
Control Flow

Python

Control Flow

Copyright © Software Carpentry 2010

This work is licensed under the Creative Commons Attribution License

See http://software-carpentry.org/license.html for more information.

Real power of programs comes from:

Python Control Flow

Real power of programs comes from:

repetitionrepetition

Python Control Flow

Real power of programs comes from:

repetitionrepetition

Python Control Flow

Real power of programs comes from:

repetition selectionrepetition selection

Python Control Flow

Real power of programs comes from:

repetition selectionrepetition selection

Python Control Flow

Simplest form of repetition is while loop

Python Control Flow

Simplest form of repetition is while loop

num_moons = 3

whilewhilewhilewhile num_moons > 0:

printprintprintprint num_moons

num_moons -= 1

Python Control Flow

Simplest form of repetition is while loop

num_moons = 3

whilewhilewhilewhile num_moons > 0: test
printprintprintprint num_moons

num_moons -= 1

Python Control Flow

Simplest form of repetition is while loop

num_moons = 3

whilewhilewhilewhile num_moons > 0:

printprintprintprint num_moons

num_moons -= 1
do

Python Control Flow

Simplest form of repetition is while loop

num_moons = 3

whilewhilewhilewhile num_moons > 0:

printprintprintprint num_moons

num_moons -= 1

3

do

Python Control Flow

Simplest form of repetition is while loop

num_moons = 3

whilewhilewhilewhile num_moons > 0: test again
printprintprintprint num_moons

num_moons -= 1

3

Python Control Flow

Simplest form of repetition is while loop

num_moons = 3

whilewhilewhilewhile num_moons > 0:

printprintprintprint num_moons

num_moons -= 1

3

2

Python Control Flow

Simplest form of repetition is while loop

num_moons = 3

whilewhilewhilewhile num_moons > 0:

printprintprintprint num_moons

num_moons -= 1

3

2

1

Python Control Flow

While loop may execute zero times

Python Control Flow

While loop may execute zero times

printprintprintprint 'before'

num_moons = -3

whilewhilewhilewhile num_moons > 0:

printprintprintprint num_moons

num_moons -= 1

printprintprintprint 'after'

Python Control Flow

While loop may execute zero times

printprintprintprint 'before'

num_moons = -3

not true when first tested…whilewhilewhilewhile num_moons > 0:

printprintprintprint num_moons

num_moons -= 1

printprintprintprint 'after'

not true when first tested…

Python Control Flow

While loop may execute zero times

printprintprintprint 'before'

num_moons = -3

whilewhilewhilewhile num_moons > 0:

printprintprintprint num_moons

num_moons -= 1

printprintprintprint 'after'

…so this is never executed

Python Control Flow

While loop may execute zero times

printprintprintprint 'before'

num_moons = -3

whilewhilewhilewhile num_moons > 0:

printprintprintprint num_moons

num_moons -= 1

printprintprintprint 'after'

before

after

Python Control Flow

While loop may execute zero times

printprintprintprint 'before'

num_moons = -3

whilewhilewhilewhile num_moons > 0:

printprintprintprint num_moons

num_moons -= 1

printprintprintprint 'after'

before

after

Important to consider this case when designing

Python Control Flow

Important to consider this case when designing

and testing code

While loop may also execute forever

Python Control Flow

While loop may also execute forever

printprintprintprint 'before'

num_moons = 3

whilewhilewhilewhile num_moons > 0:

printprintprintprint num_moons

printprintprintprint 'after'

Python Control Flow

While loop may also execute forever

printprintprintprint 'before'

num_moons = 3

whilewhilewhilewhile num_moons > 0:

printprintprintprint num_moons

printprintprintprint 'after'

before

Python Control Flow

While loop may also execute forever

printprintprintprint 'before'

num_moons = 3

whilewhilewhilewhile num_moons > 0:

printprintprintprint num_moons

printprintprintprint 'after'

before

3

Python Control Flow

While loop may also execute forever

printprintprintprint 'before'

num_moons = 3

whilewhilewhilewhile num_moons > 0:

printprintprintprint num_moons

printprintprintprint 'after'

before

3

3

Python Control Flow

While loop may also execute forever

printprintprintprint 'before'

num_moons = 3

whilewhilewhilewhile num_moons > 0:

printprintprintprint num_moons

printprintprintprint 'after'

before

3

3

3

Python Control Flow

While loop may also execute forever

printprintprintprint 'before'

num_moons = 3

whilewhilewhilewhile num_moons > 0:

printprintprintprint num_moons

printprintprintprint 'after'

