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1 Abstract /publishable summary

This second white paper provides an overview of trending and emerging technologies related to climate and

weather applications, focusing on novel extreme-scale systems, programming models for heterogeneous com-

puting and machine learning (ML). It updates the findings highlighted in the first white paper by providing a

summary of relevant efforts available in literature, as well as some early results from these fields.

Tracking of state-of-the-art solutions and technologies has been carried out during the ESiWACE2 project to

identify recent and relevant work focusing on trends in High Performance Computing (HPC), use of hardware

accelerators and machine learning for weather and climate modelling. The document summarises the main

results from this tracking activity providing pointers and references to interesting articles.

In order to track some of the earliest work in the field, a second workshop on Emerging Technologies for

Weather and Climate Modelling was held on the 7th of October as a virtual event. The workshop organised

in the frame of the ESiWACE2 project aimed to bring together HPC experts from academia and industry and

climate/weather scientists from the EU and USA to discuss about some of the latest developments, research

opportunities and efforts. The workshop agenda was organised around three topical sessions, for a total of 14

talks, about: European Exascale hardware (Session 1), Programming models and hardware interplay (Session

2) and Machine Learning (Session 3). More than 130 people from 22 countries world-wide registered to the

workshop with Germany, UK, Italy, France and USA being the most represented countries.

2 Conclusions & Results

The overarching goal of this work is to raise awareness of the community and share experiences on the use of

emerging technologies and solutions in the field of climate and weather research. The document provides an

overview of some of the current and trending efforts in HPC, programming models and ML for weather and

climate applications.

In particular, the workshop on emerging technologies reported in this document brought together HPC experts,

supercomputing centres representatives and climate scientists to discuss about the latest developments in the

aforementioned fields. EU industry partners from the ESiWACE2 project (i.e., ATOS) have been involved

in the organisation of the workshop to further foster the discussion between technology developers and the

research community.

As a result of this activity, some key trends have been identified:

• The infrastructure of the newest supercomputers being built is designed to support more data-driven

workloads and encompass heterogeneous architectures making use of a large amount of accelerated

hardware (e.g., GPUs and FPGAs);

• As the machines grow in performance capabilities and size, energy efficiency has become a central factor

in the design of these systems;

• High-level programming models, abstractions and Domain Specific Languages (DSLs) are emerging as

solutions to better support performance portability of climate/weather models on top of heterogeneous

infrastructures;

• Machine learning approaches are now part of the HPC workload and are currently explored to ad-

dress different aspects of weather and climate modelling such as emulation of numerical components,

downscaling, prediction of extreme events, etc.
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3 Project objectives

This deliverable contributes directly and indirectly to the achievement of all the macro-objectives and specific

goals indicated in section 1.1 of the Description of the Action:

Macro-objectives Contribution of

this deliverable

(1) Enable leading European weather and climate models to leverage the available

performance of pre-exascale systems with regard to both compute and data capacity

in 2021.

X

(2) Prepare the weather and climate community to be able to make use of exascale

systems when they become available.

X

Specific goals in the workplan Contribution of

this deliverable

Boost European climate and weather models to operate in world-leading quality on

existing supercomputing and future pre-exascale platforms

Establish new technologies for weather and climate modelling X

Enhance HPC capacity of the weather and climate community

Improve the toolchain to manage data from climate and weather simulations at scale

Strengthen the interaction with the European HPC ecosystem X

Foster co-design between model developers, HPC manufacturers and HPC centres X
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4 Detailed report on the deliverable

In the last few years, in the wake of exascale era, the HPC hardware ecosystem has radically changed encom-

passing more heterogeneous computing architectures jointly with technologies for data-driven applications.

These new infrastructures open the field to unprecedented opportunities for scientific computing, besides

introducing several challenges due to their increased complexity (Reed and Dongarra, 2015).

In the context of the ESiWACE CoE, a tracking activity has been carried out to identify some of the most

recent developments and open challenges related to emerging technologies with a focus on those more relevant

for the climate modelling and weather forecasting communities. In particular, in order to gain insights into

the most cutting-edge activities, besides tracking the advancements available from literature, the task also

organised a series of community-oriented workshops.

The rest of the document first presents an overview of the key state-of-the-art advancements related to HPC

infrastructures, heterogeneous architectures and machine learning (section 4.1), followed by the description

of the second workshop on emerging technologies organised in October 2022 (in section 4.2).

4.1 Technology tracking for climate modelling and weather forecast

4.1.1 Technology trends in High Performance Computing

The compute performance available to a wide range of scientific applications, including weather forecasting

and climate prediction, through the widespread use of High Performance Computing (HPC) has increased

markedly for many decades. This increase has followed an exponential trend, doubling approximately every

eighteen months (Reed and Dongarra, 2015). Originally this was described by Moore’s Law, which gave a

prediction for the exponential increase in the number of gates on a chip (Moore, 2006). Yet, as the increase

in HPC system performance now owes more to increased exploitation of parallelism than to increased gate

density, it should be regarded as only a partial consequence of Moore’s Law. Therefore, the end of Moore’s

Law (Markov, 2014) signals the end of only one opportunity for increased HPC performance.

The potential benefits of increased HPC performance in the weather and climate domain have been widely

discussed (Neumann et al., 2019), giving opportunities for greater forecast accuracy and improvements in the

quality of climate prediction through increased grid resolution, improvements in physics parameterisations,

replacement of parameterisations by accurate modelling, greater use of ensemble forecasting and statistical

techniques, etc. Delivering such benefits requires pushing HPC system performance, currently available at

the 10s-100s Pflop/s, to the exascale (1018 flop/s) regime1. In addition to the drive for performance, the

desire to limit costs and reduce climate impacts also mean that new performance improvements must be met

with a reduction, or at least no increase, in power consumption, leading to a new focus on power efficiency2,

expressed as Gflop/s/W.

Performance and power efficiency goals will therefore only be met through the use of new and possibly dis-

ruptive technologies, rather than scaling up existing hardware. This process started more than a decade ago

with the appearance of the first supercomputers with heterogeneous architectures (i.e, CPU+GPU) in the

TOP500 list (Kindratenko and Trancoso, 2011). The trend in the adoption of accelerated architectures in

HPC has continued to increase ever since and, in the latest TOP500 list from June 20223, most of the top su-

percomputers integrate some type of hardware accelerator (mainly GPUs) to push the achievable performance.

1https://www.top500.org/
2https://www.top500.org/lists/green500/
3https://top500.org/lists/top500/2022/06/
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In this ”race to exascale”, investments are being made by different nations worldwide showing the strategic

relevance of HPC for advancing research (Dongarra et al., 2019). Europe is also investing in building its own

infrastructure of extreme-scale supercomputers under the EuroHPC Joint Undertaking (EuroHPC JU)4. The

three largest systems currently installed (or under completion) procured through this initiative are LUMI at

CSS5, Leonardo at CINECA6 and MareNostrum 5 at BSC7, which have been presented during the workshop

(section 4.2.2). These are all pre-exascale systems featuring large numbers of GPU, besides CPU, that will

allow supporting climate research applications, among others. In particular LUMI, the machine that was

completed first, is currently third in the TOP500 list with a High Performance Linpack score of 151.9 Pflop/s.

The changes in these new supercomputers will have an impact on scientific applications programming, and ap-

plication developers will have to manage the transition from traditional to heterogeneous hardware platforms,

which may have radically different and more complex architectures. Software portability, achieving correct

results across different platforms, is one aspect of this, but performance benefits will only be delivered if ap-

plications achieve the target performance on the new hardware – performance portability (Deakin et al., 2019).

Current programming models have been successful for various compute-intensive applications in delivering

performance on systems with millions of threads of execution to achieve Pflop/s of sustained performance.

However, with the advent of exascale systems, efficient exploitation of the infrastructure will become more

challenging. The leading system from the last TOP500 list is the Frontier machine installed at the Oak Ridge

National Laboratory (ORNL) in the US, the first system to break the exascale wall with 1.102 Exaflop/s

on High Performance Linpack using 8,730,112 cores including 37,632 GPUs8 9. A key question therefore

is whether the same programming models will provide performance portability to systems of the future or

emerging Domain Specific Languages (DSLs), such as those currently explored in the ESiWACE2 project, will

fulfil their promise of separating the expression of algorithms from the (heterogeneous) hardware on which

they are executed. Alternatively, will radical hardware changes necessitate the introduction of radically dif-

ferent programming models and what steps will be required to port existing applications to those new models?

