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Abstract – The generalizations of micromagnetic exchange including higher order interactions
are normally performed phenomenologically. In this paper we combine graph and gauge field
theory to provide a new procedure to perform the continuum limit of the Heisenberg model. Our
approach allows to simultaneously account for the symmetries of the crystal, the effect of spin-
orbit coupling and their interplay. We obtain a micromagnetic theory accounting for the crystal
symmetry constraints at all orders in exchange. The form of the micromagnetic Dzyaloshinskii-
Moriya interaction in all 32 point groups is calculated at the first order.
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Introduction. – The Heisenberg model [1–3] is a low
energy limit of the more general Hubbard model [4,5] and
it allows to translate the complexity of quantum mechani-
cal exchange in a geometrical framework where the degrees
of freedom are localized magnetic moments. Under-
standing the Heisenberg model beyond ordinary ferromag-
netic/antiferromagnetc exchange is of central scientific
relevance as higher order interactions are at the core of
most of the exotic physical phenomena that could be har-
nessed in future spintronics devices [6–9]. As an exam-
ple, the Dzyaloshinskii-Moriya interaction (DMI) [10,11]
is known to stabilize skyrmionic/antiskyrmionic struc-
tures [12,13] which hold promise as information carriers
in novel spintronic memory devices. At the same time,
micromagnetic solvers [14] that can then be employed to
simulate the magnetization dynamics on the micro-scale
rely on continuum formulations making the generaliza-
tion of the Heisenberg model and its higher order exten-
sions to the continuum [15] of central importance. On
the microscopic scale the inclusion of higher order interac-
tions in the Heisenberg model can be done by considering
the low energy limit of increasingly complicated multi-
band Hubbard models [5]. On a micromagnetic level,
the traditional approach relies on phenomenological ther-
modynamic arguments and spin wave expansions of the
micromagnetic energy functional [16–18], but disregards
the underlying Heisenberg model in favor of a pure field

(a)E-mail: g.durin@inrim.it (corresponding author)

theoretical approach. The generalized expression of the
micromagnetic energy functional that one finds in the lit-
erature is [5,19,20]

Eex[m ,∇m ] =
∫

ΩV

{A | ∇m |2 +Q̂M(m)}d3r, (1)

where Q̂M(m) =
∑

A,C Q̂ACMAC constitutes the DMI
energy of the system [21] and is represented as the contrac-
tion of the DMI tensor Q̂AC and the chirality M(m) =
∇m × m of the material. The above-mentioned ap-
proaches, while extremely powerful, are phenomenological
in nature and neglect the fact that higher order interac-
tions are intimately related to lower order ones as they
come from the low energy limit of a more general energy
functional [10]. A formulation of the continuum limit that
rigorously and organically keeps track of the coordination
of the magnetic atoms on the lattice and higher order in-
teractions is still missing. In this work we propose an alter-
native procedure to the continuum limit of the Heisenberg
model [22] that employs graph theory to systematically ac-
count for lattices of arbitrary point group symmetry and
local SO(3) gauge invariance of the micromagnetic energy
functional to account for the appearance of higher order
interactions [23–25]. The outcome is a continuum limit
that naturally represents the exchange interaction energy
in the most general form at all orders, both in the bulk
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Fig. 1: (a) Heisenberg model on a cubic lattice. We indicate the lattice sites with indices i, j. (b) Decomposition of the cubic
lattice in nearest neighbour clusters using the Voronoi tassellation [27]. In this decomposed lattice we use the k index to identify
the cell and α, β indices to indicate the nearest neighbours. (c) Continuum limit performed on the cell from (b). The cell index
k becomes continuous d3r and the atomic moments become a continuous function of space m(r).

