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S U M M A R Y
The visco-elastic response of the solid Earth to the past glacial cycles and the present-day
surface mass change (PDSMC) are detected by the geodetic observation systems such as global
navigation satellite system and satellite gravimetry. Majority of the contemporary PDSMC is
driven by climate change and in order to better understand them using the aforementioned
geodetic observations, glacial isostatic adjustment (GIA) signal should be accounted first.
The default approach is to use forward GIA models that use uncertain ice-load history and
approximate Earth rheology to predict GIA, yielding large uncertainties. The proliferation
of contemporary, global, geodetic observations and their coverage have therefore enabled
estimation of data-driven GIA solutions. A novel framework is presented that uses geophysical
relations between the vertical land motion (VLM) and geopotential anomaly due to GIA and
PDSMC to express GPS VLM trends and GRACE geopotential trends as a function of either
GIA or PDSMC, which can be easily solved using least-squares regression. The GIA estimates
are data-driven and differ significantly from forward models over Alaska and Greenland.

Key words: Geopotential theory; Global change from geodesy; Loading of the Earth; Satel-
lite gravity.

1 I N T RO D U C T I O N

Glacial isostatic adjustment (GIA) is the visco-elastic response of
the solid Earth to past glacial changes (Farrell & Clark 1976; Peltier
2004). This process is partly responsible for the observed secular
vertical land motion (VLM) over parts of North America, Scandi-
navia, Greenland and Antarctica (Horwath et al. 2012; Ivins et al.
2013; Peltier et al. 2015; Simon et al. 2017). GIA also affects the
gravity field of the Earth and therefore is observed by the Gravity Re-
covery And Climate Experiment (GRACE) satellite mission (Wahr
et al. 1998; Tapley et al. 2019). GRACE data are known for high-
lighting the contemporary surface mass redistribution, which can
only be estimated after correcting for GIA (Peltier 2009). Therefore,
the accuracy of GIA estimate is critical for assessing PDSMC accu-
rately, for example, GIA alone is suspected to explain 50 per cent of
the total mass change over Antarctica (Caron & Ivins 2020). Sim-
ilarly, the accuracy of GIA is also critical for assessing Greenland
ice-sheet mass balance, sea level rise and land hydrology related
mass redistribution processes (Martı́n-Español et al. 2016; Shep-
herd et al. 2018; WCRP 2018; Willen et al. 2020). Since GIA is a
response of the solid Earth to the past loading and unloading, for-
ward models have been developed that predict GIA signal with the
help of an approximate ice-load history and Earth rheology (Peltier

2004; Geruo et al. 2013; Ivins et al. 2013). The uncertainties in these
GIA forward models are sensitive to changes in input parameters
and therefore several recent research studies advocated obtaining
data-driven GIA estimates that are largely independent of approxi-
mations and assumptions on ice-load history (Wu et al. 2010; Hill
et al. 2010; Wang et al. 2013; Martı́n-Español et al. 2016; Simon
et al. 2017; Sasgen et al. 2017; Whitehouse 2018; Gao et al. 2019).

