
The Secure Shell 

Copyright © Software Carpentry 2011 
This work is licensed under the Creative Commons Attribution License 

See http://software-carpentry.org/license.html for more information. 

The Unix Shell 

Presenter
Presentation Notes
In modern operating systems, the command line allows the user a powerful way to accomplish a diverse set of tasks on the user's computer.  In this episode, we'll see how remote logins can be used to connect to other computers and perform command line tasks on the other computers, all without distance being an issue.



$ pwd 

shell 

Presenter
Presentation Notes
First, let's start by looking at what happens when we use our desktop computer.  When we type information to our computer (for example, a shell command), the text -- the 1's and 0's that represent each character -- is sent from the keyboard to the shell.  The shell then displays characters on the screen to represent what we type.  



$ pwd 

/users/vlad 

$ 

shell 

Presenter
Presentation Notes
If what we type represents a command, the shell will execute the command and additionally display characters representing the output.



login as: vlad 

Password: ******** 

shell 

Presenter
Presentation Notes
When we login to our desktop computer, we type our username and password at the keyboard which sends it to the shell.



login as: vlad 

Password: ******** 

$ 

shell 

Presenter
Presentation Notes
The shell passes the login information to the OS, and if the OS authenticates our login information, the shell will give us a command line prompt to interact with the OS.  The shell will send the 1's and 0's to the screen to represent the characters that make up that prompt.



login as: vlad 

Password: ******** 

moon>  

shell 

remote shell 

Presenter
Presentation Notes
Let's say we want to login to another computer from our desktop.  Let's call this a remote login, and the other computer is a remote computer.  A remote login appears nearly the same to the user.  However, the username and password information is being passed on to a shell on the remote computer's OS, so it has a longer distance to travel. 



login as: vlad 

Password: ******** 

moon>  

shell 

remote shell 

Presenter
Presentation Notes
The shell on the remote computer interacts with its OS and responds back with output, and the output travels back to us.  The interaction with the remote computer will be the same as if we had traveled that distance and were typing at the keyboard of the remote computer.



$ pwd 

/users/vlad 

$ ssh vlad@moon 

Password: 

Presenter
Presentation Notes
In order to invoke a remote login, all we need to know is the secure shell command 'ssh' and the simple syntax
ssh  username@computer
and we get prompted for our username and password on the remote computer.  Voila!



$ pwd 

/users/vlad 

$ ssh vlad@moon 

Password: *** 

Access denied 

Password: 

Presenter
Presentation Notes
Wrong password? -- no access.  Just as we expect.



$ pwd 

/users/vlad 

$ ssh vlad@moon 

Password: *** 

Access denied 

Password: ******** 

moon> pwd 

/home/vlad 

moon> ls -F 

bin/     cheese.txt   dark_side/   rocks.cfg 

Presenter
Presentation Notes
After we login to the remote computer, we can use the remote shell to use the remote computer's files and directories.



$ pwd 

/users/vlad 

$ ssh vlad@moon 

Password: *** 

Access denied 

Password: ******** 

moon> pwd 

/home/vlad 

moon> ls -F 

bin/     cheese.txt   dark_side/   rocks.cfg 

moon> exit 

$ pwd 

/users/vlad 

 

Presenter
Presentation Notes
When we type "exit", we terminate the remote shell and return to our previous shell.



$ ssh vlad@moon 

Password: ******** 

moon> pwd 

/home/vlad 

moon> ls -F 

bin/     cheese.txt   dark_side/   rocks.cfg 

moon> exit 

$ pwd 

/users/vlad 

$ ls -F 

bin/         data/     mail/      music/ 

notes.txt    papers/   pizza.cfg  solar/ 

solar.pdf    swc/ 

 

Presenter
Presentation Notes
Suppose there is a file that we want to transfer from the remote computer to our computer.



$ scp vlad@moon:/home/vlad/cheese.txt  

        vlad@earth:/users/vlad 

 

source file... 

Presenter
Presentation Notes
Now that you know how to run secure shell, you can understand what secure copy might do.  Secure copy allows you to copy files to or from a remote computer, and it takes advantage of the remote connection setup used by secure shell.  The syntax is simple and is similar to that of "cp" and "ssh“.  To copy a file, we first specify the source location of the file that we are copying…



$ scp vlad@moon:/home/vlad/cheese.txt  

        vlad@earth:/users/vlad 

 

source file... 
…to destination directory 

Presenter
Presentation Notes
… followed by the destination directory to where we are copying the file.



$ scp vlad@moon:/home/vlad/cheese.txt  

        vlad@earth:/users/vlad 

 

source file... 
…to destination directory 
source and destination are written as 
 user@computer:path 

Presenter
Presentation Notes
When specifying the source and destination, we write 
the user name, 
at-sign, 
the name of the computer, 
colon, 
then the path of the file or directory



$ scp vlad@moon:/home/vlad/cheese.txt  

        vlad@earth:/users/vlad 

Password: ******** 

cheese.txt              100%  9  1.0 KB/s 00:00 

Presenter
Presentation Notes
If either the source or destination is on a remote computer, then we have to type the password for the user accounts that are being used to make the connection.  Secure copy may also give us feedback on the progress of our transfer.