and in thin film geometries,

Eex =
∫

ΩV

{ΞAC∂
AmB∂CmB −QAlMlA}d3r, (2)

where ΞAC is the anisotropic symmetric exchange tensor
and QAl is the DMI tensor. The structure of the paper is
as follows: in the next section, we reformulate the contin-
uum limit of exchange using graph theory and we rewrite
exchange in a form that keeps track of the lattice beyond
the simple cubic case. In the third section we require local
SO(3) gauge invariance to account for the appearance of
the DMI tensor [26]. The Neumann principle of crystallog-
raphy allows us to derive the non-vanishing components
of the anisotropic exchange and micromagnetic DMI for
all 32 crystallographic point groups. In the last section we
discuss our result and validate our predictions by compar-
ing them with the existing literature and several exper-
imental systems. In the appendix we review the Taylor
expansion on discrete lattices and some key concepts of
graph theory.

Continuum limit of Heisenberg exchange on ar-
bitrary lattices. – We start by writing the Heisenberg
exchange interaction in the usual way,

H = −
∑
〈i,j〉

Jijsi · sj , (3)

here J (rij) = Jij are the coupling coefficients coming from
the exchange integral, a function of the distance rij from
atom i to atom j, see fig. 1(a). We can split the energy sum
in the contribution coming from each individual Wigner-
Seitz (WS) cell of the lattice labelled Rk (see fig. 1(b)).
The advantages of this decomposition are twofold: firstly,
the WS cell construction is based in the Voronoi tassella-
tion [27], i.e., on the location of nearest neighbours. Sec-
ondly, the WS cell (a primitive cell) for a given lattice

point inherits the full point group symmetry of the lattice
by constructions [28],

H = −
N∑

k=1

∑
〈α,β〉∈Rk

Jαβ sα · sβ ΔV, (4)

here Rk represents the set of nearest neighbors used for
the construction of the k-th WS cell [28,29]. We define Ek
as the energy density cost due to spin misalignment per
WS cell with volume ΔV ,

Ek = −
∑

〈α,β〉∈Rk

Jαβ sα · sβ , (5)

we assume that sα and sβ are nearly parallel when nearest
neighbours and have fixed length |s|2 = 1 (see fig. 1(b)).
This allows us to write the exchange term as

Ek = −
∑

〈α,β〉∈Rk

Jαβ |s|2 cos θαβ , θαβ � 1 (6)

≈ −
∑

〈α,β〉∈Rk

Jαβδ
αβ − Jαβ |sα − sβ |2. (7)

Since we are treating the ferromagnetic case (i.e., Jαβ sym-
metric positive semi-definite) we can rewrite the exchange
matrix as Jαβ = GαnGnβ = ĜT Ĝ. We neglect the first
term of eq. (7) as it is simply a constant and we can
rewrite the exchange energy as

Ek =
∑

〈α,β〉∈Rk

GαnGnβ |sα − sβ |2, (8)

since, for small θij ≈ |si − sj |, we assume that si can be
fitted to a continuous function, i.e., si →m(r−ri), of po-
sition in the lattice and that, to a sufficient approximation
(see eq. (A.2) in the appendix),

m(r + ri) ≈m(r) + Ciαl
α ·∇m(r), (9)
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where Ciα represents the incidence matrix of the di-
rected graph describing the nearest neighbor cluster
of magnetic atoms (see the Supplementary Material
Supplementarymaterial.pdf (SM) for the case of a sim-
ple cubic lattice), lα = lαAê

A represents the edge vectors of
the directed graph and ∇ = êA ∂

∂xA . With this generalized
notation we can write the exchange term of eq. (7) as

E(r) =
∑
〈α,β〉

[
GαnC

α
γ l

γ
A

∂mB

∂xA

][
GnβC

ρ
βl

ρ
C

∂mB

∂xC

]
. (10)

We remark how by transforming the magnetization in a
continuous function of space, we automatically promote
the energy per cell to a continuous function of space as
well, i.e., Ek → E(r). This also applies to the volume
Rk of eq. (8) which is now promoted to an infinitesimal
volume element d3r. We store all the information related
to the symmetry of the lattice and the exchange Jij in the
(symmetric) anisotropic exchange tensor ΞAC ,

ΞAC :=
∑
〈α,β〉

GαnC
α
γ l

γ
AGnβC

ρ
βl

ρ
C . (11)

The total exchange energy is now obtained by integrating
E(r) over the whole volume,

Eex[m,∇m] =
∫

ΩV

ΞAC
∂mB

∂xC

∂mB

∂xA
d3r. (12)

In the case of a cubic lattice all the exchange integrals
Jij = J are constant and we have ΞAC = −2JδAC . We
refer to the SM for the detailed calculation of the simple
cubic case and the C6v case.

