Source Apportionment of Airborne Particulate Matter in the United Kingdom

Prepared on behalf of the Department of the Environment, Transport and the Regions, the Welsh Office, the Scottish Office and the Department of the Environment (Northern Ireland)

January 1999

Report of the Airborne Particles Expert Group

Additional copies are available from:

Lucy Moore Zone 4/F15 Air and Environment Quality Division Department of the Environment, Transport and the Regions Ashdown House 123 Victoria Street London SW1E 6DE

and

Dr Beth Conlan AEA Technology plc E5 Culham Abingdon Oxfordshire OX14 3DB

Also available on DETR worldwide web address at:

http://www.environment.detr.gov.uk/airq/

© Crown copyright

ISBN 0-7058-1771-7

The Airborne Particle Expert Group

Chairman **Prof R M Harrison** University of Birmingham

Members **Dr H ApSimon** Imperial College

Dr A G Clarke University of Leeds

Dr RG Derwent Meteorological Office

Prof B Fisher University of Greenwich

Mr J Hickman Transport Research Laboratory

Mr D Mark University of Birmingham

Dr T Murrells AEA Technology

Mr J McAughey AEA Technology

Prof F Pooley University College, Wales

Prof R Richards University College, Wales

Mr J Stedman AEA Technology

Dr Y Vawda Stanger Science and Environment *Observers* **Dr M Williams** Department of the Environment, Transport and the Regions

Dr S Coster Department of the Environment, Transport and the Regions

Prof R L Maynard Department of Health

Dr H Prosser Welsh Office

Dr I Hall Scottish Office

Mr N McMahon Department of Environment (Northern Ireland)

Secretariat Dr B Conlan AEA Technology

Acknowledgements

Mrs M. Mille, School of Engineering, Cardiff University for data collection relating to section 3.8.3.

Dr H. S. Eggleston and Mr J. Goodwin, AEA Technology for assistance with compilation of emission inventory data.

Mr R.S. Appleby, Birmingham City Council for provision of Hodge Hill data.

Ms J. Yin, Institute of Public and Environmental Health, University of Birmingham for analyses of particle mass and number data.

CBD Porton Down, DERA for permission to use data from Lizard, Pershore, Lichfield and Birmingham collected under contract by the University of Birmingham.

Mr P. Willis, Mr A. Charlton, Mr A. Cook, Ms S. Espenhahn, AEA Technology for assistance with analysis of concentration data.

Dr Alison Malcolm, Meteorological Office for assistance with the NAME modelling of particulate sulphate.

Mr David Muir, Bristol City Council for assistance with the analysis and interpretation of the Marylebone Road, London data.

Dr Anson Mackay, Environmental Change Research Centre, University College London for the biological particles analysis.

Dr David Carruthers of CERC for model results.

Phillips Petroleum Company, United Kingdom Limited for the black smoke data from Bacton.

Dr Duncan Wyatt of University of Lancaster and Dr Sarah Metcalfe of University of Edinburgh for provision of HARM model results. Airborne particulate matter has well recognised adverse effects upon health. Consequently, the UK government has adopted an air quality standard for particles measured as PM_{10}^* of 50 micrograms per cubic metre (µg m⁻³) expressed as a 24 hour running mean (the average of any consecutive 24 hourly measurements at an individual site), and the objective in the National Air Quality Strategy is a 99% compliance of daily maximum running 24 hour means with the air quality standard by 2005. The European Union has recently agreed limit values for PM₁₀ of 50 µg m⁻³ measured over fixed 24 hour periods, not to be exceeded more than 35 times per year (equivalent to a 90th percentile compliance with 50 μ g m⁻³), and an annual average limit value of 40 μ g m⁻³, both to be achieved by the Year 2005. Indicative Stage II limit values have been set at 50 µg m⁻³ not to be exceeded more than seven times per year (equivalent to 98 percentile compliance of 50 μ g m⁻³) and an annual average of 20 μ g m⁻³ PM₁₀, to be achieved by January 2010. Currently, there are widespread exceedences of both the UK National Air Quality Strategy objective and the EU Stage I limit values at urban sites across the UK. This report is concerned with identifying the sources of airborne particulate matter and in predicting the future changes in concentrations arising from controls applied to the various source categories.