One such potentially disruptive technology for HPC is the use of reconfigurable hardware in which the very

circuits that define the low-level hardware architecture, which are burned into the silicon during manufacture

for conventional CPUs and GPUs, are able to be reconfigured by software. The leading type of reconfigurable

chip is the Field Programmable Gate Array (FPGA) in which the chip is provided with large numbers of simple

logic elements of different types and a bitmap (known as a bitstream) is used to define how the elements are

connected to construct the desired architecture. This allows far greater flexibility enabling the programmer to

tailor the hardware architecture to the application. But flexibility comes at a cost to the application developer.

Programming environments for reconfigurable computing expose a huge multi-dimensional parameter space

for optimisation, making it difficult to home in on the best set of design choices for a particular application

running on a particular architecture.

The EU funded project EuroExa project10, full title Co-designed Innovation and System for Resilient Exascale

Computing in Europe: From Applications to Silicon, proposes an HPC architecture which is both scalable to

exascale performance levels and delivers world-leading power efficiency. This is achieved through the use of

4https://eurohpc-ju.europa.eu/
5https://www.lumi-supercomputer.eu/lumi_supercomputer/
6https://leonardo-supercomputer.cineca.eu/
7https://eurohpc-ju.europa.eu/marenostrum5-new-eurohpc-world-class-supercomputer-spain-2022-06-16_en
8https://top500.org/news/ornls-frontier-first-to-break-the-exaflop-ceiling/
9https://spectrum.ieee.org/frontier-exascale-supercomputer

10https://www.euroexa.eu/ EuroExa has received funding from the European Union’s Horizon 2020 research and innovation

programme under Grant Agreement no 754337.
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low-power ARM processors together with closely coupled FPGA programmable components. EuroExa com-

bines state-of-the-art computing components using a groundbreaking system architecture, which applies the

design flexibility of UNIMEM architecture from the EuroServer project (Durand et al., 2014), delivers high

levels of performance to the selected applications, and balances compute resources with the resource demands

of applications. Through co-design between the enabling technologies, the system software and the applica-

tions, EuroExa is delivering an innovative solution that achieves both extreme data processing and extreme

computing. This solution will be demonstrated through the design, construction, testing and evaluation of

three testbed systems throughout the duration of the project. This will enable EuroExa to deliver a recipe for

the creation of an exascale computer by the end of the project.

4.1.2 Exploration of accelerators use in weather and climate

The increasing complexity of the supercomputing architectures, as described in the previous session, calls

for higher-level programming models able to hide the complexity of the infrastructure to scientific code de-

velopers and enable performance portability across heterogeneous computing hardware. MPI and OpenMP,

which remain among the most used programming models for parallel coding, have introduced in the last

years some capabilities to enable interactions with GPUs: e.g., offloading parallel code on GPU devices11 or

through GPU-aware MPI libraries implementations (Khorassani et al., 2019). Besides these traditional pro-

gramming models, new ones emerged in the last decade for supporting scientific computing on heterogeneous

hardware (mainly GPUs), with different approaches followed by the US and EU communities. Some exam-

ples of these include the Raja12 (Beckingsale et al., 2019) and Kokkos (Edwards et al., 2014) programming

model abastractions from the US community and the PSyclone13 and DAWN14 climate/weather DSLs ex-

plored in the ESiWACE2 project. Other similar efforts for climate and weather modelling include the GridTools

for Python (GT4Py)15, i.e., a Python-based DSL, and the CLAW DSL for Fortran code (Clement et al., 2018).

These new programming abstractions can allow easier porting of climate and weather models on different

processing devices, by providing higher-level and hardware-independent languages promoting a separation of

concern between science code and parallel computing (Adams et al., 2019; Bertagna et al., 2019; Ben-Nun

et al., 2022). Some results of using these high-level programming models have also been presented during

the Emerging Technology workshop (in section 4.2.3).

Another relevant area of research is related to the use of FPGAs for scientific computing. The HPC commu-

nity’s interest in FPGAs as accelerators has been renewed due to the introduction of the High-Level synthesis

tools (HLS). HLS tools hide the complexity of FPGA programming through raising the abstraction level for

programmers. They offer environments where traditional HPC programmers can use high-level languages such

as C/C++ and OpenCL to implement HPC application kernels on FPGAs. For the traditional HPC scientific

programmer, the appropriate HLS environment choice implies trade-offs between the achievable performance

and programmer effort. This is related to the level of detailed knowledge of FPGA hardware and performance

improvement techniques assumed by the HLS environments.

A paper submitted to the 27th International Conference on Parallel & Distributed Processing Techniques &

Applications (PDPTA’21) presented a comparative study between three HLS programming methodologies:

Xilinx Vivado HLS and Xilinx SDSoC using both OpenCL and C++, all targeting the Xilinx Zynq Ultra-

Scale+ MPSoC ZCU102 (Alghamdi et al., 2021). Based on an existing low-level Vivado HLS design of a

11https://www.openmp.org/updates/openmp-accelerator-support-gpus/
12RAJA Performance Portability Layer. https://github.com/LLNL/RAJA
13https://psyclone.readthedocs.io/en/stable
14https://github.com/MeteoSwiss-APN/dawn
15https://github.com/GridTools/gt4py

8

https://www.openmp.org/updates/openmp-accelerator-support-gpus/
https://github.com/LLNL/RAJA
https://psyclone.readthedocs.io/en/stable
https://github.com/MeteoSwiss-APN/dawn
https://github.com/GridTools/gt4py


ESiWACE2 Deliverable D2.7

finite-element kernel in the context of a realistic LFRic Climate model mini-app, the paper made a compari-

son between the programming techniques, effort and resulting performance of the implementations developed

using the higher level of abstraction provided by SDSoC C/C++ and OpenCL. In addition, a comparative

analysis was provided to illustrate the insights that led to the different design choices, scaling behaviour and

peak performances obtained. It was found that Vivado HLS provides the highest performance due to the

programmer’s ability to exploit low-level FPGA features in the manual construction of the hardware system

design, but near equivalent solutions can be obtained with OpenCL and C++ with a higher-level view of the

FPGA hardware, including automatic generations of the system’s design, and, hence, less programmer effort.

This work was a collaboration at UNIMAN between an externally-funded PhD student, Moteb Alghamdi, and

Graham Riley and Mike Ashworth in the ESiWACE2 project (Alghamdi et al., 2021).

In addition, a bibliography of papers (joint work with IS-ENES3) about the use of FPGAs in weather and

climate modelling has been produced16.

Within the EuroExa project, and in order to demonstrate the efficacy of the design, the EuroExa partners have

assessed performance using a rich set of applications. One such application is the new weather and climate

model, LFRic (named in honour of Lewis Fry Richardson), which is being developed by the Met Office and

its partners for operational deployment in the middle of the next decade (Adams et al., 2019). High quality

forecasting of weather and climate on global, regional and local scales is of great importance to a wide range

of human activities, and the exploitation of latest developments in HPC has always been of critical importance

to the weather forecasting and climate research communities.

The first steps in porting the LFRic Weather and Climate model to the FPGAs of the EuroExa architecture

are described by (Ashworth et al., 2019). This paper describes the use of Vivado High Level Synthesis to

implement a matrix-vector kernel from the LFRic code on a Xilinx UltraScale+ development board containing

an XCZU9EG Multi-Processor System-on-a-Chip. It further details porting of the code, discusses the opti-

mization decisions and reports performance of 5.34 Gflop/s with double precision and 5.58 Gflop/s with single

precision.

(Ashworth et al., 2019) go on to discuss sources of inefficiencies, comparisons with peak performance, com-

parisons with CPU and GPU performance (w.r.t. power and price), comparisons with published techniques,

and with published performance, and conclude with some comments on the prospects for future progress with

FPGA acceleration of the weather forecast model.