Gauge covariant derivatives and the DMI ten-
sor. – As discussed in [23,26,30], the appearance of DMI
in a continuum theory of magnetic interactions is a direct
consequence of promoting the global SO(3) symmetry of
the micromagnetic energy functional to a local symmetry.
The requirement of invariance with respect to a local ro-
tation of the magnetic moment requires the inclusion of a
non-Abelian gauge degree of freedom encoded in the mod-
ification of the ordinary differential operator ∂i := ∂

∂xi .
Formally speaking, let R(x) be an element of SO(3) act-
ing on 3-component vectors such as the local magnetiza-
tion according to m′ = R(x)m. Enforcing invariance of
the exchange energy of eq. (12) requires us to redefine the
differential operator via the covariant derivative D and
the gauge field A in the following way [23]:

∂imj → Dimj = ∂imj − (Ai)km
lε j

kl . (13)

Ak designates the k-th component of the non-Abelian
gauge potential that transforms according to the rule

A′
k = RTAkR+RT ∂kR, (14)

where the rotation matrices R can be represented via

R(x) = exp(iφ(x)n̂ · J), (15)

where φ(x) is a space-dependent rotation angle, n̂ is a
rotation axis and the generators of SO(3) are encoded
in a vector J such that [Jρ, Jσ] = iε ν

ρσ Jν . If we limit
ourselves to the pure gauge case [26], we can restrict the
gauge transformations to

A′
k = RT∂kR (16)

and obtain the gauge covariant derivative of the form

Dimj = ∂imj − ∂iψlmkεljk, (17)

where ψl quantifies the rotation of a vector around the axis
n̂l. Inserting this definition in eq. (10) yields the following
expression for the energy density:

E(r) =
∑
〈α,β〉

[
GαnC

α
γ l

γ
ADAmB

][
GnβC

ρ
βl

ρ
CDCmB

]
, (18)

and the following expression for the integrated total
energy:

Eex[m,∇m] =
∫

ΩV

d3r{ΞACDAmBDCmB} (19)

=
∫

ΩV

d3r
{
ΞAC∂

AmB∂CmB

− ΞAC∂
CψlεlkB

[
(∂AmB)mk −mB(∂Amk)

]
︸ ︷︷ ︸

LABk

+ ΞAC∂
AψlmkεlkB∂

CψrmsεrsB

}
, (20)

where ΞAC is defined in eq. (11). We highlight how
LABk represents the usual Lifshitz invariant terms of
DMI. We remark how this treatment of micromag-
netic interactions also gives rise to a factor of intrinsic
anisotropy ΞAC∂

AψlmkεlkB∂
CψrmsεrsB which repre-

sents an anisotropic term [30] normally neglected in the
literature. If we concentrate on terms of order O(∇ψ) we
can rewrite the exchange in eq. (12) as

Eex =
∫

ΩV

d3r
{
ΞAC∂

AmB∂CmB − ΓA
kBLA

Bk
}

+O((∇ψ)2), (21)

where we have introduced the compact notation

Γk
AB := ΞAC∂

Cψlεk
lB. (22)

We highlight how symmetric anisotropic exchange is con-
tracted in the prefactors Γk

AB of the DMI Lifshitz invari-
ant, showing how the two orders of interactions cannot be
treated separately in accordance with the original micro-
scopic treatment of Moriya [10]. We can now apply the
Neumann principle of crystallography [31] to the Γk

AB pref-
actors of the Lifshitz invariants in eq. (22) to reveal their
independent components. Let R(α) be the 3-dimensional
representation of the point group symmetry associated
with the crystal system we are considering (α represents
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Fig. 2: DMI tensor components (Q̂)ij := Qij from eq. (24) as a function of all 21 non-centrosymmetric crystallographic point
groups as imposed by the Neumann principle of eq. (23). The 11 centrosymmetric point groups have a vanishing DMI tensor
and are not shown. The generators are expressed in the basis used in [31].

the index numbering the generators of the group). The
Neumann principle [32] imposes

Γi
jk =

(R(α)
)i

i′
(R(α)

)j′

j

(R(α)
)k′

k
Γi′

j′k′ , ∀α. (23)

We can now extract the non-vanishing components of the
DMI tensor QAl := ΞAC∂

Cψl by contracting Γk
AB with

the Levi-Civita tensor εBk
l and using standard identity

εijkεljk = 2δil which yields

QAl = −1
2
Γk

ABεlk
B . (24)

This formula now allows to systematically predict the
shape of the DMI tensor for all 32 crystallographic point
groups. Using the generators for the crystallographic point
groups contained in [33] we arrive at DMI tensors QAl of
the form shown in fig. 2. With this we get the final form
of the exchange energy functional of eq. (2),

Eex =
∫

ΩV

{ΞAC∂
AmB∂CmB −QAlMlA}d3r (25)

where the chirality is given by MlA = εl
kBLABk. We

remark how the Neumann principle can also be applied to
the Ξ̂ tensor from eq. (11),

Ξij =
(R(α)

)i′

i

(R(α)
)j′

j
Ξi′j′ , (26)

revealing the non-vanishing components of symmetric ex-
change shown in fig. 3.

DMI tensor decomposition and ground state se-
lection criterion. – We now proceed to describe some of
the physical consequences of the symmetry properties of
the DMI tensor written in the form of eq. (24) [26]. First
of all we note that the DMI tensor Q̂, much like any rank-
2 tensor, can be decomposed as a sum of symmetric and

skew-symmetric components,

Q̂ =
1
2
(Q̂− Q̂T )︸ ︷︷ ︸

Q̂A

+
1
2
(Q̂T + Q̂)︸ ︷︷ ︸

Q̂S

. (27)

A purely anti-symmetric DMI tensor yields Lifshitz invari-
ant terms of the form

EA;DMI = −2D · [m(∇ ·m)− (∇ ·m)m], (28)

where one expresses the anti-symmetric tensor as
(QA)ij = Dkεkij . This term corresponds to the con-
tinuum limit of the familiar microscopic interfacial DMI
term [12,34],

HDMI =
∑
〈i,j〉

Dij · (si × sj), (29)

where si represents a magnetic moment located at lattice
site i and Dij is the DMI contribution to the Heisenberg
Hamiltonian. Lifshitz invariant terms of the form eq. (28)
correspond to the surface DMI term appearing in magnetic
thin films [35]. The symmetric component of the DMI
tensor yields an energy contribution of the form

ES;DMI = −m · (Q̂S∇×m), (30)

where Q̂S∇ = (QS)ij∂j . The special case of a purely
diagonal matrix yields an energy term of the form

ES;DMI = −2(QS)ii(m · ∂im)i, (31)

which, in the case of a single independent component
Qii = D ∀i yields

ES;DMI = −2Dm · (∇×m). (32)

This energy contribution corresponds to a bulk DMI term
responsible for stabilizing bulk chiral structures [13,21,26].
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Fig. 3: Symmetric exchange components Ξ̂ij := Ξij from eq. (11) as a function of all 32 crystallographic point groups as imposed
by the Neumann principle (23). The generators are expressed in the basis used in [31].

As discussed in [21], the shape of the DMI tensor is a deci-
sive factor in determining the appearance of skyrmionic or
antiskyrmionic structures in the ground state of magnetic
materials. The main result of [21] is the identification of
the determinant of the DMI tensor as the relevant quantity
predicting the stability of skyrmions or anti-skyrmions as
follows:

det(Q̂)

⎧⎪⎨
⎪⎩
< 0, anti-skyrmions stabilized,
> 0, skyrmions stabilized,
= 0, coexistence.