The possibility for obtaining a data-driven GIA estimate was first
realised when GRACE mission was in preparation. In a simula-
tion, Wahr et al. (2000) demonstrated that GIA and the present-
day surface mass change (PDSMC) can be co-estimated from Ice,
Cloud, and land Elevation Satellite (ICESat) and GRACE data.
GRACE mission observes changes in the gravitational potential,
which can be converted to surface mass change, while ICESat mea-
sured changes in the surface elevation that explain ice processes and
bedrock movement (or VLM). It is to be noted that the surface mass
change (ice and water) and non-surface processes (such as GIA) are
related to perturbations in gravitational potential and VLM differ-
ently (Chao 2016). It was in 2009 that the method by Wahr et al.
(2000) was first implemented on real data over Antarctica (Riva
et al. 2009). Since then, several contributions have improved on
Riva et al. (2009) or Wahr et al. (2000) by either incorporating
additional processes and better data or by employing new inversion
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techniques that may rely on constraints from GIA forward mod-
els (Velicogna & Wahr 2002; Wu et al. 2010; Wang et al. 2013;
Gunter et al. 2014; Rietbroek et al. 2016; Zou & Jin 2016; Martı́n-
Español et al. 2016; Sasgen et al. 2017; Simon et al. 2017; Gao
et al. 2019; Sun & Riva 2020). Recently, global navigation satellite
system (GNSS) based VLM changes have been also integrated with
either GRACE data or hydrological models to determine Centre of
figure of the Earth, validate GIA models, and estimate PDSMC or
GIA signal (Blewitt 2003; Davis et al. 2004; Tregoning et al. 2009;
Schumacher et al. 2018; Whitehouse 2018; Razeghi et al. 2019;
Argus et al. 2020).

In this paper, we employ the approximate relations between VLM
and respective surface and subsurface processes to express the GPS
observed VLM trends as a linear combination of PDSMC and
GIA trends. After re-arranging these relations, we are able to ex-
press observations in terms of spherical harmonic (SH) coefficients
representing either PDSMC or GIA, which can be solved using
least-squares regression. In a synthetic closed-loop experiment we
demonstrate that our method works very well when the GNSS net-
work is global and homogeneous in space, which is not true in
reality. Large spatial gaps in GNSS data availability results in noisy
estimates. Therefore, we propose to plug the gaps by augmenting
GNSS data by estimating GNSS-equivalent VLM from a forward
GIA model and GRACE data, which helps us obtain a stable solu-
tion for GIA and PDSMC. This approach is equivalent to using a
forward model as an informative prior and updating it with observa-
tions. We also demonstrate that the choice of prior GIA model has a
negligible effect on the output where we have GPS data. Since, there
is a decent availability of GPS stations in and near GIA-dominated
regions, our GIA estimate is heavily data-driven. Nevertheless, we
acknowledge that we rely on certain assumptions and approxima-
tion, such as we assume negligible VLM due to processes other
than GIA and PDSMC, which may result in a few caveats that
have also been explained. We show that our estimates are coher-
ent with expected GIA signal for North America and Fennoscan-
dia. Our GIA estimates differ significantly from two popular GIA
models over Alaska and slightly over Greenland and Antarctica.
This study demonstrates a novel mathematical framework to sep-
arate GIA and PDSMC trends in contemporary Earth observation
data set without relying heavily on prior GIA model or ice-load
history.

2 M AT H E M AT I C A L F R A M E W O R K

Fig. 1 illustrates the vertical (radial) component of the elastic and
visco-elastic response of the solid Earth with respect to the centre
of mass of the Earth system. Let us suppose that a point P(θ , λ)
on the surface of the Earth moves in the vertical direction by u in
time t and this is recorded by a GNSS station. θ is the co-latitude
and λ is the longitude. This vertical land movement (VLM) in the
frame of centre of figure of the Earth can be written as a sum of
elastic deformation (ue) due to PDSMC and a viscous solid-Earth
response (uv) driven by GIA, assuming that other processes are
either accounted for or are negligible (δ ≈ 0):

�u(θ, λ, t) = �ue(θ, λ, t) + �uv(θ, λ, t) + δ(θ, λ, t). (1)

The linear rate of elastic VLM, u̇e can be obtained from dimension-
less Stokes coefficients for PDSMC (�Ċ p

�m and �Ṡ p
�m) as (Farrell

1972; Davis et al. 2004; van Dam et al. 2007; Vishwakarma et al.

Figure 1. Illustration of solid Earth processes that result in vertical land
deformation. The black line represents initial state of the bedrock and the
red line represents the state after time t. Dotted grey to solid grey represents
any surface mass change over continents in the same time period.

2020b)

�u̇e(θ, λ) = R
∑
�,m

h′
�

1 + k ′
�

P̃�m(cos θ )

× [
�Ċ p

�m cos(mλ) + �Ṡ p
�m sin(mλ)

]
, (2)

where h′
� and k ′

� are the elastic load Love numbers of degree �,
P̃�m are normalized Legendre functions of degree � and order m.
Theoretically � goes from 0 to ∞ and m goes from 0 to �, however,
due to limited spatial sampling we truncate at a maximum degree L.
R is the mean radius of the Earth in the same units as ue. The viscous
response due to GIA is known to be generated by flow of mantle
material and the rate of VLM due to GIA (u̇v), like any surface
deformation field, can be expanded in terms of dimensionless Stokes
coefficients using SH analysis (Purcell et al. 2011):

�u̇v(θ, λ) = R
∑
�,m

(1.1677� − 0.5233)P̃�m(cos θ )

× [
�ĊG

�m cos(mλ) + �ṠG
�m sin(mλ)

]
, (3)

where �ĊG
�m and �ṠG

�m represent the rate of change in Stokes co-
efficients representing GIA related potential perturbation. Since for
GRACE products we assume that all the mass redistribution takes
place near the Earth’s surface, that is, ≈ within 10 km, and any
changes in the mantle are beyond the thin layer assumption (Chao
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2016), a small error is inevitable that we assume to be negligible in
this study. Adding eqs (2) and (3),

�u̇(θ, λ) = R
∑
�,m

{
h′

�

1 + k ′
�

P̃�m(cos θ )

× [
�Ċ p

�m cos(mλ) + �Ṡ p
�m sin(mλ)

]
+ (1.1677� − 0.5233)P̃�m(cos θ )

× [
�ĊG

�m cos(mλ) + �ṠG
�m sin(mλ)

] }
. (4)

Let’s write u̇(θ, λ) as u̇(·) from now on. Adding∑
�,m

h′
�

1+k′
�

P̃�m(cos θ )[�ĊG
�m cos(mλ) + �ṠG

�m sin(mλ)] to the first

half of eq. (4) and subtracting the same from the second half and
then re-arranging it, we get

�u̇(·) = R
∑
�,m

{
h′

�

1 + k ′
�

P̃�m(cos θ )

× [(
�Ċ p

�m + �ĊG
�m

)
cos(mλ) + (

�Ṡ p
�m + �ṠG

�m

)
sin(mλ)

]
+

(
1.1677� − 0.5233 − h′

�

1 + k ′
�

)
P̃�m(cos θ )

× [
�ĊG

�m cos(mλ) + �ṠG
�m sin(mλ)

] }
. (5)

Combining Stokes coefficients for PDSMC and GIA gives{
�Ċ�m

�Ṡ�m

}
=

{
�Ċ p

�m + �ĊG
�m

�Ṡ p
�m + �ṠG

�m

}
, (6)

where �Ċ�m and �Ṡ�m are readily available from GRACE products.
Using eq. (6) in the first half of eq. (5) gives us

�u̇(·) = R
∑
�,m

{
h′

�

1 + k ′
�

P̃�m(cos θ )

× [
�Ċ�m cos(mλ) + �Ṡ�m sin(mλ)

]
+

(
1.1677� − 0.5233 − h′

�

1 + k ′
�

)
P̃�m(cos θ )

× [
�ĊG

�m cos(mλ) + �ṠG
�m sin(mλ)

] }
. (7)

The left-hand side of (7) can be obtained from GNSS network,
the first term on the right-hand side can be obtained from GRACE
and thus we can solve for the GIA SH coefficients.

