* matches any number of characters

? matches one character

 These filename matching patterns, known as “globs”, are replaced with a
list of matching filenames before the command is executed.

$ ls
1 3 5 a1 b1 c1 d1
2 4 a b c d

$ ls *1
1 a1 b1 c1 d1

$ ls ??
a1 b1 c1 d1

Unix Shell Secure Shell

Pattern matching: globs

 Here is another glob for you
[…] matches any of the characters listed (or range

of characters, e.g. [0-9])

$ ls [a-c]*

a a1 b b1 c c1

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Slide Number 44
	Slide Number 45
	Slide Number 46
	Slide Number 47
	Slide Number 48
	Slide Number 49
	Slide Number 50
	Slide Number 51
	Slide Number 52
	Slide Number 53
	Slide Number 54
	Slide Number 55
	Slide Number 56
	Slide Number 57
	Slide Number 58
	Slide Number 59
	Slide Number 60
	Slide Number 61
	Slide Number 62
	Slide Number 63
	Slide Number 64
	Slide Number 65
	Slide Number 66
	Slide Number 67
	Slide Number 68
	Slide Number 69
	Slide Number 70
	Slide Number 71
	Slide Number 72
	Slide Number 73
	Slide Number 74
	Slide Number 75
	Slide Number 76
	Slide Number 77
	Slide Number 78
	Slide Number 79
	Slide Number 80
	Slide Number 81
	More Tricks
	Operations on multiple files: xargs
	Operations on multiple files: xargs
	Operating on multiple files:�xargs (continued)
	The ssh agent
	The ssh agent (continued)
	Other ways to move data around�
	Transferring data with FTP
	Transferring data with sftp
	Transferring data with rsync
	Transferring data with rsync (continued)
	Pattern matching: globs
	Pattern matching: globs