(33)

We can now apply this rule to the set of DMI tensors
shown in fig. 2 and discuss if the predicted ground state
structures are compatible with experimental results dis-
cussed in the literature.

Discussion. – The structure of eq. (24) automatically
implies that all centrosymmetric crystallographic point
groups exclude the possibility to have DMI. Furthermore,
we notice how the above-discussed method also correctly
predicts the absence of DMI on some non-centrosymmetric
crystal systems such as Td, C3h, D3h in accordance with
the literature [19]. We can now proceed and discuss three
examples of a non-vanishing DMI tensor. MnSi is a mag-
netic material which has attracted a lot of attention as it
is one of the first materials in which the the presence of
helical magnetic order was detected. As known from the
literature, at low temperatures MnSi can be modelled us-
ing the extended classical Heisenberg model [36] and the
system is known to crystallize in a B20 structure [37]. If
we isolate the magnetic atoms of this material, i.e., the
Mn atoms, the resulting sublattice displays T point group
symmetry [38]. From fig. 2, we can see how the T point
group symmetry allows the material to have a purely di-
agonal DMI tensor which can be linked to the presence of
bulk DMI, a form compatible with the appearance of bulk

chiral magnetism [13,26,37],

Q̂T =

⎛
⎝Q11 0 0

0 Q11 0
0 0 Q11

⎞
⎠ (34)

⇒ ES;DMI = −2Q11m · (∇×m). (35)

If we want to consider only thin film geometries in which
the growth direction lies parallel to the ẑ-axis, we simply
have to consider the top left submatrix,

Q̂T [1, 2; 1, 2] =
(
Q11 0
0 Q11

)
, (36)

and the determinant of this submatrix is strictly positive.
Recalling the selection criterion of eq. (33) [21], we know
that a strictly positive determinant of the DMI tensor sta-
bilizes skyrmions given the presence of a sufficiently high
external field [38]. Further examples of applicability of the
present formalism concern Heusler alloys [39–41]. Despite
the full Heusler structure displaying cubic symmetry (and
therefore no DMI), recent studies have shown how alter-
ing the Mn concentration in inverse tetragonal Mn-based
Heusler compounds such as MnxPtSn can lower the sym-
metry of the material as much as reaching D2d [42] in thin
film geometries. The DMI tensor of the D2d symmetry
group from fig. 2 has a symmetric traceless form

Q̂D2d
=

⎛
⎝Q11 0 0

0 −Q11 0
0 0 0

⎞
⎠ . (37)

Much like in the case of MnSi, restricting the DMI tensor
to a thin film geometry in which the growth direction lies
parallel to the ẑ-axis yields

Q̂D2d
[1, 2; 1, 2] =

(
Q11 0
0 −Q11

)
. (38)

We immediately notice how det(Q̂D2d
[1, 2; 1, 2]) =

−Q2
11 < 0. Again, according to eq. (33) this DMI ten-

sor can only stabilize antiskyrmions (given a sufficiently
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Fig. 4: Directed graph representing the nearest neighbors (n.n.)
on the cubic lattice. The vertices are represented by vi and the
edges by li.

high external field). It has in fact been experimentally
shown that MnxPtSn thin films can only support anti-
skyrmions structures [40]. As a final case of interest, we
consider heavy metal/ferromagnet (HM/FM) multilayers
such as Pt(111)/Co which have been under intense scien-
tific investigation for the development of energy efficient
magnetic memory storage devices [43,44]. In such systems,
one of the effects of the inclusion/exclusion of the Pt layer
is that of reducing the point group symmetry of the Co
layer fromD6h to C3v which, in terms of DMI tensors from
fig. 2, means

Q̂D6h
=

⎛
⎝ 0 0 0

0 0 0
0 0 0

⎞
⎠→ Q̂C6v =

⎛
⎝ 0 Q12 0
−Q12 0 0
0 0 0

⎞
⎠ .