The realisation of practical exascale-class high-performance computing systems requires significant improve-

ments in the energy efficiency of such systems and their components. This has generated interest in computer

architectures which utilise accelerators alongside traditional CPUs. FPGAs offer huge potential as an acceler-

ator which can deliver performance for scientific applications at high levels of energy efficiency. The EuroExa

project has been developing and building a high-performance architecture based upon ARM CPUs with FPGA

acceleration targeting exascale-class performance within a realistic power budget.

4.1.3 Bibliography study of ML models for climate and weather

ML use is becoming widespread in several scientific domains, such as for climate and weather, since it can

provide opportunities to improve modelling accuracy and efficiency. As it can be observed from the analysis of

the literature, including the workshop talks, several research efforts are being carried out by the community.

This section provides an overview of some of the state-of-the-art works in this field.

In particular, a survey of machine learning technologies applied to weather and climate modelling over the

past ten years or so was undertaken in 2019 in conjunction with an MSc student from the University of

Manchester, Yu Qi and a contribution from IS-ENES3 (Qi, 2019). The survey found over one hundred papers

16https://drive.google.com/file/d/13Fw5M663whlKF4LBzm8T0N-jEnxIrTzO/view?usp=sharing

9

https://drive.google.com/file/d/13Fw5M663whlKF4LBzm8T0N-jEnxIrTzO/view?usp=sharing


ESiWACE2 Deliverable D2.7

and resulted in a searchable spreadsheet-based database which classified the papers in terms of scientific appli-

cation focus, ML technology used, the institution undertaking the research, etc. The study also included the

analysis of the geographical distribution of the institutions. The database is available as a Google spreadsheet

at: ML in Weather and Climate Database, https://docs.google.com/spreadsheets/d/1vQ0CiSxlBx-

_sfg6bMuXDS2ZoZkEBJaQ/edit#gid=52602177317.

An additional analysis of the literature was carried out to highlight some of the main applications of ML mod-

els in the domain. The analysis focused on three key usage scenarios: downscaling, extreme events studies,

physics-guided ML models. The following subsections discuss some of these efforts.

ML-based Downscaling approaches

Downscaling is a procedure that allows making predictions at local scales, starting from climatic field infor-

mation available at large scale. Recent advances in deep learning (DL) provide new insights and modelling

solutions to tackle downscaling-related tasks by automatically learning the coarse-to-fine grained resolution

mapping (Accarino et al., 2021).

The climatic fields at large scales are resolved by the Global Climate Models (GCMs), whereas the fields at

local scales are resolved by Regional Climate Models (RCMs). Mapping this information is crucial to under-

stand the local climate dynamics, which are often critical for assessing the impacts of a changing climate on

society (Baño-Medina et al., 2018; Vandal et al., 2019). Unlike traditional dynamical approaches, statistical

ones involve learning the empirical statistical relationships between coarse GCM outputs and High-Resolution

(HR) products, including in-situ observations (Baño-Medina et al., 2018; Vandal et al., 2019; Baño Medina

et al., 2020; Sachindra et al., 2018).

Among statistical approaches, recent advances in ML and DL provide new insights and modelling solutions to

tackle downscaling-related tasks by automatically learning the coarse-to-fine resolution mapping. These algo-

rithms may be trained on a historical dataset in order to learn the mapping between the low-resolution map

of a given variable, such as temperature, precipitation, etc., and its high-resolution counterpart targeting the

selected geographical domain (e.g., the European domain). These variables are typically treated as images,

and auxiliary physical information could be further used as input by stacking the corresponding maps on the

original image as additional channels. This could help the algorithm to better learn the underlying mapping

between coarse and fine resolutions.

The dataset may be built through gathering and pre-processing analysis and reanalysis model products, such

as ERA-Interim18 or ERA5 (Hersbach et al., 2020), but it can also be extended to satellite imagery and

retrievals (Alemohammad et al., 2018).

LASSO regression was used in (Gao et al., 2014) for downscaling precipitation, whereas the random forest

(RF ) algorithm was used in (Bartkowiak et al., 2019) for land surface temperature. Artificial Neural Networks

(ANNs) have been used in (Salimi et al., 2019) to perform precipitation downscaling. Furthermore, a Back-

Propagation Neural Network (BPNN) and Support Vector Machine (SVM) fusion approach was adopted in

(Min et al., 2020) to downscale precipitation. Several works moved towards deep architectures in the context

of DL, especially concerning Long-Short Term Memory (LSTM) networks, Convolutional Neural Networks

(CNNs) and Generative Adversarial Networks (GANs). Since their introduction presented in (Hochreiter and

Schmidhuber, 1997), LSTMs have been proven to be suitable for recovering and bridging information arbi-

trarily far in time, while avoiding the vanishing gradient problem. LSTMs have also been widely adopted

for time-series related problems and, in the context of climate downscaling, for statistical downscaling of

17open with Google sheets to get access to the search features in the top row of the spreadsheet
18https://apps.ecmwf.int/datasets/data/interim-full-daily/levtype=sfc/
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precipitation (Misra et al., 2018) and rainfall forecasting (Tran Anh et al., 2019) in combination with Feed

Forward Neural Networks (FFNNs). CNNs, due to their ability to deal with spatio-temporal multi-dimensional

structures, have been demonstrated to be particularly suitable for accomplishing Super-Resolution (SR) tasks.

Several attempts to use deeper architectures have been proposed (Dong et al., 2014, 2016; Kim et al., 2016;

Johnson et al., 2016; Kim et al., 2018; Park et al., 2019) for the extraction of high-level image characteristics

and the downscaling of climatic fields. A deep neural network based on a CNN and a LSTM recurrent module

was proposed in (Miao et al., 2019) to estimate precipitation based on well-resolved atmospheric dynamical

fields. A novel architecture, named DeepSD, based on the super resolution framework, was presented in

(Vandal et al., 2017, 2018) for downscaling precipitation fields, and a CNN-based approach was proposed in

(Pan et al., 2019) as an alternative solution to the existing precipitation-related parameterisation schemes for

the numerical precipitation estimation.

A CNN model for downscaling the occurrence of precipitation was also proposed in (Baño-Medina et al.,

2018), whereas different configurations of CNN were adopted in (Sun and Lan, 2021) to downscale daily

temperature and precipitation over China. A competitive DL framework based on a CNN was presented in

(Huang, 2020) for downscaling temperature and precipitation, and it performed particularly well in generating

spatio-temporal details at very fine-grid scales. A U-Net-type CNN was also used in (Kern et al., 2020) to learn

a one-to-one mapping of low-resolution (input) to high-resolution (output) wind fields simulation data, and

a conditional variational autoencoder (based on CNN) was exploited for learning the conditional distributions

from data, assessing multimodalities and uncertainties. A CNN was adopted in (Shi, 2020) to perform smart

dynamical downscaling (SDD) for extreme precipitation events, whereas a surrogate model, based on a Deep

CNN (DCNN), was evaluated in (Sekiyama, 2020) for surface temperature, and was found to estimate image

details that were not retained in the inputs. Recently, remarkable results were reported in several studies

exploiting GANs for SR tasks in climate science. An Enhanced Super-Resolution GAN (ESRGAN) (Wang

et al., 2019) was adopted and presented in (White et al., 2019) to downscale wind speeds from a coarse grid,

capturing high frequency power spectra and high order statistics in the dataset, thus generating images of

superior visual quality compared to the SR-CNN. A novel method (ClimAlign) was introduced in (Groenke

et al., 2021) for unsupervised, generative downscaling of temperature and precipitation based on normalising

flows for variational inference. In other works, a GAN was used in (Leinonen et al., 2021) for downscaling

Time-Evolving Atmospheric Fields, while in (Harris et al., 2022) a GAN was used for stochastic downscaling

of precipitation forecasts. Further works (Baño Medina et al., 2020; Mendes and Marengo, 2010; Mouatadid

et al., 2017; Chang et al., 2018; Liu et al., 2018; Sharifi et al., 2019; Höhlein et al., 2020; Xu et al., 2020;

Li et al., 2020) opted for downscaling based on ML and DL, and they helped assess both strengths and

weaknesses of such methods. The results reported in these studies show that downscaling models based on

ML allow better performance with respect to the other statistical approaches presented in (Sachindra et al.,

2013; Goly et al., 2014; Duhan and Pandey, 2015).