Airborne particulate matter has both a primary component, which is emitted directly from sources such as road traffic and industry, and a secondary component which is formed in the atmosphere by chemical reactions of gases, most notably sulphur dioxide, oxides of nitrogen and volatile organic Knowledge of emissions alone compounds. provides valuable insights into the sources of primary particles, but gives little insight into the contribution made by secondary particles to airborne concentrations of PM_{10} . The report therefore relies heavily upon receptor modelling techniques which use measurements of the chemical and physical properties of airborne particles to assign them to different source categories. The various receptor modelling

methods are consistent in indicating that there are three predominant contributors to PM₁₀ mass in the UK atmosphere. These are respectively road traffic, secondary particles (largely sulphates and nitrates, but with a significant organic component in the summer months) and coarse particles arising from a number of sources including resuspension of surface soils and dusts, sea spray and construction activity. National emissions inventories attribute an important proportion of primary particle emissions to road traffic, but a number of other sources including industry and power stations, commercial, institutional and residential combustion, and industrial activities such as mining, quarrying and construction also contribute significantly, the contribution of road traffic becoming proportionately greater as the size of particles considered is reduced. Inventories of urban emissions attribute a relatively greater proportion of primary emissions to road traffic, and city centre concentrations of primary particles are largely explicable in terms of road traffic emissions and coarse particles. Local sources such as construction, quarrying and certain industries can, however, have an appreciable impact at some sites. Projections of future emissions of primary particles are available for the road traffic sector and indicate a reduction of 49% in emissions by 2005 from a 1996 baseline. This reduction will have a marked impact on future PM_{10} concentrations, especially at roadside sites where road traffic can contribute up to 15 µg m⁻³ of PM_{10} above the local background. A very significant proportion of the local elevation is however in the form of coarse particles attributable to resuspension of dusts from the road surface, which are unlikely to benefit from controls on exhaust emissions.

Secondary particles are much more spatially uniform across the UK than primary particles, although there is a general reduction in concentrations moving from a maximum in the south-east to a minimum in the north-west of the British Isles. Numerical models of the atmosphere indicate that both UK and mainland European

*PM₁₀ to a good approximation describes particles smaller than 10 micrometres diameter, determined by mass.

sources of precursor emissions contribute substantially to secondary PM_{10} and the best estimate of the Group based on the EMEP model is that concentrations of secondary particles will decrease by 30% by 2010 from a 1996 baseline.

The relative contributions of the various source categories to airborne particle concentrations vary substantially on a day-to-day basis. A novel technique has been developed which disaggregates the daily average PM₁₀ concentration into three components, a primary combustion-generated component, a secondary component, and "other" particles representing coarse particles as well as some other primary non-combustion emissions. Using data disaggregated in this way, the Group has applied reduction factors from a 1996 baseline to the primary combustion-related and secondary components in order to predict future concentrations. It is assumed that 75% of the primary combustion component is due to road traffic which will decrease by 49% by 2005 and 63% by 2010; the other 25% is assumed to remain constant. The secondary component is assumed to decrease by 19% by 2005 and 30% by 2010. The "other" particle component is assumed to remain constant, although given the considerable number of contributing sources, this assumption is uncertain.

The resultant predictions indicate reductions in annual mean PM₁₀ as measured by TEOM monitoring instruments at London Bloomsbury from 28 μ g m⁻³ in 1995 to 23 μ g m⁻³ in 2005 and at Birmingham Centre from 23 µg m⁻³ in 1995 to 19 μ g m⁻³ by 2005. The 99th percentile of daily average concentrations declines from 80 µg m³ to 69 μg m⁻³ at London Bloomsbury and from 77 μg m⁻³ to 65 µg m⁻³ at Birmingham Centre. Higher concentrations would be anticipated in years with adverse meteorology. Thus, on the basis of these predictions, current policy measures will not achieve compliance with the National Air Quality Strategy objective for PM₁₀ at urban background locations and further measures will be needed. An additional complication is provided by bonfire night celebrations which often continue over

several nights, and can be associated with up to four days exceedences of 50 μ g m⁻³ PM₁₀. This number is likely to decrease due to a fall in the primary and secondary particle background upon which the bonfire and firework emissions are superimposed, but bonfire night activities alone will in some years bring PM₁₀ concentrations close to exceeding the strategy objective.

Comparison of the UK monitoring data determined with TEOM instruments with the European Union Directive limit values is not straightforward since the EU limits are based upon measurements of PM₁₀ by other instrumental techniques which yield higher data. The difference between the methods is typically 10-30% and the Group has therefore taken a conservative approach of increasing the UK TEOM measurements and associated future projections by 30% for comparison with the EU limit values. The results indicate likely compliance with the EU Stage I limit values for 2005 at urban background locations with the possible exception of Central London in years with adverse meteorology. However, predicted concentrations for 2010 based upon currently planned emission reductions exceed the indicative EU Stage II limit values by a considerable margin in urban background locations in most major cities.