Similarly and conversely, to solve for PDSMC,
adding

∑
�,m(1.1677� − 0.5233)P̃�m(cos θ )[�Ċ p

�m cos(mλ) +
�Ṡ p

�m sin(mλ)] to the first term of eq. (4) and subtracting the same
from the second term and then re-arranging it, we can obtain

�u̇(·) = R
∑
�,m

{
(1.1677� − 0.5233)P̃�m(cos θ )

× [
�Ċ�m cos(mλ) + �Ṡ�m sin(mλ)

]
+

[
h′

�

1 + k ′
�

− (1.1677� − 0.5233)

]
P̃�m(cos θ )

× [
�Ċ p

�m cos(mλ) + �Ṡ p
�m sin(mλ)

] }
. (8)

2.1 Closed loop test

We test the framework in a closed loop environment with the help
of synthetic data set that is generated to mimic the geophysical

processes we are interested in. We use the VLM predictions from
Caron et al. (2018) GIA model to represent uv, and ue is obtained
by using eq. (2) on PDSMC estimates from GRACE data that has
been corrected for GIA using the ICE-6G GIA model (Peltier et al.
2015). The GRACE level 2 data from the Institute of Geodesy,
University of Graz, has been used in this study (Mayer-Gürr et al.
2018). The total VLM u is a sum of ue, uv and a noise obtained
by adding GRACE error with a zero mean random white noise
between ±0.5 mm yr−1. We assume that u is observed by GNSS,
and gravitational potential is observed by GRACE. Hence, we can
rewrite eq. (7) as:

�u̇(·) − R
L∑

�,m

{
h′

�

1 + k ′
�

P̃�m(cos θ )

× [
�Ċ�m cos(mλ) + �Ṡ�m sin(mλ)

] }

= R
L∑

�,m

{ (
1.1677� − 0.5233 − h′

�

1 + k ′
�

)
P̃�m(cos θ )

× [
�ĊG

�m cos(mλ) + �ṠG
�m sin(mλ)

] }
. (9)

For n GNSS stations, the left-hand side of eq. (9) represents a (n × 1)
observation vector Y, and the right-hand side is A x , with x being the
set of SH coefficients for GIA that can be solved using singular value
decomposition (Golub & Reinsch 1971) or by applying Moore–
Penrose inverse for inverting the design matrix. We have used the
Moore–Penrose inverse to find a stable solution. Similarly, eq. (8)
can be solved to estimate SH coefficients for PDSMC trend instead
of GIA.

Imagine a network of GNSS stations 5◦ apart covering the Earth’s
surface homogeneously (see Fig. 2a). In this case, we can solve for
SH coefficients up to maximum degree L of 39 (we choose to go up to
35) because the maximum degree L depends on the spatial coverage
of the data set (Colombo 1981). Such a homogeneous network is the
ideal case where we are able to obtain a GIA field which is the same
as the truth in the closed-loop setup (see Figs 2b, c and e). However,
in real world the GNSS network is sparse and there are large regions
that are not covered by even a single GNSS station (see Fig. 2d).
This results in a poor estimate of GIA when using the least-squares
regression (see Fig. 2e). Since a lot of GPS stations are available in
North America and in Europe (the two regions with strongest GIA
signal), augmenting GNSS data with synthetic data (obtained from a
dedicated GIA model and GRACE data) over regions with poor data
availability and small GIA signal can help us overcome the problem
with data sparsity. This approach is equivalent to using a prior
information from a model and updating it with observations (Sha
et al. 2019). It is to be noted that the equi-angular distribution of GPS
data leads to latitude weighted regularization; the higher latitudes
have relatively higher density of GPS stations and if a majority of
them are virtual GPS stations with synthetic VLM then the impact of
prior will be larger on the solution. There is an excellent network of
GPS stations over American continents, Australia, and the Europe
(see Fig. 2d; Blewitt et al. 2018). Additionally, GNET and ANET
are providing some coverage along the coast of Greenland and
Antarctica respectively (Martı́n-Español et al. 2016; Khan et al.
2016). Hence we have sufficient GPS coverage in high latitude
regions where GIA signal is suspected, leading to a larger role of
observations and small to negligible impact of the prior on our GIA
estimates.
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Figure 2. Part (a) shows the global distribution of synthetic VLM data, where each dot represents a virtual GNSS station. Part (b) shows the GIA obtained by
using eq. (9), part (c) shows the background GIA model from Caron et al. (2018, the truth) that was used for generating the synthetic data, part (d) shows the
location of GPS stations whose data are available through NGL, part (e) shows the GIA obtained by using eq. (9) for stations shown in (d) and part (f) is the
difference between (b) and (c), our closed-loop estimate and the truth (GIA from Caron et al. 2018). Please note that both parts (b) and (c) have been smoothed
with a Gaussian 500 km filter.