$ scp vlad@moon:/home/vlad/cheese.txt  

        vlad@earth:/users/vlad 

$ scp -r vlad@moon:/home/vlad/dark_side 

        vlad@earth:/users/vlad 

 -r indicates a directory and its contents 

Presenter
Presentation Notes
Copying a folder is similar to using copy command "cp" in that the –r option indicates we are copying a directory and its contents



$ scp -r vlad@moon:/home/vlad/dark_side 

        vlad@earth:/users/vlad 

$ scp -r vlad@moon:/home/vlad/dark_side 

        /users/vlad 

$ pwd 

/users/vlad 

$ scp -r vlad@moon:/home/vlad/dark_side  

        . 

same destination path 

Presenter
Presentation Notes
If either the source or destination is the current computer, we can omit the "user-at-sign-computer-colon" part.



$ ssh vlad@moon 

Password: ******** 

moon> df –h 

Filesystem    Size  Used  Avail  Use% Mounted O  

/dev/sda1     7.9G  2.1G  5.5G   28%  / 

/dev/sda2     791G  150G  642G   19%  /home  

moon> df –h > usage.txt 

moon> exit 

$ scp vlad@moon:/home/vlad/usage.txt . 

Password: ******** 

usage.txt              100%  134  1.0 KB/s 00:0  

Presenter
Presentation Notes
Sometimes, we only want to login to a remote computer to find out (or create) a piece of information, and then return.  If this is quick or repetitive, this can get tedious.  For example, I need to know how much free disk space there is, and I need to collect this information every hour, and keep this information on my personal computer.  I could login, 
run "df -h", 
save the output as a file, 
logout, 
and then "scp" the file from the remote computer to my computer.  



$ ssh vlad@moon 'df –h' 

Password: ******** 

Filesystem    Size  Used  Avail  Use% Mounted O  

/dev/sda1     7.9G  2.1G  5.5G   28%  / 

/dev/sda2     791G  150G  642G   19%  /home 

Presenter
Presentation Notes
But the ssh command allows us to pass data streams to a remote command and receive input streams from a remote command.  When we provide the command that ssh needs to run remotely, any output that the command generates is sent back to our shell.
The remote command is specified as an argument to the ssh command that follows the username and remote computer information.



$ ssh vlad@moon 'df –h' 

Password: ******** 

Filesystem    Size  Used  Avail  Use% Mounted O  

/dev/sda1     7.9G  2.1G  5.5G   28%  / 

/dev/sda2     791G  150G  642G   19%  /home 

$ ssh vlad@moon 'df –h' >> usage.log 

Password: ******** 

$ ls -F 

bin/         data/     mail/      music/ 

notes.txt    papers/   pizza.cfg  solar/ 

solar.pdf    swc/      usage.log  usage.txt 

same result 

Presenter
Presentation Notes
Now we can save the remote command’s output to a file.
This simplifies the task considerably and still achieves the same result.  We have the remote computer’s disk usage statistics saved on our computer.



 

 

 

$ echo "open sesame, please"  |  ssh   

   vlad@moon  'cat > magic.txt' 

Password: ******** 

character stream 

Presenter
Presentation Notes
Remember that ssh can accept streams of data and pass those to the remote command, too.
This command sends a stream of characters to a remote shell session.



 

 

 

$ echo "open sesame, please"  |  ssh   

   vlad@moon  'cat > magic.txt' 

Password: ******** 

character stream 
remote shell receives  
stream from pipe 

remote command receives  
input piped to ssh  
cat repeats input stream  
as output 

redirection within 
remote shell 

Presenter
Presentation Notes
As mentioned before, the remote shell will execute any command on the remote computer that was provided as an argument to ssh.  The remote shell session also passes any input it receives to the provided command.  In this example’s remote command, ‘cat’ is a command that will receive the input and repeat it entirely as output, and then the rest of the remote command will redirect that output to a file.



$ ssh vlad@moon 'ls –F /home/vlad' 

Password: ******** 

bin/      cheese.txt   dark_side/   rocks.cfg 

$ echo "open sesame, please"  |  ssh   

   vlad@moon  'cat > magic.txt' 

Password: ******** 

$ ssh vlad@moon 'ls –F /home/vlad' 

Password: ******** 

bin/      cheese.txt   dark_side/   magic.txt 

rocks.cfg 

before 

after 

Presenter
Presentation Notes
The command has created a file on the remote computer in the user's home directory that contains the original stream of characters.