1 2	Intro Revi	oduction ew of I	n nstrumen	its Used to Obtain Measurements	1		
	Usec	d in this	Report		3		
	2.1	MEAS	UREMENTS	S FROM NATIONAL NETWORKS IN THE UK	3		
	2.2	.2 AD-HOC MEASUREMENTS					
	2.3	REGUL	LATED ME	ASUREMENTS OF STATIONARY EMISSION SOURCES	6		
	2.4	MEAS	UREMENTS	S OF THE EMISSION OF PARTICLES FROM			
		VEHIC	LE EXHAU	STS	7		
3	Prim	narv Par	ticulate N	N atter	9		
•	3.1	INTRO	DUCTION		9		
	3.2	EMISSION INVENTORY					
	0.2	3.2.1 INTRODUCTION					
		3.2.2	PRIMARY	(EMISSION SOURCES OF PARTICULATE MATTER	11		
		0.2.2	3221	Road Transport	11		
			3222	Other Transport and Off-Road Sources	17		
			3223	Stationary Combustion	17		
			322	Production Processes	18		
			3225	Mining and Quarrying	20		
			3226	Waste Treatment and Disposal	20		
			3.2.2.0	Agriculture	20		
		3 2 3		PIES OF NATIONAL EMISSION ESTIMATES	21		
		0.2.0	2 2 2 1		21		
			3.2.3.1	PM_{-} PM, and PM_{-}	<u>2</u> 1 22		
			22232	Rlack smoke	22		
		321		VINITIES IN EMISSION ESTIMATES	20		
		5.2.4			27		
			22/1	Uncertainties in Road Transport Emissions	<u>2</u> , 28		
			3.2.4.1	Uncertainties in Emissions from Stationary Combustion	20 n 28		
			22/12	Uncertainties in Emissions from Production Processes	120 20		
			3.2.4.3	Estimated Overall Uncertainty	20 20		
			3.2.4.4 2.2.4.5	Emission Sources Not Included	7∠ 20		
		2 2 5			29 00		
		3.Z.3 2.2.6	CDATIALI				
		5.2.0			20		
			2 2 4 1	Urban Emission Inventories	∠נ ככ		
			3.2.0.1 2.2.4.2	Drimany DM _ amissions in Creator Polfast	ככ דכ		
		2 2 7		PHIMALY PIVI ₁₀ ETHISSIONS IN GLEALER BEHAST			
		3.Z.7		AN EIVIISSIONS INVENTORY OF PIVI ₁₀ ,	20		
	<u> </u>			ID PIVI _{0.1}	38 40		
	3.3 INVENTORY VERIFICATION			42			
	3.4						
					45		
		3.4.1	Nodellin	g of Long Range Transport of Primary	45		
		0.4.0	Particula	te Matter	45		
	0 5	3.4.2	Analysis	of Rural Black Smoke Measurements in Norfolk	47		
	3.5	ANALYSIS OF PM _{2.5} /PM ₁₀ DATA					
		3.5.1	Compari	son of daily mean concentrations of PM ₁₀			
			and PM ₂	$_{\rm 5}$ and NO _x at Marylebone Road	52		

	3.6	ANALY	SIS OF DATA FROM ROADSIDE SITES	53		
		3.6.1	ANALYSIS OF DATA FROM TWO MOTORWAY SITES	56		
			3.6.1.1 Introduction	56		
			3.6.1.2 Site Descriptions	57		
			3.6.1.3 Data summaries	58		
			3.6.1.4 Sources of PM ₁₀	58		
			3.6.1.5 Other roadside PM ₁₀ monitoring	61		
		3.6.2	TRAFFIC CONTRIBUTION TO PM ₁₀	65		
	3.7	PARTIC	CLE EPISODES AROUND BONFIRE NIGHT	65		
	3.8	LOCAL SOURCES OF PARTICLES				
		3.8.1	INTRODUCTION	67		
		3.8.2	HIGH PEAK: PM ₁₀ IN THE VICINITY OF QUARRY ACTIVITIES	67		
		3.8.3	CORNWALL: PM ₁₀ IN THE VICINITY OF CHINA CLAY WORKINGS	68		
		3.8.4	North Derbyshire: PM ₁₀ in the vicinity of a			
			RANGE OF SOURCES	70		
		3.8.5	MEASUREMENTS AROUND INDUSTRIAL SOURCES OF PM ₁₀			
			IN TYNE AND WEAR	71		
		3.8.6	PM ₁₀ MEASUREMENTS IN BELFAST	71		
	3.9	BIOLO	GICAL PARTICLES IN THE ATMOSPHERE	71		
	3.10	COMP	OSITION OF PARTICLES	73		
		3.10.1	INTRODUCTION	73		
		3.10.2	MEASUREMENTS FROM LEEDS	73		
			3.10.2.1 Introduction	73		
			3.10.2.2 Total Mass Concentrations	74		
			3.10.2.3 Particle Size Distribution by Mass.	74		
			3.10.2.4 Carbonaceous Content	77		
			3.10.2.5 Sea-Salt and Road Salt	77		
			3.10.2.6 Tyre Dust	79		
		3.10.3	MEASUREMENTS FROM SOUTH WALES	81		
			3.10.3.1 Source Apportionment	81		
		3.10.4	COARSE PARTICLES - ORIGINS AND SPECIATION	83		
_	-					
4	Seco	Secondary Particulate Matter				
	4.1	INTRO		87		
		4.1.1	SULPHURIC ACID AND SULPHATE AEROSOL PARTICLES	87		
		4.1.2		90		
		4.1.3	PARTICULATE NITRATE	91		
		4.1.4	ORGANIC AEROSOL FORMATION	91		
		4.1.5	SECONDARY PARTICULATE MATTER AND THE			
			MEASUREMENTS OF PM ₁₀ AND PM _{2.5}	93		
	4.2	MEASU	JREMENTS OF SECONDARY COMPONENTS	93		
		4.2.1	UK MEASUREMENTS AT EMEP SITES	93		
			4.2.1.1 Secondary PM ₁₀ mapping.	94		
		4.2.2	LEEDS STUDY	94		
			4.2.2.1 Mass Concentrations of Sulphate and Nitrate	94		
			4.2.2.2 Particle size	97		
	4.3	MODE	LLING OF SECONDARY COMPONENTS	101		
		4.3.1	ATTRIBUTION OF THE SOURCES OF THE SECONDARY PM ₁₀			
			AND PM _{2.5} OBSERVED IN THE UK MONITORING NETWORKS	101		

8	Annex 2							
7	Ann	ex 1			155			
	6.6	THE FU	ITURE		153			
	6.5	RECEP			152			
	6.4	SECON	DARY PARTICULATE MATTER		152			
	6.3	PRIMA	RY PARTICULATE MATTER		150			
	6.2	EMISS	ONS INVENTORIES		149			
	6.1	SAMPI	ING METHODOLOGY		149			
6	Sum	mary &	Conclusions		149			
		0.0.0	WITH EU `DAUGHTER DIRECTIVE' L	IMIT VALUES.	146			
		5.6.6	PREDICTING PM ₄₀ CONCENTRATIO	NS FOR COMPARISON	1 T J			
		0.0.0	USING NO., MEASUREMENTS		145			
		5.6.5	ALTERNATIVE MODEL OF DAILY PN		1 74			
		0.0.7	CURRENT MFASURFMENTS		142			
		5.6.4	PREDICTING PM	NS IN 2005 FROM	137			
		5.0.2 5.6.3		AL CITIES	135			
		5.0.1			130			
		560		FARTICLES	120			
	0.0			ΠΟΝ ΕΙΝΙΙΟΙΟΝΟ, ΡΔΡΤΙΛΙ FS	120			
	54	0.0.3 NTTDII			130			
		550			129 120			
					100			
		5.5.2	ESTIMATED CONTRIBUTION OF SEA					
		5.5.1 5.5.1			128			
	5.5	RECEP	OR MODELLING OF SPECIFIC CHEM	ICAL COMPONENTS	128			
	- -	5.4.4	PARTICLE NUMBER MONITORING A		126			
		5.4.3	PARTICLE NUMBER MONITORING (JF DIESEL EMISSIONS	123			
		E 4 0	HIGH VEHICLE DENSITIES		123			
		5.4.2	PARTICLE NUMBER VERSUS PM ₁₀ D	DATAFOR	100			
		5.4.1	PARTICLE SIZE OF VEHICLE EMISSIC	DNS	122			
	5.4	PARTI	LE NUMBER AS A TRACER FOR VEH		122			
		5.3.2	EPISODICITY OF COARSE PARTICLE	MASS	121			
			DUSTS TO COARSE PARTICLE CONC	CENTRATIONS	117			
		5.3.1	AN ESTIMATION OF THE CONTRIBU	JTION OF WIND BLOWN				
	5.3	ANAL	SIS OF PM ₁₀ /PM _{2.5} /NO _x /WINDSPEED	DATA	117			
	5.2	RELAT	ONSHIPS BETWEEN PM ₁₀ AND CO		113			
	5.1	INTRO			113			
5	Receptor Modelling							
		IN THE	UNITED KINGDOM		110			
	4.4	FUTUF	E CONCENTRATIONS OF SECONDAR	Y PARTICULATE MATTER				
			REDUCTIONS BY 2010		108			
		4.3.2	MODELLING OF SECONDARY PART	ICULATE MATTER				
			4.3.1.2 The March 1996 Episode		105			
			4.3.1.1 The July 1996 Episode		101			