3 E S T I M AT I N G G I A A N D P D S M C
T R E N D S F RO M G P S A N D G R A C E

Several GPS stations are located in tectonics dominated regions
and some are affected by other local processes (such as poro-elastic
deformations and local geological subsidence or uplift; Argus et al.
2020). Therefore, GPS time-series should be carefully selected so
that they represent the physical processes we are interested in, then
we can capture GIA or PDSMC with the framework developed in
this study.

3.1 GPS data

We use the GPS time-series provided by the Nevada Geodetic Lab-
oratory (NGL) in the IGS14 reference frame (Blewitt et al. 2018).
The NGL also provides a list of possible offset dates for each GPS
station, based on earthquakes occurrence and station maintenance.
We complement this list using an offset detection algorithm in-
spired by MIDAS (Blewitt et al. 2016) in a 2-yr sliding window to
flag potential offsets when the estimated trend varies abruptly. Af-
ter correcting for atmospheric loading1 and polar motion (King &
Watson 2014), we estimate the annual, semi-annual and linear trend
components at each station, for the period 2005 January to 2015
December, along with the offsets correction. We only keep stations
with at least 3 yr of data over this decade because the trend estimated
from short time-series may not be representative of the long-term
secular change. Stations with large trends (50 mm yr−1 or above),
large relative uncertainty (trend uncertainty larger than the trend
itself) and other outliers are removed, as well as stations located
in regions with strong tectonic but weak GIA signal (Japan, Tai-
wan, Philippines, Indonesia and New Zealand). Stations on oceanic
islands are also removed because their signal is expected to be
strongly influenced by the nearby ocean or local processes (e.g. vol-
canic activity). In addition, we manually inspect all the time-series
and remove the few remaining stations with problems which have
not been detected in the previous steps (dubious offsets, remaining
outliers, poor signal-to-noise ratio, etc.). Finally, for each station,
we use nearby stations (within a radius of 100 km, when available)

1MERRA2 atmospheric model provided by the Loading Service: http://ma
ssloading.net/atm/index.html

to look for outliers. If a station has a trend 50 per cent or 5 mm yr−1

larger or smaller than the median trend of its surrounding stations,
we exclude it. This step is equivalent to a smoothing filter and re-
move the latest outliers in the data set (Schumacher et al. 2018).
Hence after the rigorous scrutiny of nearly 10 000 NGL stations, we
are left with about 6 000 NGL stations that we use in this study. The
list of these stations can be found along with our scripts and data
set at https://github.com/WhythiskolaveriD/GIAinv.git.

3.2 GRACE data

The level 2 GRACE time-series from IFG, Graz is employed
(Mayer-Gürr et al. 2018). The poor quality C20 in GRACE is re-
placed with high-quality SLR C20 Cheng et al. (2013), and degree
one coefficients from Swenson et al. (2007) were included. The
time-series of SH coefficients between 2005 January and 2015 De-
cember are decomposed in terms of an annual, a semi-annual, and
a linear trend. The length of time-series is limited by poor GPS data
availability prior to 2005 and poor quality of GRACE data after
2015. Since the level 2 GRACE data are noisy, a Gaussian 400 km
filter was used (Wahr et al. 1998; Vishwakarma et al. 2016). The
trend in SH coefficients are then used in eq. (7) or (8) along with
GPS VLM rates, and augmented by synthetic VLM for regions with
no reliable observations to obtain the observation vector (left-hand
side) in eq. (9). The synthetic VLM data are computed by assuming
that only GIA and elastic process related VLM are observed and all
other processes that may also be captured by a real GPS station are
ignored. This benefits the framework in signal separation.

