

Cluster decorated recognition elements on DNA origami for surface enhanced Raman spectroscopic detection methods

Saloni Agarwal, Renata F. Martins, Frank F. Bier (contact: saloni.agarwal@uni-potsdam.de)

How it works

DeDNAed innovative bioanalytical platform

Composed of:

- Biological sensor element with AC integrated: Metallic atomic clusters (ACs) are integrated into a biological recognition element (DNA or antibody, bio-RE) improving fluorescence properties over normal plasmonic nanoparticles (NPs) due to their higher surface/volume ratio
- DNA origami-based Nanoarray: made of additional metallic NPs, precisely controlled by a DNA origami template and will lead to a signal enhancement. The DNA origami serves as an individually, inter- and intramolecularly programmable "nano-breadboard".
- Surface-Enhanced Raman Spectroscopy (SERS) detection

Schematic formation of fluorescent DNA-hosted Au-nanoclusters and the hairpin DNAs, single-stranded DNAs and fully matched DNAs.

Schematic sketch of the change in the SERS signal upon binding of the analyte to the bio-RE (e.g. DNA aptamer).

DeDNAed - Background

What is DNA Origami?

- Nano-breadboard by DNA-driven self-assembly
 - Controlling of scaffold folding (size and shape) by staple sequence
 - Protruding staple overhangs as binding points for functionalisation

DeDNAed - Project Overview

WP 2 – Design & Production of Sensing Element

- Design & synthesis of the sensing biorecognition elements (bioREs)
 - DNA aptamer → Aflatoxin
 - Peptide → Influenza
 - Antibody → Interleukin-6
 - Integration of Atomic clusters (AC) in bioRE

DNA probes → SARS-CoV-II N-gene

- Providing different shaped metallic nanoparticles
 - For Raman signal enhancement

DeDNAed - Project Overview

WP4 – Synthesis & Characterisation of DNA Origami Hybrid

- Assembly of all components of biosensor to DNA hybrid structure
 - Bio-RE
 - NP
 - DNA origami
- Structural and optical characterisation of the DNA origami hybrid
 - SERS signal
 - Binding strength / affinity

DeDNAed - Project Overview

WP5 – Integration of DNA Origami Hybrids

- Providing of thin-film system for biosensor surface immobilisation
 - Chemical contrast for selectivity
 - Topography contrast for alignment
- Development of immobilisation procedure for DNA origami hybrid
 - High yield
 - Side-specific immobilisation
 - Single occupancy/accurate array alignment

DeDNAed - Project Overview

WP6 - Platform Validation

- Biosensor Assay development
- Characterisation of biosensor platform
- Validation against state of the art
- High yield
- Side-specific immobilisation
- Single occupancy/accurate array alignment

This project has received funding from the European Union's Horizon 2020

research and innovation programme under grant agreement No. 964248

DeDNAed - Project Overview

WP7 – Transfer to Flexible Substrates

- Generating DNA origami array on lipid-bi-layer
 - Large-scale arrangement by DNA self-organisation and side-specific binding
 - Anchor points for higher array stability
- Transfer to flexible substrate by Langmuir-Blodgett
 - Suitable process parameters for stable LBL
 - Polymer sheet (PS, ...), tissue, paper

Providing safe-by-design concept

Concept of safety during process and for application

Acknowledgments and project consortium:

