
01-Matplotlib

Stephen Pascoe

March 16, 2014

1 Matplotlib - 2D plotting in Python

This notebook contains extensive material from J.R. Johansson’s IPython notebook lectures available at the refer-
ences below:

J.R. Johansson (robert@riken.jp) http://dml.riken.jp/~rob/

The latest version of this IPython notebook lecture is available at http://github.com/jrjohansson/
scientific-python-lectures.

The other notebooks in this lecture series are indexed at http://jrjohansson.github.com.

1.1 Introduction

Matplotlib is an excellent 2D and 3D graphics library for generating scientific figures. Some of the many advan-
tages of this library include:

• Easy to get started
• Support for LATEX formatted labels and texts
• Great control of every element in a figure, including figure size and DPI.
• High-quality output in many formats, including PNG, PDF, SVG, EPS.
• GUI for interactively exploring figures and support for headless generation of figure files (useful for batch

jobs).

One of the of the key features of matplotlib that I would like to emphasize, and that I think makes matplotlib
highly suitable for generating figures for scientific publications is that all aspects of the figure can be controlled
programmatically. This is important for reproducibility and convenient when one needs to regenerate the figure
with updated data or change its appearance.

More information at the Matplotlib web page: http://matplotlib.org/To get started using Matplotlib in a Python
program, either include the symbols from the pylab module (the easy way):

In [12]: from pylab import *

or import the matplotlib.pyplot module under the name plt (the tidy way). In this case we will also find
it useful to import the array module numpy.

In [13]: import matplotlib.pyplot as plt
import numpy as np

1.2 Matplotlib’s MATLAB-like interface

The easiest way to get started with plotting using matplotlib is often to use the MATLAB-like API provided by
matplotlib.

http://ipython.org/notebook.html
http://github.com/jrjohansson/scientific-python-lectures
http://github.com/jrjohansson/scientific-python-lectures
http://jrjohansson.github.com

It is designed to be compatible with MATLAB’s plotting functions, so it is easy to get started with if you are
familiar with MATLAB.

To use this API from matplotlib, we need to include the symbols in the pylab module:

In [14]: from pylab import *

A simple figure with MATLAB-like plotting API:

In [15]: x = linspace(0, 5, 10)
y = x ** 2

In [16]: figure()
plot(x, y, ’r’)
xlabel(’x’)
ylabel(’y’)
title(’title’)
show()

Most of the plotting related functions in MATLAB are covered by the pylab module. For example, subplot and
color/symbol selection:

In [17]: subplot(1,2,1)
plot(x, y, ’r--’)
subplot(1,2,2)
plot(y, x, ’g*-’)

Out [17]: [<matplotlib.lines.Line2D at 0x10338f190>]

The good thing about the pylab MATLAB-style API is that it is easy to get started with if you are familiar with
MATLAB, and it has a minumum of coding overhead for simple plots.

However, I’d encourrage not using the MATLAB compatible API for anything but the simplest figures.

Instead, I recommend learning and using matplotlib’s object-oriented plotting API. It is remarkably powerful. For
advanced figures with subplots, insets and other components it is very nice to work with.

Exercise 1.1 : Starting MatPlotlib

1.3 The Matplotlib object-orientated interface

The main idea with object-oriented programming is to have objects that one can apply functions and actions
on, and no object or program states should be global (such as the MATLAB-like API). The real advantage of
this approach becomes apparent when more than one figure is created, or when a figure contains more than one
subplot.

To use the object-oriented API we start out very much like in the previous example, but instead of creating a new
global figure instance we store a reference to the newly created figure instance in the fig variable, and from it we
create a new axis instance axes using the add_axes method in the Figure class instance fig:

In [18]: fig = plt.figure()

axes = fig.add_axes([0.1, 0.1, 0.8, 0.8]) # left, bottom, width, height (range 0 to 1)

axes.plot(x, y, ’r’)

axes.set_xlabel(’x’)
axes.set_ylabel(’y’)
axes.set_title(’title’);

Although a little bit more code is involved, the advantage is that we now have full control of where the plot axes
are placed, and we can easily add more than one axis to the figure:

In [19]: fig = plt.figure()

axes1 = fig.add_axes([0.1, 0.1, 0.8, 0.8]) # main axes
axes2 = fig.add_axes([0.2, 0.5, 0.4, 0.3]) # inset axes

main figure
axes1.plot(x, y, ’r’)
axes1.set_xlabel(’x’)
axes1.set_ylabel(’y’)
axes1.set_title(’title’)

insert

axes2.plot(y, x, ’g’)
axes2.set_xlabel(’y’)
axes2.set_ylabel(’x’)
axes2.set_title(’insert title’);

In [20]: fig, axes = plt.subplots(nrows=1, ncols=2)

for i, ax in enumerate(axes):
ax.plot(x, y, ’r’)
ax.set_xlabel(’x’)
ax.set_ylabel(’y’)
ax.set_title(’Title Ax %s’ % i)

The ‘fig.tight_layout‘ method automatically adjusts the
positions of the axes so that there is no overlapping content
fig.tight_layout()

2 Saving figures

To save a figure to a file we can use the savefig method in the Figure class:

In [21]: fig.savefig("filename.png")

Here we can also optionally specify the DPI and chose between different output formats. Matplotlib can gen-
erate high-quality output in a number formats, including PNG, JPG, EPS, SVG, and PDF. For scientific pa-
pers, use PDF whenever possible. (LaTeX documents compiled with pdflatex can include PDFs using the
includegraphics command).

In [22]: fig.savefig("filename.png", dpi=200)

In [23]: fig.savefig("filename.svg")

3 Legends, labels and titles

In [24]: fig, ax = plt.subplots()

ax.plot(x, x**2, label="$y = x^2$")
ax.plot(x, x**3, label="$y = x^3$")
ax.set_xlabel(’x’)
ax.set_ylabel(’y’)
ax.set_title(’title’)
ax.grid(True)
ax.legend(loc=2); # upper left corner

Out [24]: <matplotlib.legend.Legend at 0x1031d35d0>

Exercise 1.2 : Plot layouts and saving

4 Other 2D plot styles

In addition to the regular plot method, there are a number of other functions for generating different kind of
plots. See the matplotlib plot gallery for a complete list of available plot types: http://matplotlib.org/gallery.html.
Some of the more useful ones are show below:

In [25]: n = array([0,1,2,3,4,5])
xx = np.linspace(-0.75, 1., 100)

In [26]: fig, axes = plt.subplots(2, 2, figsize=(8, 8))

axes[0,0].scatter(xx, xx + 0.25*randn(len(xx)))
axes[0,0].set_title("scatter")

axes[0,1].step(n, n**2, lw=2)
axes[0,1].set_title("step")

axes[1,0].bar(n, n**2, align="center", width=0.5, alpha=0.5)
axes[1,0].set_title("bar")

axes[1,1].fill_between(x, x**2, x**3, color="green", alpha=0.5);
axes[1,1].set_title("fill_between")

Out [26]: <matplotlib.text.Text at 0x103ad8650>

In [27]: # polar plot using add_axes and polar projection
fig = plt.figure()
ax = fig.add_axes([0.0, 0.0, .6, .6], polar=True)
t = linspace(0, 2 * pi, 100)
ax.plot(t, t, color=’blue’, lw=3);

In [28]: # A histogram
n = np.random.randn(100000)
fig, axes = plt.subplots(1, 2, figsize=(12,4))

axes[0].hist(n)
axes[0].set_title("Default histogram")
axes[0].set_xlim((min(n), max(n)))

axes[1].hist(n, cumulative=True, bins=50)
axes[1].set_title("Cumulative detailed histogram")
axes[1].set_xlim((min(n), max(n)));

5 Plotting 2D arrays

Matplotlib provides several methods of plotting functions of 2 variables as a 2D field using colour or contour lines
to represent the function value. We will look at 3 of these methods.

In most of these functions we will use a colormap to encode one dimension of the data. There are a number
of predefined colormaps. It is relatively straightforward to define custom colormaps. For a list of pre-defined
colormaps, see: http://www.scipy.org/Cookbook/Matplotlib/Show_colormaps

In [29]: # Import library of Colour maps
from matplotlib import cm

In [30]: x = linspace(0, 2*pi, 50)
y = linspace(0, 2*pi, 50)
X,Y = meshgrid(x, y)
Z = np.cos(X)*np.cos(Y)

Imshow

Axes.imshow() interprets a 2D array as an image by mapping function values to colours within a colour map.
This method is the easiest way of visualising a 2D array provided each point represents the same sized region in
cartesian space.

By default imshow() uses the array-index values as x and y co-ordinates.

In [31]: fig, axes = plt.subplots(1, 3, figsize=(10, 4))

axes[0].imshow(Z)
axes[1].imshow(Z, cmap=cm.RdBu)
axes[2].imshow(Z, cmap=cm.Set1)

Out [31]: <matplotlib.image.AxesImage at 0x103f1afd0>

Specify an extent of the image enables simple mapping of the array to a region in cartesian coordinates. Also note
you can select different interpolation methods to smooth pixel boundaries.

In [32]: fix, axes = plt.subplots(1, 2, figsize=(8, 6))
extent = np.array([x[0], x[-1], y[0], y[-1]])

axes[0].imshow(Z, extent=extent/(2*pi), interpolation=’nearest’)
axes[1].imshow(Z, extent=extent/(2*pi), interpolation=’bicubic’)

Out [32]: <matplotlib.image.AxesImage at 0x103f03b50>

pcolor

If your grid is not equally spaced in x and y then you cannot use imshow(). Instead you can use
Axes.pcolor() for any rectilinear grids (where all x grid lines are perpendicular y grid lines). Here we
stretch the x and y coordinates and use pcolor() to plot rectangular grid boxes.

In [39]: X2, Y2 = np.meshgrid(x**3, y**3)

fig, ax = plt.subplots(figsize=(7,6))

p = ax.pcolor(X2/(2*pi), Y2/(2*pi), Z, cmap=cm.RdBu)
cb = fig.colorbar(p, ax=ax)

Note: The method Axes.pcolormesh() is even more flexible, allowing rotated and curvilinear grids

contour and contourf

Matplotlib’s Axes.contour() and Axes.contourf() methods create contour and filled contour plots re-
spectively.

In [34]: fig, axes = plt.subplots(1, 2, figsize=(10,5))

p1 = axes[0].contour(X/(2*pi), Y/(2*pi), Z, colors=’k’)
axes[0].clabel(p1)

p2 = axes[1].contourf(X/(2*pi), Y/(2*pi), Z, 20)
fig.colorbar(p2, ax=axes[1])

Out [34]: <matplotlib.colorbar.Colorbar instance at 0x104110e18>

In [35]: fig, ax = plt.subplots(figsize=(7,6))

p = ax.pcolor(X/(2*pi), Y/(2*pi), Z, cmap=cm.RdBu)
p1 = ax.contour(X/(2*pi), Y/(2*pi), Z, colors=’k’)
ax.clabel(p1)
cb = fig.colorbar(p, ax=ax)

Exercise 1.3 : Plotting 2D data

5.1 Further reading

• http://www.matplotlib.org - The project web page for matplotlib.
• https://github.com/matplotlib/matplotlib - The source code for matplotlib.
• http://matplotlib.org/gallery.html - A large gallery showcaseing various types of plots matplotlib can create.

Highly recommended!
• http://www.loria.fr/~rougier/teaching/matplotlib - A good matplotlib tutorial.
• http://scipy-lectures.github.io/matplotlib/matplotlib.html - Another good matplotlib reference.

	Matplotlib - 2D plotting in Python
	Introduction
	Matplotlib's MATLAB-like interface
	Exercise 1.1 : Starting MatPlotlib

	The Matplotlib object-orientated interface

	Saving figures
	Legends, labels and titles
	Exercise 1.2 : Plot layouts and saving

	Other 2D plot styles
	Plotting 2D arrays
	Imshow
	pcolor
	contour and contourf
	Exercise 1.3 : Plotting 2D data

	Further reading