$ ssh vlad@moon 'ls –F /home/vlad' 

Password: ******** 

bin/      cheese.txt   dark_side/   rocks.cfg 

$ echo "open sesame, please"  |  ssh   

   vlad@moon  'cat > magic.txt' 

Password: ******** 

$ ssh vlad@moon 'ls –F /home/vlad' 

Password: ******** 

bin/      cheese.txt   dark_side/   magic.txt 

rocks.cfg 

$ scp vlad@moon:/home/vlad/magic.txt . 

Password: ******** 

 

before 

after 

Presenter
Presentation Notes
…And we can copy the file from the remote computer to our computer, if we like.



login as: vlad 

Password: ******** 

  

shell 

remote shell 

Presenter
Presentation Notes
Why do we call the command used to login to a shell on a remote computer "secure shell"?  



shell 

remote shell 

login as: vlad 

Password: thriller 

  

Presenter
Presentation Notes
Until a few years ago, we used to create remote logins by passing our information straight through to the remote computer.



shell 

remote shell 

login as: vlad 

Password: thriller 

  

Presenter
Presentation Notes
However, if a person could intercept our messages to the remote computer and were devious, that person could read our username and password and use them to impersonate us.  Not secure, and we don't expect to be impersonated.
What we needed was a way to do this without the risk of our passwords and information being stolen.



shell 

remote shell 

Presenter
Presentation Notes
What we really needed, then, was a way to create a lock and key design with two keys, where the message can be locked by one key and only unlocked by the other key.  Imagine the remote computer having a set of two keys, and handing out the first and keeping the second.  The user locks all of his/her messages with the first key, but only the second key can open it, which only the remote computer has.



shell 

remote shell 

Presenter
Presentation Notes
Anyone pretending to be the remote computer does not have the second key, and cannot break the lock.  All subsequent messages from the user to that particular remote computer will be done with the remote computer's first key that the user received, and the remote computer continues to use the second key it kept to unlock the messages. 



shell 

remote shell 

public key 

private key 
(only 1 copy) 

encryption using 
public key 

cannot decrypt 
using public key 

Presenter
Presentation Notes
This key-lock mechanism is called public-key encryption, and public-key encryption is a standard feature of secure shell.

In public-key encryption, the first key, which is sent out to the user, is the public key.  It's okay to send this out to every user, since no one has the second key in the set, called the private key.  The locking mechanism is an encryption algorithm, and the public key is used to encrypt our messages to the remote computer.  Due to the way these encryption algorithms are designed, the remote computer can use its private key to decrypt the messages, but no other key will work.  

In order for the remote computer to send messages to us, the same process happens in reverse -- we generate a public and private key pair, give the remote computer our public key, the remote computer encrypts messages to us using our public key, and we decrypt the remote computer's messages using our private key.



shell 

remote shell 

login as: vlad 

Password: ********* 

  huxyo ew: xdvw 

uqfcmjbn: lhiujdbj 

  

Presenter
Presentation Notes
Anyone trying to pose as us will not have the remote computer's private key, and will not be able to understand our message encrypted with the remote computer's public key.  This makes it safe to put our username and password, and any other sensitive information, in our messages.

Similarly, in the reverse direction from the remote computer to our computer, anyone posing as us will not have our private key, and cannot decrypt the messages sent from the remote computer using our public key.



$ ssh vlad@moon 

The authenticity of host ‘moon (10.1.2.3)‘ 

 can't be established. 

RSA key fingerprint is  

 f1:68:f5:90:47:dc:a8:e9:62:df:c9:21:f0:8b:c5:3  

Are you sure you want to continue connecting  

 (yes/no)? yes 

Warning: Permanently added ‘moon,10.1.2.3' (RSA  

 to the list of known hosts. 

Password: ******** 

moon> 

Presenter
Presentation Notes
Also note: users who login to a remote computer for the first time need to first receive the remote computer's public key and agree to its authenticity.  The public key is sometimes represented in a "fingerprint" format for easier verification purposes.



private key 
(only 1 copy) 

encryption using 
public keys 

Send message to moon locked with  
moon’s public key 
(Only readable by moon) 

Send message to Vlad locked with  
Vlad’s public key 
(Only readable by Vlad) 

private key 
(only 1 copy) 

Presenter
Presentation Notes
This key-lock mechanism is called public-key encryption, and public-key encryption is a standard feature of secure shell.

In public-key encryption, the first key, which is sent out to the user, is the public key.  It's okay to send this out to every user, since no one has the second key in the set, called the private key.  The locking mechanism is an encryption algorithm, and the public key is used to encrypt our messages to the remote computer.  Due to the way these encryption algorithms are designed, the remote computer can use its private key to decrypt the messages, but no other key will work.  

In order for the remote computer to send messages to us, the same process happens in reverse -- we generate a public and private key pair, give the remote computer our public key, the remote computer encrypts messages to us using our public key, and we decrypt the remote computer's messages using our private key.



February 2011 

created by 

Elango Cheran 

Copyright © Software Carpentry 2011 
This work is licensed under the Creative Commons Attribution License 

See http://software-carpentry.org/license.html for more information. 

Presenter
Presentation Notes
Thank you for listening.


	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35