The main challenges of the statistical downscaling methods, which ML and DL belong to, are:

• generalising well to data in which there is an emergent climate change signal, that might have not been

seen during the training process on historical data

• generalising also in other spatial domains not seen during the training process (Relocatable Downscaling)

Additionally, the pre-trained ML and DL models on historical data could be used to infer long-term climate

patterns on regional and local scales by using projection data as input. Different Shared Socioeconomic Path-

ways (SSPs) may be used to account for different levels of radiative forcing emissions according to different

changes in global society, demography and economy.

ML for Extreme Weather Events
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In climate science, occurrences of a significant change in the atmospheric and/or oceanographic conditions

in a specific time instant is called an ”event” (KanimozhiSelvi and Sowmiya, 2019). In case of a very small

probability of occurrence, scientists talk about Extreme Weather Events (EWE s). They cause catastrophic

weather phenomena - such as short-term heavy rainfall, thunderstorms, gales, tornadoes, hail, etc. - that are

usually sudden, have a short duration and manifest at local scales (Fang et al., 2021). Between 2000 and

2020, the cumulative number of disasters worldwide reached 13,345, and more than 1.5 million people died

(Yan, 2020): this is why a lot of research has been devoted to EWEs in the scientific community.

Tropical Cyclones (TC s), also popularly known as hurricanes or typhoons, are among the most spectacular

and deadly geophysical phenomena (Emanuel, 2003). Generally, the uncertainty of weather and the complex-

ity of atmospheric processes make extreme weather an important and difficult meteorological problem (Fang

et al., 2021). Deep Learning models are able to automatically extract and learn intricate patterns from large

datasets and to exploit this information to make subsequent predictions. Indeed, they have already proved to

be efficient tools for tackling several climate science-related tasks, like TCs detection.

Detection starts with the classification of the presence of a cyclonic phenomenon in a particular time instant

and on gridded climatic fields that result significant to its cyclogenesis. If the cyclone is classified as present,

the following step is the identification of the geographical coordinates of its center in terms of latitude and lon-

gitude. Since the TC could potentially occur in different positions of the considered domain, the model should

be able to extract spatial-invariant features. This is the main reason why most of the works that were proposed

in the scientific literature exploit Convolutional Neural Networks (CNNs). (Tong et al., 2022) developed a

CNN model that identifies TC fingerprints according to Satellite Cloud Images of more than 200 TCs over the

Northwest Pacific basin, which shows the highest frequency of formation. The results they obtained show that

as the TC intensity strengthens, the accuracy improves. In the work of (Nair et al., 2022) TCs are detected

from high-resolution satellite images through a multistaged deep learning framework that only considers the

shape of the clouds in the images alongside the maximum sustained surface wind speeds data produced by the

Joint Typhoon Warning Center (JTWC ). The framework is made up of a state-of-the-art mask region-CNN

(R-CNN) detector, a wind speed filter, and a CNN classifier. Segmentation is also added to each detection,

fostering the analysis according to the shape and the size of the TC. (Matsuoka et al., 2018) identified TCs

and their precursors through an ensemble CNN classifier on twenty-year simulated outgoing longwave radiation

simulated by a cloud-resolving global atmospheric model. (Gardoll and Boucher, 2022) adapted and tested a

CNN to classify the presence or absence of the cyclonic phenomena in reanalysis maps. The main goal was the

evaluation of the performance and sensitivity of the CNN with respect to the learning dataset: indeed, ERA5

and MERRA-2 reanalysis datasets were employed. (Pang et al., 2021) propose a detection framework combin-

ing the Deep Convolutional Generative Adversarial Networks (DCGAN) and You Only Look Once (YOLO) v3

models. In particular, the DCGAN is used to augment the dataset by generating synthetic images containing

TCs which are employed to pre-train the YOLOv3 model. Then the transfer learning method is applied, by

training the detection model with real images and starting from the weights obtained in the pre-training phase.

Another important area related to climate change effects on the environment concerns wildfire risk assessment

and prediction. According to researchers, global warming leads to several interdependent effects on both flora

and fauna that increases fire risk (Barbero et al., 2015), 19 20 21.

The literature accounts for many ML approaches that deal with the Fire Weather Index (FWI ) prediction in

order to use it as a proxy for fire risk assessment. Common ML approaches to fire risk prediction can be

divided into two macro categories: 1) burned area extension estimation cases and 2) FWI risk classification

works. In regard to the first case, (Omar et al., 2021) proposed a Long Short Term Memory algorithm (LSTM)

19https://www.bbc.com/news/science-environment-60483431
20https://www.nytimes.com/2022/02/23/climate/climate-change-un-wildfire-report.html
21https://www.theguardian.com/environment/2022/feb/23/climate-crisis-driving-increase-in-wildfires-

across-globe-says-report-aoe
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to forecast the total burned area (in hectares, ha) in the region of Montesano Park by taking in input 12

different features. Among these, they considered the FWI indices as well as other climate drivers. (Safi and

Bouroumi, 2013) proposed a work very close to the previous one. As (Omar et al., 2021), they provided

a Multi-Layer Perceptron (MLP) architecture that takes in input 12 features related to both the FWI and

weather conditions.

With regard to FWI risk classification, works like (Kosović and Škurić Kuraži, 2021) and (Rosadi et al., 2022)

are extremely meaningful. More in detail, (Kosović and Škurić Kuraži, 2021) develop several state-of-the-art

ML algorithms in order to classify FWI risk, such as Random Forest (RF ), Logistic Regression (LR), MLP

and others. They make use of an 8-feature vector of climate variables to predict FWI value and therefore its

corresponding class. At last, (Rosadi et al., 2022) focused on the estimation of the burned area that could

be burnt if nothing is done to prevent fire spread. The novelty of their approach is the use of 12 different

climate drivers to develop a Fuzzy C-Means (FCM) algorithm.

Physics Informed Machine Learning

Physics Informed Machine Learning (PIML) is a cutting-edge research branch that has been developing in

recent years. The idea under which PIML is founded is to link ML to the physical world in order to pro-

vide physically consistent results. This research topic is fundamental for climate change applications, since

PIML models are able to provide physically consistent results, avoiding the uncertainty related to classical

Neural Networks algorithms. The literature reviews several efficient ways to embed physical knowledge into

a ML model, such as the definition of physics-informed layers, custom losses as well as activation functions

(Kashinath et al., 2021).

Among PIML approaches for climate change applications, (Manepalli et al., 2019), developed a Physics In-

formed (PI ) Conditional Generative Adversarial Network (cGAN). In particular, they propose a novel method

for the generation of Snow Water Equivalent (SWE ) maps. They proposed a modified version of the Pix2Pix

model (Isola et al., 2017) that was able to embed physical constraints into the model, leading to physically

accurate and reliable synthetic SWE samples. In order to enhance physical consistency into the model, in

(Manepalli et al., 2019), they propose a modified version of the loss, a PI loss, which embeds domain in-

formation as well as SWE characteristics. Indeed, they have formulated three different loss contributions: i)

SWE in the sea surface can be only 0, so the loss function heavily affects values greater than 0 along the sea;

ii) mountain areas typically have higher values of SWE, hence the network gives more importance to errors in

these areas; iii) there is a penalisation of the difference between synthetic SWE and actual one.

Another relevant work in this research field is (Lütjens et al., 2020), which proposes a PI implementation of

the Pix2Pix network to assist rescuers during floods. Highly specific evaluation metrics were developed for

this task.

4.2 2nd Workshop on Emerging technologies for weather and climate modelling

Following the success of the first workshop organised in 2020 (Aloisio et al., 2020), a second workshop

on Emerging technologies for weather and climate was organised to gather scientists and industry experts

working on exascale hardware, programming models and machine learning together with the climate/weather

community. The main goal of the workshop was to provide an update on the latest developments and early

results in areas relevant to the weather and climate community, in particular, for supporting future very high-

resolution weather and climate models22. This section reports on the workshop organisation and the talks

given.

22https://www.esiwace.eu/events/2nd-virtual-workshop-emerging-technologies
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4.2.1 Workshop organisation

The program committee of the workshop was in charge of the organisation and selection of speakers and was

composed by:

• Giovanni Aloisio (CMCC)

• Italo Epicoco (CMCC)

• Peter Dueben (ECMWF)

• Rupert Ford (STFC)

• Erwan Raffin (ATOS)

• Donatello Elia (CMCC)

As part of the ESiWACE project office, Dela Spikerman (DKRZ) and Julia Duras (DKRZ) provided support

for technical and dissemination aspects.

The workshop was well received by the community with 132 people registered from 22 countries all over the

world. The most represented countries were Germany, the UK, Italy, France and USA. The participants were

mainly from academia and research centres, although a fair amount of industry representatives also registered

(e.g., ARM, ATOS, Google, Intel, Microsoft, NVIDIA, etc.). The level of experience of the participants equally

distributed among early-career, mid-level and senior. A news item was published on the ESiWACE portal after

completing the workshop23.

A total of 14 talks were grouped in three topical tracks related to emerging technologies and solutions for

climate and weather. The talks were delivered live in a videoconference room and were recorded for later

publication on the ESiWACE YouTube channel24. Each speakers was assigned with a 20 minutes time slot

including question time. Among the talks, 10 were given by representatives of academic institutions and

research centres, while 4 were given by industry representatives (the full agenda is available in the Appendix 1

of this document and on the Indico event webpage25). The three tracks were:

• European exascale hardware

• Programming models and hardware interplay

• Machine learning

The following subsections summarise the talks in each of the three topical tracks. For each talk, the abstract

provided by the speaker is included.

4.2.2 European exascale hardware

The session on European exascale hardware was chaired by Erwan Raffin (ATOS) and provided a snapshot of

the current state of the main European pre-exascale machines procured under the EuroHPC Joint Undertak-

ing26, as well as some key projects focusing on exascale systems (i.e., EUPEX and EUPILOT projects). From

the presentation of the pre-exascale European systems it emerged that acceleration computing hardware has

become an important part of the infrastructure and that energy efficiency has been a key factor in the design

of the systems, given their massive scales. The two projects presented in the session highlighted some of the

23https://www.esiwace.eu/news/news/emtech-ws2022-completed
24https://www.youtube.com/@esiwace880/
25https://indico.dkrz.de/event/45/
26https://eurohpc-ju.europa.eu/about/our-supercomputers_en
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efforts in building European exa-scale systems and hardware architectures.

Talk1: Leonardo supercomputing system and the national Data Valley action - Sanzio Bassini

(CINECA, Italy)

Abstract: The Leonardo supercomputing system, one of the pre-exascale systems procured by EuroHPC JU,

as well as being part of the European supercomputing ecosystem, is integrated in the context of the national

Data Valley project, currently being built at the Bologna tecnopolo, where the system Leonardo will be hosted

in the new CINECA exascale data center. The brief communication intends to share the state of the art of

this action as well as provide the technological details of the supercomputing system and the roadmap for

rapid start-up in production of the system.

Talk2: LUMI - The pre-exascale system in the North - Jenni Kontkanen (CSC – IT Center for

Science, Finland)

Abstract: The EuroHPC initiative is a joint undertaking by the European Commission and 31 countries to

establish a world-leading supercomputing and data infrastructure in Europe. One of its first efforts is to install

three pre-exascale supercomputers in Europe. I will present one of these systems, LUMI, located in Kajaani,

Finland. LUMI is jointly funded and operated by the European commission and a consortium of 10 countries.

LUMI is currently the fastest supercomputer in Europe and one of the most powerful and advanced comput-

ing systems in the world. In this talk, I will introduce the technical architecture of the LUMI infrastructure,

provide a status update of the program, and discuss the opportunities that LUMI provides for climate research.

Talk3: MareNostrum5 and its Data Center - Sergi Girona (BSC, Spain)

Abstract: In 2019, the EuroHPC selected the Barcelona Supercomputing Center as host of one of the

largest supercomputers in Europe, MareNostrum 5; this new MareNostrum will be a pre-exascale machine,

with a peak performance of more than 200 petaflops, 17 times higher than the present MareNostrum 4 and

10,000 times superior to the supercomputer that initiated the saga in 2004: MareNostrum 1. The talk will

be about how a data center with the necessary features to host an infrastructure of such magnitude is be-

ing prepared -with the problems and solutions involved-, a magnitude that exceeds the current capacities of

Torre Girona Chapel. It will also be about the features of the future MareNostrum 5 and its development plan.

Talk4: EUPEX (European Pilot for Exascale) project on the road to Exascale - Etienne Walter

(Atos, France)

Abstract: The talk will present the objectives of the EUPEX project, and its main purpose: expose at pilot

scale the technologies issued from the European Processor Initiative (EPI) project.

Talk5: EuPILOT - Carlos Puchol (BSC, Spain)

Abstract: The EuPILOT project aims to build an end-to-end demonstrator of accelerators that could be

used in a pre-exascale system, making full use of European and open-source technologies and standards.

The project will produce three chip tapeouts. The first will be a test chip to validate the use of the 12nm

technology node. The second and third, developed concurrently, will contain a vector accelerator with up to

16 cores and a machine learning and stencil accelerator with up to eight cores, respectively. These will be

mounted in modules with LPDDR memory chips. The modules will be installed into accelerator boards going

into systems and, when paired with host servers, deployed into liquid immersion tanks with ultra-efficient
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power densities.

4.2.3 Programming models and hardware interplay

This session was chaired by Andrew Porter (STFC) and described some experiences in the use of Domain

Specific Languages (DSLs) and high-level programming models for code portability on heterogeneous infras-

tructures, as well as opportunities in DestinE. In particular, the talks showed some of the experience from both

the EU and US sides in using higher-level languages for supporting performance portability of climate/weather

modelling systems across different computing devices.

Talk1: PSyclone for LFRic - Iva Kavcic (Met Office, UK)

Abstract: LFRic is the new weather and climate modelling system being developed by the UK Met Office to

replace the existing Unified Model in preparation for exascale computing in the 2020s. LFRic uses the GungHo

dynamical core and runs on a semi-structured cubed-sphere mesh. PSyclone is a domain-specific compiler and

source-to-source translator developed for use in finite element, finite volume and finite difference codes used

in Earth System Models. In essence, it uses domain-specific knowledge to construct a representation of the

target code and allows the HPC expert to transform this representation to add various forms of parallelisation

(distributed memory, OpenMP threading, OpenMP offload, OpenACC). This talk will give an overview on

how PSyclone is used in LFRic, as well as recent examples of the impact of PSyclone on the LFRic performance.

Talk2: ESiWACE2 DSLs for ICON and NEMO - Carlos Osuna (MeteoSwiss, Switzerland)

Abstract: One of the objectives of ESiWACE2 is to establish domain-specific languages (DSLs) for commu-

nity models and evaluate their potential. ESiWACE2 is implementing the use of two main DSLs into several

weather and climate models. The PSyclone DSL is used for the development of the LFric model and NEMO

while the gt4py DSL is used to re-write the dynamical core of the ICON model. We will present the status of

this work and give insights on the main characteristics and key advantages of using these two DSLs: usability,

performance portability and long term maintainability.

Talk3: Experiences with Kokkos in E3SM - Luca Bertagna (Sandia National Lab, US)

Abstract: The Energy Exascale Earth System Model (E3SM) is a climate model developed by the US De-

partment of Energy. It includes separate components for modeling different parts of earth’s climate, including

land processes, atmosphere, rivers, ocean, and more, which can all run at different resolutions. In recent

years, there has been a push for higher resolutions, which has fueled a large amount of research and code

development. The goal is to have a single code base that can perform well across a variery of HPC architec-

tures, a goal usually referred to as performance portability. E3SM has explored several approaches to achieve

performance portability, one of which relies on using Kokkos for on-node parallelism. Kokkos is a C++ library

that implements a single API that allows developers to efficiently utilize several threading backends, on a

variety of HPC architectures. In this presentation, we will discuss our experience in adapting an existing large

Fortran code base such as E3SM to use C++, with all its advantages and disadvantages, using Kokkos.