(39)
This immediately highlights how the broken inversion
symmetry can cause the emergence of DMI interaction
at Pt/Co(111) interfaces. At the same time, we notice
how det(Q̂C6v ) > 0 and therefore only skyrmions can be
stabilized [43,45]. As an aside, we also remark how the ap-
plications of strain gradients [46] and electric fields [24] to
materials displaying chiral interactions can alter the prop-
erties of the DMI tensor. In particular, strong electric
fields can lead to the change of the antisymmetric compo-
nents of the DMI tensor [23] and could therefore constitute
a way to manipulate skyrmions and antiskyrmions in an
energy efficient way.

Conclusions. – In this work we presented a new per-
spective on the continuum limit of the classical Heisenberg
model to derive the micromagnetic exchange energy func-
tional. Our approach systematically keeps track of the
crystal symmetries of the system and reveals the impor-
tance of the interplay between symmetric anisotropic ex-
change and DMI. We show a rigorous treatment of higher
order interactions when promoting the symmetry of the
Hamiltonian from global to local via the introduction of
gauge covariant derivatives [23,26]. As an example, we
show how the symmetry constraints imposed by the lattice

can be implemented rigorously via the Neumann principle
of crystallography, revealing the independent components
of the DMI tensor for all 32 crystallographic point groups.
We point out how the determinant of the DMI tensor can
be used as a tool to predict the stabilization of skyrmions
and antiskyrmions [21] and we observe how several exper-
imental results behave in accordance with our theoretical
predictions.

Data availability statement : No new data were created
or analysed in this study.

Appendix: Taylor expansion with discrete cal-
culus using graph theory. – In the following we review
the Taylor expansion of discrete calculus [47] in order to
motivate our derivation of the continuum limit of micro-
magnetic exchange in the next section. In the following
we are going to employ the Einstein summation conven-
tion for repeating indices. Let us write down the general
expression for the Taylor expansion of the magnetization
vector field for small Δr,

m(r + Δr) ≈m(r) + dm(r; Δr) +O(|Δr|2) (A.1)

where dm(r; Δr) represents the directional derivative of
the vector valued function m(r) along the vector Δr, i.e.,

dmi(r; Δr) = ∇mi ·Δr = ∂jmiΔrj . (A.2)

We now formally define a nearest-neighbour cluster of
atoms as a directed graph (see fig. 4 for an example of the
cubic lattice) introducing the edge-node incidence matrix
Cij [47] defined as

Cij =

⎧⎪⎨
⎪⎩

0, if edge i and node j are not connected,
+1, if edge i is directed toward node j: i→ j,

−1, if edge i is directed out of node j: i← j.

It can be shown [47] that the incidence matrix of a graph
is the natural matrix representation of the discrete differ-
ential. Let us now denote the edges of the directed graph
representing the lattice as li (see fig. 4), we can generalize
eq. (A.2) to

dmi(r; Δr) = (∇kmi)Ckjl
j (A.3)

and finally write the components of the expansion (A.1)
as

mi(r+Δr) ≈ mi(r)+ (∇kmi(r))Ckjl
j +O(∇m). (A.4)

REFERENCES

[1] Stanley H. E., Phys. Rev. Lett., 20 (1968) 589.
[2] Nowak U., Classical spin models, in Handbook of Mag-

netism and Advanced Magnetic Materials, edited by
Kronmüller H., Parkin S., Miltat J. and Schein-

fein M. (John Wiley & Sons, Ltd.) 2007.

46003-p6



Gauge theory applied to magnetic lattices

[3] Wysin G. M., Magnetism theory: Spin models, in Mag-
netic Excitations and Geometric Confinement (IOP Pub-
lishing) 2015, pp. 1–47.

[4] Cleveland C. L. and Medina A. R., Am. J. Phys., 44
(1976) 44.
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