3.3 Results

Fig. 3 summarizes the results. In this study we have estimated SH
coefficients from degree and order 2 to 35. We ensure conservation
of mass by forcing degree 0 to be zero as it should be for GIA
estimates. The synthetic VLM rates are computed in the centre
of figure frame (Blewitt 2003). Since our synthetic data set are
5◦ apart in regions where we do not have any GPS coverage, we
cannot go higher than degree 39, and we choose 35 to ensure the
system is solvable. In Fig. 3, subfigure (a) shows the GPS stations
used in this study along with locations of synthetic VLM data.
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Figure 3. Part (a) shows the location of NGL GPS stations (red cross) and grid cells where virtual stations with synthetic VLM data (blue dot) were used.
Part (b) shows the GIA VLM obtained by using eq. (7) with synthetic data derived from ICE-6G GIA fields and GRACE data set, part (c) is same as (b) but
with GIA model from Caron et al. (2018), part (d) shows the difference between (b) and (c), part (e) shows the update on ICE-6G GIA, which is the difference
between (b) and ICE-6G model. Part (f) is same as (e) but for GIA model from Caron et al. (2018). Part (g) is the difference between GIA from ICE-6G and
Caron et al. (2018). Part (h) is the PDSMC obtained by using eq. (8) with synthetic data derived from ICE-6G GIA fields and GRACE dataset, and part (i) is
same as (h) but with synthetic data derived using GIA model from Caron et al. (2018). The fields in parts (b), (c), (h) and (i) are smoothed with a Gaussian
500 km filter for better visualization.

Subfigures (b) and (c) show the GIA estimate obtained when using
ICE-6G model and the Caron et al. (2018) GIA model, respectively,
for generating the synthetic VLM data (equivalent to using these
models as priors). Subfigure (d) shows the difference in our GIA
estimate when switching between priors, which when compared
to the absolute difference in prior (g), is very small and below
the uncertainty. To further test the sensitivity of our estimates to
a change in prior, four significantly different priors were used. In
Fig. 4, we show these priors, corresponding GIA estimated from
our method, change in prior with respect to the ICE 6G model
and respective change in GIA estimates. It can be clearly seen that
the GIA estimates do not change much compared to the change
in prior. It is to be noted that where the GPS data availability is
good, for example in Fennoscandia, the impact of changing the
prior is negligible. The impact of prior is more prominent in regions
with poor GPS coverage, as can be seen over Canada where the
GIA signal is expected to be strong but has a relatively poor GPS
coverage. Still the change in estimated GIA is significantly smaller
than the change in prior. Therefore, it can be safely concluded that
unless a) the GIA models are extremely poor over a certain region
and b) it has a poor GPS coverage, the GIA estimates from our
method are reliable. In other words, our GIA estimates are heavily
data-driven.

The GIA solution obtained from our method is significantly dif-
ferent from the forward models over Alaska, which has an excellent
GPS coverage and recently has been attracting a lot of interest
(Jin et al. 2017; Hu & Freymueller 2019). Since this region is tec-
tonically active, the GPS stations suspected to be affected were

removed by discarding GPS time-series with jumps and very large
trends that cannot be driven by ice-loading and GIA. It is hypoth-
esized that a visco-elastic signal over Alaska is present due to ice
load changes during the little ice age (Larsen et al. 2005; Sato et al.
2012), which is missed by GIA models. Our estimates show a pos-
itive VLM of approximately 5 mm yr−1, which is similar to results
from Larsen et al. (2005). Our GIA solution is relatively stronger
over Greenland and weaker over Antarctica with respect to the two
forward model outputs used as prior. Since estimates of GIA over
Greenland and Antarctica from different studies vary a lot (White-
house 2018), our result will likely fall in the spread of various GIA
estimates.