Talk4: DestinE: opportunities & challenges for digital twins of the Earth System - Balthasar Reuter

(ECMWF, International)

Abstract: Destination Earth is an ambitious initiative by the European Commission to develop a digital twin

of Earth on a global scale. In the first phase, ECMWF is commited to delivering the Digital Twin Engine and
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the first two digital twins on weather-induced extremes and climate change adaptation. The computational

resources available from the EuroHPC Joint Undertaking provide opportunity for simulations at scale and great

detail. However, sustainable adaptation of ECMWF’s Integrated Forecasting System to the GPU-accelerated

supercomputers alongside scientific developments poses a major challenge. We present the principles under-

pinning this effort and early results obtained for some components of the IFS.

4.2.4 Machine learning

The last session of the workshop was chaired by Peter Dueben (ECMWF) and illustrated some state-of-

the-art work in the field of Machine Learning for weather and climate applications, related, for example, to

model augmentation and replacement. From the session it appeared clear that there are several research

efforts going on (from both academy and industry) in using data-driven approaches in Earth system modelling

(e.g., combining physical models and ML models), as well as various challenges that still need to be addressed.

Talk1: Atmospheric Physics-Guided Machine Learning for Climate Modeling and Weather Forecast-

ing - Tom Beucler (EPSL, Switzerland)

Abstract: Data-driven algorithms, in particular neural networks, can (1) emulate the effect of unresolved pro-

cesses in coarse-resolution climate models if trained on high-resolution simulation data; and (2) significantly

improve the skill of numerical weather forecasts at low computational cost if trained on observations. How-

ever, they may violate key physical constraints and make large errors when evaluated outside of their training

set. I will share progress towards overcoming these two challenges in the case of machine learning (1) the

effect of subgrid-scale convection and clouds on the large-scale climate; and (2) the bias correction of near-

surface temperature and humidity to post-process numerical weather predictions. First, physical constraints

can be enforced in neural networks, either approximately by adapting the loss function or to within machine

precision by adapting the architecture. Second, as these physical constraints are insufficient to guarantee

generalizability, we additionally propose to transform the inputs and outputs of machine learning algorithms

using established physical rescalings to help them generalize to unseen climates and locations. Overall, these

results suggest that explicitly incorporating physical knowledge into data-driven models for weather and cli-

mate applications may improve their consistency, stability, and ability to generalize across atmospheric regimes.

Talk2: A Generative Deep Learning Approach to Stochastic Downscaling of Precipitation Forecasts

- Lucy Harris (Oxford, UK)

Abstract: Several key processes affecting precipitation distribution and intensity occur below the resolved

scale of global weather models. Generative adversarial networks (GANs) have been demonstrated by the com-

puter vision community to be successful at super-resolution problems, i.e., learning to add fine-scale structure

to coarse images. We demonstrate this approach can be extended to the more challenging problem of in-

creasing the accuracy and resolution of comparatively low-resolution input from a weather forecasting model.

We test our models and show that they perform in a range of scenarios, including heavy rainfall.

Talk3: Building Digital Twins of the Earth for NVIDIA’s Earth-2 Initiative - Karthik Kashinath and

Mike Pritchard (NVIDIA, US)

Abstract: NVIDIA is committed to helping address climate change. Recently our CEO announced the Earth-2

initiative, which aims to build digital twins of the Earth and a dedicated supercomputer, E-2, to power them.

Two central goals of this initiative are: (i) Computational: Enable high-resolution climate predictions with

credible cloud physics; and (ii) Societal: Nimbly serve interactive, useful, next-generation climate predictions
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via NVIDIA Omniverse. These predictions will help plan for the disastrous impacts of climate change well

in advance and develop strategies to mitigate and adapt to change. Building ML-driven digital twins of the

Earth requires reliable ground truth training data. Today’s storm-resolving climate models at km-scale are the

most credible ground truth one can use for future climate change. However, these models are prohibitively

expensive to run and produce overwhelming amounts of data. Further, building a robust and generalizable

digital twin requires training data from hundreds of diverse trajectories to sample the long tails of extreme

climate change. We present our four-part strategy towards building digital twins: (i) HOP: 100X speedup

of km-scale hybrid ML-climate model using ML-physics coarse-graining; (ii) SKIP: 10,000X speedup of sub-

km-scale multi-scale hybrid ML-climate model for explicit low cloud dynamics; (iii) TUNE: Reinforcement

learning-based auto-calibration of km-scale climate models to validate and improve sub-grid uncertainty es-

timates; (iv) LEAP: 10,000X speedup via tethering an ML surrogate to checkpoints of km-scale accelerated

hybrid ML-climate models. We discuss the implications of the computational speedup and data compression

factors in each of the four parts for building digital twins of the Earth. We present recent developments of

our ML surrogate, FourCastNet, including advances in scale (of ML model, compute, and size of input train-

ing state vector), uncertainty calibration, high-resolution regionalization, and a real-time weather prediction

system. We conclude with a roadmap of Earth-2 that encompasses weather and climate goals and outlines

engineering innovations required for the breakthroughs that building digital twins of the Earth demands.

Talk4: Deep learning and differentiable simulations - Stephan Hoyer (Google, US)

Abstract: How could deep learning be transformative for weather and climate simulation? In this talk, I’ll

give an overview of a line of research at Google, on how deep learning can improve numerical solvers via

end-to-end optimization with differentiable simulators. The approach allows for both increased accuracy and

higher performance on hardware accelerators, within the structure of traditional numerical models. I will share

our results on 2D turbulence and our progress on building a new global atmospheric model.

Talk5: Machine learning for weather forecasting: successes, challenges, and the future - Jonathan

Weyn (Microsoft, US)

Abstract: The last few years have seen massive developments in machine learning for weather forecasting,

from forecast post-processing to emulating numerical weather models to fully operational machine learning

systems. In this talk, I will cover a touch upon a few of these topics, including NWP replacement, ensemble

post-processing with transformers, and the operational precipitation nowcasting at Microsoft Weather. This

discussion will detail some of the successes, challenges, and future directions of machine learning in weather.
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Rhea George, Jeremy McGibbon, Lukas Trümper, Elynn Wu, Oliver Fuhrer, Thomas Schulthess, and Torsten

Hoefler. Productive performance engineering for weather and climate modeling with python, 2022. URL

https://arxiv.org/abs/2205.04148.

19

https://www.mdpi.com/2673-2688/2/4/36
https://www.mdpi.com/2673-2688/2/4/36
https://www.sciencedirect.com/science/article/pii/S0743731518305306
https://hess.copernicus.org/articles/22/5341/2018/
https://doi.org/10.5281/zenodo.4001485
https://gmd.copernicus.org/articles/13/2109/2020/
https://www.semanticscholar.org/paper/Deep-Neural-Networks-for-Statistical-Downscaling-of-Ba%C3%B1o-Medina-Guti%C3%A9rrez/169752689db16b6e5e09c532a855405b301fd452
https://www.semanticscholar.org/paper/Deep-Neural-Networks-for-Statistical-Downscaling-of-Ba%C3%B1o-Medina-Guti%C3%A9rrez/169752689db16b6e5e09c532a855405b301fd452
https://www.semanticscholar.org/paper/Deep-Neural-Networks-for-Statistical-Downscaling-of-Ba%C3%B1o-Medina-Guti%C3%A9rrez/169752689db16b6e5e09c532a855405b301fd452
https://doi.org/10.1071/WF15083
https://www.mdpi.com/2072-4292/11/11/1319
https://arxiv.org/abs/2205.04148


ESiWACE2 Deliverable D2.7

Luca Bertagna, Michael Deakin, Oksana Guba, Daniel Sunderland, Andrew M Bradley, Irina K Tezaur, Mark A

Taylor, and Andrew G Salinger. Hommexx 1.0: a performance-portable atmospheric dynamical core for

the energy exascale earth system model. Geoscientific Model Development, 12(4):1423–1441, 2019. doi:

10.5194/gmd-12-1423-2019. URL https://gmd.copernicus.org/articles/12/1423/2019/.

Yi-Chia Chang, Ralph Acierto, Tomoaki Itaya, Kawasaki Akiyuki, and Ching-Pin Tung. A Deep Learning Ap-

proach to Downscaling Precipitation and Temperature over Myanmar. In EGU General Assembly Conference

Abstracts, EGU General Assembly Conference Abstracts, page 4120, April 2018.