before

3

3

3

⋮

Python Control Flow

⋮

While loop may also execute forever

printprintprintprint 'before'

num_moons = 3

whilewhilewhilewhile num_moons > 0:

printprintprintprint num_moons

printprintprintprint 'after'

before

3

3

3

⋮

Nothing in here changes

the loop control condition

Python Control Flow

⋮

While loop may also execute forever

printprintprintprint 'before'

num_moons = 3

whilewhilewhilewhile num_moons > 0:

printprintprintprint num_moons

printprintprintprint 'after'

before

3

3

3

⋮

Python Control Flow

⋮

Usually not the desired behavior…

While loop may also execute forever

printprintprintprint 'before'

num_moons = 3

whilewhilewhilewhile num_moons > 0:

printprintprintprint num_moons

printprintprintprint 'after'

before

3

3

3

⋮

Python Control Flow

⋮

Usually not the desired behavior…

…but there are cases where it's useful

Why indentation?

Python Control Flow

Why indentation?

Studies show that's what people actually pay

attention toattention to

Python Control Flow

Why indentation?

Studies show that's what people actually pay

attention toattention to

– Every textbook on C or Java has examples where

indentation and braces don't match

Python Control Flow

Why indentation?

Studies show that's what people actually pay

attention toattention to

– Every textbook on C or Java has examples where

indentation and braces don't match

Doesn't matter how much you use, but whole block

must be consistent

Python Control Flow

must be consistent

Why indentation?

Studies show that's what people actually pay

attention toattention to

– Every textbook on C or Java has examples where

indentation and braces don't match

Doesn't matter how much you use, but whole block

must be consistent

Python Control Flow

must be consistent

Python Style Guide (PEP 8) recommends 4 spaces

Why indentation?

Studies show that's what people actually pay

attention toattention to

– Every textbook on C or Java has examples where

indentation and braces don't match

Doesn't matter how much you use, but whole block

must be consistent

Python Control Flow

must be consistent

Python Style Guide (PEP 8) recommends 4 spaces

And no tab characters

Use if, elif, and else to make choices

Python Control Flow

Use if, elif, and else to make choices

moons = 3

ifififif moons < 0:

printprintprintprint 'less'

elifelifelifelif moons == 0:

printprintprintprint 'equal'

else:else:else:else:

printprintprintprint 'greater'

Python Control Flow

Use if, elif, and else to make choices

not true when first tested…
moons = 3

ifififif moons < 0:

printprintprintprint 'less'

elifelifelifelif moons == 0:

printprintprintprint 'equal'

else:else:else:else:

printprintprintprint 'greater'

Python Control Flow

Use if, elif, and else to make choices

moons = 3

ifififif moons < 0:

…so this is not executedprintprintprintprint 'less'

elifelifelifelif moons == 0:

printprintprintprint 'equal'

else:else:else:else:

printprintprintprint 'greater'

…so this is not executed

Python Control Flow

Use if, elif, and else to make choices

moons = 3

ifififif moons < 0:

printprintprintprint 'less'

elifelifelifelif moons == 0:

printprintprintprint 'equal'

else:else:else:else:

printprintprintprint 'greater'

this isn't true either…

Python Control Flow

Use if, elif, and else to make choices

moons = 3

ifififif moons < 0:

printprintprintprint 'less'

elifelifelifelif moons == 0:

printprintprintprint 'equal'

else:else:else:else:

printprintprintprint 'greater'

…so this isn't executed

Python Control Flow

Use if, elif, and else to make choices

moons = 3

ifififif moons < 0:

printprintprintprint 'less'

elifelifelifelif moons == 0:

printprintprintprint 'equal'

else:else:else:else:

printprintprintprint 'greater'

nothing else has executed…

Python Control Flow

Use if, elif, and else to make choices

moons = 3

ifififif moons < 0:

printprintprintprint 'less'

elifelifelifelif moons == 0:

printprintprintprint 'equal'

else:else:else:else:

printprintprintprint 'greater' …so this is executed

Python Control Flow

Use if, elif, and else to make choices

moons = 3

ifififif moons < 0:

printprintprintprint 'less'

elifelifelifelif moons == 0:

printprintprintprint 'equal'

else:else:else:else:

printprintprintprint 'greater'

greater

Python Control Flow

Use if, elif, and else to make choices

moons = 3

ifififif moons < 0:

printprintprintprint 'less'

elifelifelifelif moons == 0:

printprintprintprint 'equal'

else:else:else:else:

printprintprintprint 'greater'

greater Always start with if

Python Control Flow

Use if, elif, and else to make choices

moons = 3

ifififif moons < 0:

Can have any number of elif clauses (including none)

printprintprintprint 'less'

elifelifelifelif moons == 0:

printprintprintprint 'equal'

else:else:else:else:

printprintprintprint 'greater'

greater Always start with if

Python Control Flow

Can have any number of elif clauses (including none)

Use if, elif, and else to make choices

moons = 3

ifififif moons < 0:

Can have any number of elif clauses (including none)

printprintprintprint 'less'

elifelifelifelif moons == 0:

printprintprintprint 'equal'

else:else:else:else:

printprintprintprint 'greater'

greater Always start with if

Python Control Flow

Can have any number of elif clauses (including none)

And the else clause is optional

Use if, elif, and else to make choices

moons = 3

ifififif moons < 0:

Can have any number of elif clauses (including none)

printprintprintprint 'less'

elifelifelifelif moons == 0:

printprintprintprint 'equal'

else:else:else:else:

printprintprintprint 'greater'

greater Always start with if

Python Control Flow

Can have any number of elif clauses (including none)

And the else clause is optional

Always tested in order

Blocks may contain blocks

Python Control Flow

Blocks may contain blocks

num = 0

whilewhilewhilewhile num <= 10:

ifififif (num % 2) == 1:

printprintprintprint num

num += 1

Python Control Flow

Blocks may contain blocks

num = 0

whilewhilewhilewhile num <= 10:

ifififif (num % 2) == 1:

printprintprintprint num

num += 1

Count from 0 to 10

Python Control Flow

Blocks may contain blocks

num = 0

whilewhilewhilewhile num <= 10:

Print odd numbersifififif (num % 2) == 1:

printprintprintprint num

num += 1

Print odd numbers

Python Control Flow

Blocks may contain blocks

num = 0

whilewhilewhilewhile num <= 10:

ifififif (num % 2) == 1:

printprintprintprint num

num += 1

1

3

5

7

Python Control Flow

9

A better way to do it

Python Control Flow

A better way to do it

num = 1

whilewhilewhilewhile num <= 10:

printprintprintprint num

num += 2

Python Control Flow

A better way to do it

num = 1

whilewhilewhilewhile num <= 10:

printprintprintprint num

num += 2

1

3

5

7

9

Python Control Flow

Python Control Flow

Print primes less than 1000

Python Control Flow

Print primes less than 1000

num = 2

whilewhilewhilewhile num <= 1000:

...figure out if num is prime...

ifififif is_prime:

printprintprintprint num

num += 1

Python Control Flow

Print primes less than 1000

num = 2

whilewhilewhilewhile num <= 1000:

Cannot be evenly divided

by any other integer

...figure out if num is prime...

ifififif is_prime:

printprintprintprint num

num += 1

Python Control Flow

by any other integer

Print primes less than 1000

num = 2

whilewhilewhilewhile num <= 1000:

is_prime = TrueTrueTrueTrue

trial = 2

whilewhilewhilewhile trial < num:

...figure out if num is prime...

ifififif is_prime:

printprintprintprint num

num += 1

Python Control Flow

ifififif ...num divisible by trial...:

is_prime = FalseFalseFalseFalse

trial += 1

Print primes less than 1000

num = 2

whilewhilewhilewhile num <= 1000:

Remainder is zero

is_prime = TrueTrueTrueTrue

trial = 2

whilewhilewhilewhile trial < num:

...figure out if num is prime...

ifififif is_prime:

printprintprintprint num

num += 1

Python Control Flow

ifififif ...num divisible by trial...:

is_prime = FalseFalseFalseFalse

trial += 1

Print primes less than 1000

num = 2

whilewhilewhilewhile num <= 1000:

(num % trial) == 0

is_prime = TrueTrueTrueTrue

trial = 2

whilewhilewhilewhile trial < num:

...figure out if num is prime...

ifififif is_prime:

printprintprintprint num

num += 1

Python Control Flow

ifififif ...num divisible by trial...:

is_prime = FalseFalseFalseFalse

trial += 1

Print primes less than 1000

num = 2

whilewhilewhilewhile num <= 1000:

is_prime = TrueTrueTrueTrue

trial = 2

whilewhilewhilewhile trial < num:

ifififif (num % trial) == 0:

is_prime = FalseFalseFalseFalse

trial += 1

ifififif is_prime:

Python Control Flow

printprintprintprint num

num += 1

A more efficient way to do it

Python Control Flow

A more efficient way to do it

num = 2

whilewhilewhilewhile num <= 1000:

is_prime = TrueTrueTrueTrue

trial = 2

whilewhilewhilewhile trial**2 < num:

ifififif (num % trial) == 0:

is_prime = FalseFalseFalseFalse

trial += 1

ifififif is_prime:

Python Control Flow

printprintprintprint num

num += 1

A more efficient way to do it

num = 2

whilewhilewhilewhile num <= 1000:

is_prime = TrueTrueTrueTrue

trial = 2

whilewhilewhilewhile trial**2 < num:

ifififif (num % trial) == 0:

is_prime = FalseFalseFalseFalse

trial += 1

ifififif is_prime:

N cannot be divided

evenly by any number

greater than sqrt(N)

Python Control Flow

printprintprintprint num

num += 1

Any code that hasn't been tested is probably wrong

Python Control Flow

Any code that hasn't been tested is probably wrong

num = 2

whilewhilewhilewhile num <= 10:

is_prime = TrueTrueTrueTrue

trial = 2

whilewhilewhilewhile trial**2 < num:

ifififif (num % trial) == 0:

is_prime = FalseFalseFalseFalse

trial += 1

ifififif is_prime:

Python Control Flow

printprintprintprint num

num += 1

Any code that hasn't been tested is probably wrong

num = 2

whilewhilewhilewhile num <= 10:

2

3

is_prime = TrueTrueTrueTrue

trial = 2

whilewhilewhilewhile trial**2 < num:

ifififif (num % trial) == 0:

is_prime = FalseFalseFalseFalse

trial += 1

ifififif is_prime:

4

5

7

9

Python Control Flow

printprintprintprint num

num += 1

Any code that hasn't been tested is probably wrong

num = 2

whilewhilewhilewhile num <= 10:

2

3

is_prime = TrueTrueTrueTrue

trial = 2

whilewhilewhilewhile trial**2 < num:

ifififif (num % trial) == 0:

is_prime = FalseFalseFalseFalse

trial += 1

ifififif is_prime:

4

5

7

9

Python Control Flow

printprintprintprint num

num += 1

Any code that hasn't been tested is probably wrong

num = 2

whilewhilewhilewhile num <= 10:

2

3

is_prime = TrueTrueTrueTrue

trial = 2

whilewhilewhilewhile trial**2 < num:

ifififif (num % trial) == 0:

is_prime = FalseFalseFalseFalse

trial += 1

ifififif is_prime:

4

5

7

9

Python Control Flow

printprintprintprint num

num += 1

Where's the bug?

Failures occur for perfect squares

Python Control Flow

Failures occur for perfect squares

num = 2

whilewhilewhilewhile num <= 10:

is_prime = TrueTrueTrueTrue

trial = 2

whilewhilewhilewhile trial**2 < num:

ifififif (num % trial) == 0:

is_prime = FalseFalseFalseFalse

trial += 1

ifififif is_prime:

Python Control Flow

printprintprintprint num

num += 1

Failures occur for perfect squares

num = 2

whilewhilewhilewhile num <= 10:

is_prime = TrueTrueTrueTrue

trial = 2

whilewhilewhilewhile trial**2 < num:

ifififif (num % trial) == 0:

is_prime = FalseFalseFalseFalse

trial += 1

ifififif is_prime:

2**2 == 4

Python Control Flow

printprintprintprint num

num += 1

Failures occur for perfect squares

num = 2

whilewhilewhilewhile num <= 10:

is_prime = TrueTrueTrueTrue

trial = 2

whilewhilewhilewhile trial**2 < num:

ifififif (num % trial) == 0:

is_prime = FalseFalseFalseFalse

trial += 1

ifififif is_prime:

2**2 == 4

So never check to see

if 4 % 2 == 0

Python Control Flow

printprintprintprint num

num += 1

Failures occur for perfect squares

num = 2

whilewhilewhilewhile num <= 10:

is_prime = TrueTrueTrueTrue

trial = 2

whilewhilewhilewhile trial**2 < num:

ifififif (num % trial) == 0:

is_prime = FalseFalseFalseFalse

trial += 1

ifififif is_prime:

2**2 == 4

So never check to see

if 4 % 2 == 0

Python Control Flow

printprintprintprint num

num += 1
Or if 9 % 3 == 0, etc.

September 2010

created by

Greg Wilson

September 2010

Copyright © Software Carpentry 2010

This work is licensed under the Creative Commons Attribution License

See http://software-carpentry.org/license.html for more information.

