Graf’s addition theorem

Figure 1: Graf’s addition theorem

Graf’s addition theorem says
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where C,, can be a Hankel or Bessel function of index v. This holds when
lul > |v]. []
Expansions

In all subsequent formulas, 0, refers to the angle of the vector x —y above the
horizontal.

(a) Multipole expansion (b) Local expansion

Figure 2: Multipole and local expansions

For a multipole expansion, we wish to evaluate Hg (|t — s|) where the target
is farther from the center than the source. The multipole expansion takes the
form
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1See for instance http://dlmf.nist.gov/10.23#ii


http://dlmf.nist.gov/10.23#ii

In the local expansion, the target is closer to the center than the source. The
local expansion takes the form
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Multipole-to-multipole and local-to-local translations

We wish to shift the center of the expansion ¢; to a new center ¢y satisfying
|c1 —ea] < |s—c1|. The goal is to derive a formula for the new coefficients based
on the old coefficients and ¢; — co. This can be done with the help of Graf’s
addition theorem.

Figure 3: Multipole-to-multipole and local-to-local translation

For shifting the multipole coefficients:
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In a similar way, for shifting the local expansion coefficients:
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Multipole-to-local translation

Given a multipole expansion with center ¢;, we wish to shift to center co where
c1 and cg satisfy |ca — ¢1] > |s — ¢1]|. Furthermore, the coefficients at the new
center will be coefficients for a local expansion.



Figure 4: Multipole-to-local translation

The translated coeflicients satisfy
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