Valentin Clement, Sylvaine Ferrachat, Oliver Fuhrer, Xavier Lapillonne, Carlos E. Osuna, Robert Pincus, Jon

Rood, and William Sawyer. The claw dsl: Abstractions for performance portable weather and climate

models. In Proceedings of the Platform for Advanced Scientific Computing Conference, PASC ’18, New

York, NY, USA, 2018. Association for Computing Machinery. ISBN 9781450358910. doi: 10.1145/3218176.

3218226. URL https://doi.org/10.1145/3218176.3218226.

Tom Deakin, Simon McIntosh-Smith, James Price, Andrei Poenaru, Patrick Atkinson, Codrin Popa, and Justin

Salmon. Performance portability across diverse computer architectures. In 2019 IEEE/ACM International

Workshop on Performance, Portability and Productivity in HPC (P3HPC), pages 1–13, 2019. doi: 10.

1109/P3HPC49587.2019.00006.

Chao Dong, Chen Change Loy, Kaiming He, and Xiaoou Tang. Learning a deep convolutional network for image

super-resolution. In Computer Vision – ECCV 2014, pages 184–199, Cham, 2014. Springer International

Publishing. ISBN 978-3-319-10593-2. doi: https://doi.org/10.1007/978-3-319-10593-2 13.

Chao Dong, Chen Change Loy, Kaiming He, and Xiaoou Tang. Image super-resolution using deep convolutional

networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 38(2):295–307, 2016. doi:

10.1109/TPAMI.2015.2439281.

Jack Dongarra, Steven Gottlieb, and William T. C. Kramer. Race to exascale. Computing in Science &

Engineering, 21(1):4–5, 2019. doi: 10.1109/MCSE.2018.2882574.

Darshana Duhan and Ashish Pandey. Statistical downscaling of temperature using three techniques in the

tons river basin in central india. Theoretical and applied climatology, 121(3):605–622, 2015. doi: https:

//doi.org/10.1007/s00704-014-1253-5.

Yves Durand, Paul M. Carpenter, Stefano Adami, Angelos Bilas, Denis Dutoit, Alexis Farcy, Georgi Gaydadjiev,

John Goodacre, Manolis Katevenis, Manolis Marazakis, Emil Matus, Iakovos Mavroidis, and John Thomson.

Euroserver: Energy efficient node for european micro-servers. In 17th Euromicro Conference on Digital

System Design, pages 206–213, 2014. doi: 10.1109/DSD.2014.15.

H Carter Edwards, Christian R Trott, and Daniel Sunderland. Kokkos: Enabling manycore performance

portability through polymorphic memory access patterns. Journal of parallel and distributed comput-

ing, 74(12):3202–3216, 2014. doi: https://doi.org/10.1016/j.jpdc.2014.07.003. URL https://www.

sciencedirect.com/science/article/pii/S0743731514001257.

Kerry Emanuel. Tropical cyclones. Annual Review of Earth and Planetary Sciences, 31(1):75–104, 2003.

doi: 10.1146/annurev.earth.31.100901.141259. URL https://doi.org/10.1146/annurev.earth.31.

100901.141259.

Wei Fang, Qiongying Xue, Liang Shen, and Victor S. Sheng. Survey on the application of deep learning in

extreme weather prediction. Atmosphere, 12(6), 2021. ISSN 2073-4433. doi: 10.3390/atmos12060661.

URL https://www.mdpi.com/2073-4433/12/6/661.

20

https://gmd.copernicus.org/articles/12/1423/2019/
https://doi.org/10.1145/3218176.3218226
https://www.sciencedirect.com/science/article/pii/S0743731514001257
https://www.sciencedirect.com/science/article/pii/S0743731514001257
https://doi.org/10.1146/annurev.earth.31.100901.141259
https://doi.org/10.1146/annurev.earth.31.100901.141259
https://www.mdpi.com/2073-4433/12/6/661


ESiWACE2 Deliverable D2.7

Lu Gao, Karsten Schulz, and Matthias Bernhardt. Statistical downscaling of era-interim forecast precipitation

data in complex terrain using lasso algorithm. Advances in Meteorology, 2014, 2014. doi: https://doi.

org/10.1155/2014/472741.

S. Gardoll and O. Boucher. Classification of tropical cyclone containing images using a convolutional neural

network: performance and sensitivity to the learning dataset. EGUsphere, 2022:1–29, 2022. doi: 10.5194/

egusphere-2022-147. URL https://egusphere.copernicus.org/preprints/egusphere-2022-147/.

Aneesh Goly, Ramesh S. V. Teegavarapu, and Arpita Mondal. Development and evaluation of statistical down-

scaling models for monthly precipitation. Earth Interactions, 18(18):1 – 28, 2014. doi: 10.1175/EI-D-14-

0024.1. URL https://journals.ametsoc.org/view/journals/eint/18/18/ei-d-14-0024.1.xml.

Brian Groenke, Luke Madaus, and Claire Monteleoni. Climalign: Unsupervised statistical downscaling of

climate variables via normalizing flows. In Proceedings of the 10th International Conference on Climate

Informatics, CI2020, page 60–66, New York, NY, USA, 2021. Association for Computing Machinery. ISBN

9781450388481. doi: 10.1145/3429309.3429318. URL https://doi.org/10.1145/3429309.3429318.

Lucy Harris, Andrew T. T. McRae, Matthew Chantry, Peter D. Dueben, and Tim N. Palmer. A generative

deep learning approach to stochastic downscaling of precipitation forecasts. Journal of Advances in Mod-

eling Earth Systems, 14(10):e2022MS003120, 2022. doi: https://doi.org/10.1029/2022MS003120. URL

https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2022MS003120.

Hans Hersbach, Bill Bell, Paul Berrisford, Shoji Hirahara, András Horányi, Joaqúın Muñoz-Sabater, Julien
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Michael Kern, Kevin Höhlein, Timothy Hewson, and Rüdiger Westermann. Towards Operational Downscaling

of Low Resolution Wind Fields using Neural Networks. In EGU General Assembly Conference Abstracts, EGU

General Assembly Conference Abstracts, page 5447, May 2020. doi: 10.5194/egusphere-egu2020-5447.

Kawthar Shafie Khorassani, Ching-Hsiang Chu, Hari Subramoni, and Dhabaleswar K Panda. Performance

evaluation of mpi libraries on gpu-enabled openpower architectures: Early experiences. In International

Conference on High Performance Computing, pages 361–378. Springer, 2019. doi: https://doi.org/10.

1007/978-3-030-34356-9 28.

Heewon Kim, Myungsub Choi, Bee Lim, and Kyoung Mu Lee. Task-aware image downscaling. In Vittorio

Ferrari, Martial Hebert, Cristian Sminchisescu, and Yair Weiss, editors, Computer Vision – ECCV 2018,

pages 419–434, Cham, 2018. Springer International Publishing. ISBN 978-3-030-01225-0. doi: https:

//doi.org/10.1007/978-3-030-01225-0 25.

Jiwon Kim, Jung Kwon Lee, and Kyoung Mu Lee. Accurate image super-resolution using very deep convo-

lutional networks. In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages

1646–1654, 2016. doi: 10.1109/CVPR.2016.182.

Volodymyr Kindratenko and Pedro Trancoso. Trends in high-performance computing. Computing in Science

& Engineering, 13(3):92–95, 2011. doi: 10.1109/MCSE.2011.52.
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6 Changes made and/or difficulties encountered, if any

This deliverable has been postponed by 3 months, differently from what was originally planned in the DoA,

i.e., from August to November 2022, since the associated workshop has also been moved from May to October

2022. This change of planning was meant to avoid overlapping with the ENES HPC workshop organised in May

in the context of the IS-ENES3 project in collaboration with ESiWACE227. The ENES HPC workshop covered

in fact very similar topics and targeted the same community. Moreover, the leadership of the deliverable has

been reassigned from UNIMAN to CMCC. It is worth mentioning that UNIMAN contribution to this activity

(until April 2021, before leaving the task) has also been included in this document.

7 How this deliverable contributes to the European strategies for

HPC

This document reports about some of the latest developments from literature and early work from the com-

munity addressing the use of large-scale HPC infrastructures and novel data-driven solutions for climate and

weather applications. Moreover, the European Exascale Hardware session of the workshop (see section 4.2.2)

presented (i) the pre-exascale system procured under the EuroHPC JU allowing the audience to interact with

the scientists and experts of the computing centres to better understand their capabilities and possible us-

ages, as well as (ii) some of the pilot project aiming to increase the European leadership in HPC technologies.