Some negative signal is obtained over central South-America
and a positive signal over southern Africa, which may have been
misidentified as GIA either due to presence of local non-viscoelastic
signals in GPS data or due to approximations in the relations that
were used to convert geo-potential SH coefficients to VLM (in
Figs 3 and 2). In Fig. 3, subfigures (e) and (f) are an update on the
respective priors. The ICE-6G estimates over the North America
have better agreement with our estimates in comparison with GIA
estimates from Caron et al. (2018).

The estimated PDSMC trends (h and i) are consistent with known
hydrological trends. The water mass loss over California, High-
plain aquifers, Caspian sea, middle east, Northern India, Patag-
onia, Alaska, Greenland and Antarctica, are clearly visible (Tap-
ley et al. 2019; Vishwakarma et al. 2020a). The mass gain over
Africa, Amazon, Great Lakes, Three Gorges Dam in China, cen-
tral Antarctica and Australia are also revealed (Tapley et al. 2019;
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542 B. D. Vishwakarma et al.

Figure 4. Sensitivity of the GIA solution to change in prior GIA field. The first column shows the prior used. First element in the first row is the ICE 6G model,
second is half of the ICE 6G model, third is 150 per cent of the ICE 6G model, the fourth element is the GIA model from Caron et al. (2018), fifth is half of
the Caron et al. (2018) GIA model and sixth is 150 per cent of the Caron et al. (2018) GIA model. The second column is the GIA obtained from our method
corresponding to the prior in the first column. In the third column, first element shows the location of GPS stations by red cross to provide a perspective on GPS
coverage. Second element onward is the change in prior with respect to the ICE 6G model. The fourth column is the change in GIA estimate corresponding to
the change in the prior given in the third column.

Vishwakarma et al. 2020a). Hence the mathematical framework
is able to separate GIA and PDSMC trends over regions such as
Greenland and Antarctica, where the GIA signal is of opposite sign
to PDSMC, and it is not affected by large PDSMC signal where GIA
is negligible, such as the Caspian Sea, middle-East and north-west
India. Recently GRACE mascon products have become popular as
they provide users with ready to use high-resolution water mass
change estimates (Tapley et al. 2019). These mascon products re-
move model GIA to obtain PDSMC. Hence the choice of GIA model
has an impact on estimated hydrological signal. If we zoom over
north America (see Fig. 5), we can see that the PDSMC trends from
GRACE JPL mascon solution (Watkins et al. 2015), where ICE-6G
GIA model was removed, appear to have a hydrological signal over
the North-west Canada coinciding with one of the GIA bulge. Such
a signal is missing from our PDSMC estimate (Figs 5 c and d) and
our GIA estimate is smaller than ICE-6G in Canada (Fig. 3d). It
is likely that the ICE-6G model overestimates GIA in this region

leading to a hydrological signal in GRACE solutions coinciding
with the GIA bulge.

The GIA solution from the method demonstrated has a poor spa-
tial resolution for practical purposes, such as using it for removing
GIA signal from GRACE data that can be used for hydrological
studies, sea level studies, or estimating ice-sheet mass balance at
basin scale. Therefore, we propose to improve the spatial resolution
artificially by employing the approach by Chen et al. (2015), where
a high-resolution model is iteratively updated until it is truncated
and filtered version matches the GIA estimate from our framework.
To ensure that the iterations converge and the output is more mean-
ingful, the regions where we are confident that no GIA process exist
have been masked out, conservation of mass is ensured by forcing
the degree 0 terms to be zero. The strength of the forward mod-
elling approach is that it starts with a prior and then changes it until
its processed version is very close to the observations, hence, the
final output can be very different from the prior model wherever the
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Figure 5. GIA signal in JPL mascons PDSMC (EWH) fields. JPL mascon at 3◦ grid resolution is shown in (a), since they cannot be compared to filtered SH
solution, we show a filtered JPL mascon in (b). Part (c) shows the PDSMC trends from this study and (d) is the difference between (b) and (c).

