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While loop may execute zero times

printprintprintprint 'before'
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printprintprintprint 'after'

…so this is never executed
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Usually not the desired behavior…

…but there are cases where it's useful
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Why indentation?

Studies show that's what people actually pay

attention toattention to

– Every textbook on C or Java has examples where

indentation and braces don't match

Doesn't matter how much you use, but whole block

must be consistent

Python Control Flow

must be consistent

Python Style Guide (PEP 8) recommends 4 spaces

And no tab characters
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Use if, elif, and else to make choices

moons = 3

ifififif moons < 0:

Can have any number of elif clauses (including none)

printprintprintprint 'less'

elifelifelifelif moons == 0:

printprintprintprint 'equal'

else:else:else:else:

printprintprintprint 'greater'

greater Always start with if

Python Control Flow

Can have any number of elif clauses (including none)

And the else clause is optional

Always tested in order
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Blocks may contain blocks

num = 0

whilewhilewhilewhile num <= 10:

ifififif (num % 2) == 1:

printprintprintprint num

num += 1
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Blocks may contain blocks

num = 0

whilewhilewhilewhile num <= 10:

ifififif (num % 2) == 1:

printprintprintprint num

num += 1

Count from 0 to 10
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Blocks may contain blocks

num = 0

whilewhilewhilewhile num <= 10:

Print odd numbersifififif (num % 2) == 1:

printprintprintprint num

num += 1

Print odd numbers
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Print primes less than 1000

num = 2

whilewhilewhilewhile num <= 1000:

...figure out if num is prime...

ifififif is_prime:

printprintprintprint num

num += 1
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Print primes less than 1000

num = 2

whilewhilewhilewhile num <= 1000:

Cannot be evenly divided

by any other integer

...figure out if num is prime...

ifififif is_prime:

printprintprintprint num

num += 1
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Print primes less than 1000
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A more efficient way to do it

num = 2

whilewhilewhilewhile num <= 1000:

is_prime = TrueTrueTrueTrue

trial = 2

whilewhilewhilewhile trial**2 < num:

ifififif (num % trial) == 0:

is_prime = FalseFalseFalseFalse

trial += 1

ifififif is_prime:

N cannot be divided

evenly by any number

greater than sqrt(N)
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printprintprintprint num

num += 1
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Where's the bug?
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Or if 9 % 3 == 0, etc.
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