Overall, this contributes to strengthening the interaction between the scientist in the climate/weather com-

munity and the HPC experts, as well as facilitating knowledge sharing, in line with the goal of preparing the

community to effectively use the world-class HPC infrastructure that are currently being built in Europe.

8 Sustainability

This workshop follows the path of the previous workshop organised in the context of ESiWACE2 for bringing

together the community working on emerging technologies for weather forecast and climate modelling: the

First Virtual Workshop on Emerging Technologies for Weather and Climate Modelling28, June 2020 and the

IS-ENES3/ESiWACE ML/AI in Weather and Climate modelling workshop29, March 2021. The outcomes and

key points from the workshops were respectively reported in D2.6 (Aloisio et al., 2020) and D2.10 (Riley

et al., 2021). Moreover, it extends the inital set of guidelines reported in the first white paper (Aloisio et al.,

2020), by providing a wider analysis of the literature and state-of-the-art solutions.

Similarly to the previous workshop, the workshop reported in this document was organised as a virtual event in

order to widen the potential audience following the talks, and also allow speakers and audience from different

countries worldwide to get together more easily. In particular, in order to strengthen the link with the industry,

the workshop involved contributions of an industrial partner from the ESiWACE2 project, i.e., ATOS (for both

the organisation of the workshop and a talk), as well as from US companies like NVIDIA, Google and Microsoft.

Finally, the findings and collection of resources (e.g., papers, online articles, video recordings) highlighted in

this second white paper can represent a valuable source for scientists from the climate and weather community

interested in trending and emerging solutions.

27https://www.esiwace.eu/events/7th-enes-hpc-workshop
28https://www.esiwace.eu/events/virtual-ws-on-emerging-technologies/virtual-ws-on-emerging-technologies
29https://is.enes.org/workshops-detailed/#ML-AI-WS
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9 Dissemination, Engagement and Uptake of Results

9.1 Target audience

As indicated in the Description of the Action, the audience for this deliverable is:

X The general public (PU)

The project partners, including the Commission services (PP)

A group specified by the consortium, including the Commission services (RE)

This reports is confidential, only for members of the consortium, including the Commission services

(CO)

We ensure the uptake of the deliverable by the targeted audience through the following actions

The workshop associated with this deliverable has been widely announced on community-related mailing lists,

social networks and websites30. The slides of the presentations have been made available for download for

anyone interested in the workshop31. Moreover, to further reach out towards the community the recordings

from the workshop talks have been published on the ESiWACE YouTube channel32. The availability of the

workshop material has also been announced on mailing lists, social channels and on the ESiWACE project

website33.

Furthermore, this deliverable will be disseminated via the ESiWACE website, in the ESiWACE newsletter and

via Twitter, as soon as it is published on Zenodo.

9.2 Record of dissemination/engagement activities linked to this deliverable

See Table 1.

Table 1: Record of dissemination / engagement activities linked to this deliverable

Type of dis-

semination

and com-

munication

activities

Details Date and lo-

cation of the

event

Type of audi-

ence

Zenodo Link Estimated

number of per-

sons reached

Organisation

of a workshop

ESiWACE2

Second Virtual

Workshop

on Emerging

Technologies

for Weather

and Climate

Modelling

7 October

2022, Online

Science and in-

dustry

N.A. 132

30https://www.esiwace.eu/news/news/emtech-ws2022
31https://indico.dkrz.de/event/45/
32https://www.youtube.com/@esiwace880/
33https://www.esiwace.eu/news/news/emtech-ws2022-completed
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9.3 Publications in preparation OR submitted

See Table 2.

Table 2: Publications related to this deliverable

In preparation OR

submitted?

Title All authors Title of the period-

ical or the series

Is/Will open ac-

cess be provided to

this publication?

Submitted Machine Learning

Emulation of 3D

Cloud Radiative

Effects

Meyer, David and

Hogan, Robin J.

and Dueben, Pe-

ter D. and Mason,

Shannon L.

Journal of Ad-

vances in Modeling

Earth Systems

Yes

Submitted Machine Learn-

ing Emulation

of Gravity Wave

Drag in Numer-

ical Weather

Forecasting

Chantry, Matthew

and Hatfield, Sam

and Dueben, Peter

and Polichtchouk,

Inna and Palmer,

Tim

Journal of Ad-

vances in Modeling

Earth Systems

Yes

Submitted A Generative Deep

Learning Approach

to Stochastic

Downscaling of

Precipitation

Forecasts

Harris, Lucy and

McRae, Andrew

T. T. and Chantry,

Matthew and

Dueben, Peter D.

and Palmer, Tim

N.

Journal of Ad-

vances in Modeling

Earth Systems

Yes

Submitted Comparison of Vi-

vado HLS, SDSoC

C++ and OpenCL

for Porting a

Matrix-vector-

based Climate

model mini-app to

FPGAs

Alghamdi, Moteb

and Riley, Graham

and Ashworth,

Mike

PDPTA’21-The

27th Int’l Confer-

ence on Parallel

and Distributed

Processing Tech-

niques and Appli-

cations 2021

Yes

9.4 Intellectual property rights resulting from this deliverable

N.A.
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Appendices

Appendix 1 Agenda of the workshop

ESiWACE2 Second Virtual Workshop on

Emerging Technologies for Weather and Climate Modelling
October 7, 2022

10.15 - 18.45 CEST

Agenda

10:00-10:15 VC Available for test

10:15-10:30 Welcome Giovanni Aloisio

10:30-12:30 Session 1 – European Exascale hardware Chair: Erwan Raffin

10:30-10:50
Leonardo supercomputing system and the national

Data Valley action
Sanzio Bassini (CINECA)

10:50-11:10 LUMI - The pre-exascale system in the North Jenni Kontkanen (CSC)

11:10-11:30 MareNostrum5 and its Data Center Sergi Girona (BSC)

11:30-11:50 Break

11:50-12:10
EUPEX (European Pilot for Exascale) project on

the road to Exascale
Etienne Walter (Atos)

12:10-12:30 EuPILOT Carlos Puchol (BSC)

12:30-14:00 Lunch Break

14:00-16:00
Session 2 – Programming models and hardware

interplay
Chair: Andrew Porter
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14:00-14:20 PSyclone for LFRic Iva Kavcic (Met Office)

14:20-14:40 ESiWACE2 DSLs for ICON and NEMO Carlos Osuna (MeteoSwiss)

14:40-15:00 Vulcan FMS+ (Cancelled) Oli Fuhrer (ETH)

15:00-15:20 Break

15:20-15:40 Experiences with Kokkos in E3SM
Luca Bertagna (Sandia National

Lab)

15:40-16:00
DestinE: opportunities & challenges for digital twins

of the Earth System
Balthasar Reuter (ECMWF)

16:00-16:30 Coffee Break

16:30-18:30 Session 3 – Machine Learning Chair: Peter Dueben

16:30-16:50
Atmospheric Physics-Guided Machine Learning for

Climate Modeling and Weather Forecasting
Tom Beucler (EPSL)

16:50-17:10
A Generative Deep Learning Approach to Stochastic

Downscaling of Precipitation Forecasts
Lucy Harris (Oxford)

17:10-17:30
Building Digital Twins of the Earth

for NVIDIA’s Earth-2 Initiative

Karthik Kashinath (NVIDIA) and

Mike Pritchard (NVIDIA)

17:30-17:50 Break

17:50-18:10 Deep learning and differentiable simulations Stephan Hoyer (Google)

18:10-18:30
Machine learning for weather forecasting: successes,

challenges, and the future
Jonathan Weyn (Microsoft)

18:30-18:45 Wrap up and closing session

Program Committee

Giovanni Aloisio (CMCC), Italo Epicoco (CMCC), Peter Dueben (ECMWF),

Rupert Ford (STFC), Erwan Raffin (ATOS), Donatello Elia (CMCC)

This event is funded by ESiWACE2: the ESiWACE2 project has received funding from the European Union’s

Horizon 2020 research and innovation programme under grant agreement No 823988 -

https://www.esiwace.eu/
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