Figure 6. The flow diagram for the forward modelling approach from Chen
et al. (2015) for improving the spatial resolution of the GIA solution. The
high-resolution GIA model is denoted by G, which when truncated and
filtered gives us Ḡ. The difference between Ḡ and the GIA solution from
our inversion (Go) is computed and added to the GIA model G. This process
is repeated until the root mean square of the difference between Ḡ and Go

is below a threshold α, which was chosen to be 0.1 mm.

model and observations do not agree. This is the reason, we have
a strong GIA signal over Alaska in both the high-resolution prod-
uct as well as the low-resolution GIA product from our inversion,
while such a signal is not in the prior GIA model. The flow diagram
adapted for our problem is shown in Fig. 6.

The final high-resolution GIA product is shown in Fig. 7. We have
used the ICE-6G model as a prior model here. In Fig. 8, we have plot-
ted the degree variance curves for GIA model from ICE-6G model,
our GIA solution, and the high-resolution GIA field obtained from
the forward modelling approach. The degree variance curves do not
deviate significantly, which ensures that the forwarding modelling
process does not introduce artificial low degree signals. We share
the data, Matlab codes, and outputs from this study via github:
https://github.com/WhythiskolaveriD/GIAinv.git. Please note that

users should be careful in accounting for GIA signal in GRACE at
spatial grid scale or commonly known as the level 3 products (for
more on this, please see: Vishwakarma et al. 2022).

3.4 Caveats

The framework presented here relies on approximate relations be-
tween SH coefficients and the solid Earth response due to either
GIA and PDSMC. These relations were obtained empirically and
they work well if the Earth’s viscosity profile is spherically sym-
metric and there are no lateral variations in viscosity of the upper
mantle (Wahr et al. 2000; Purcell et al. 2011). Furthermore, these
approximate relations, such as that given by Purcell et al. (2011),
are only reliable up to a certain degree and order (60 for Purcell
et al. 2011), which means using their relation can not help us cap-
ture short wavelength spatial features (represented by higher degree
SH coefficients). Since we are solving only up to degree and order
35, this limitation does not affect us, but readers that may use our
codes on a richer data set should keep this in mind.

Recent studies have suggested that the viscosity of the upper
mantle may vary from one place to another significantly (Barletta
et al. 2018), which means that the approximate relations used in this
study will not be able to capture such local deviations from a gen-
eral behaviour. Furthermore, it is assumed that the GPS observes the
total of elastic deformations due to PDSMC and the visco-elastic
GIA signal only. Any other process that results in VLM is assumed
to be negligible. To ensure that this assumption is valid, majority of
the stations in tectonically active regions and islands were removed.
Nevertheless, some stations in Alaska, South America and Africa
might be affected by our assumption. Therefore, we advise caution
on the readers end to interpret our results and use our scripts for
processing another data set. The negative rates in South America
and positive rates in southern Africa in our GIA estimate are likely
a result of caveats in the method. In our GIA estimates, the strong
signal over Alaska matches with recent studies from the GIA com-
munity. The GPS coverage and data quality over North America
and Europe is excellent, which increases our confidence in our GIA
estimates in these regions.

The GIA from our method is only up to degree and order 35
and needs filtering before it can be used for solving geophysical
problems. Since, truncation and filtering affect the spatial resolution
(Vishwakarma et al. 2018), we must apply a post-processing step
to improve the spatial resolution of the GIA gridded data set. We
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Figure 7. The GIA solution at 1◦ grid sampling.

Figure 8. S2: Degree variance curves for ICE 6G GIA model (blue), our GIA solution up to degree 35 (orange), and the high-resolution GIA solution obtained
with the help of forward modelling (red).

use the forward modelling approach from Chen et al. (2015), where
we ensured that the mass is conserved, the frame of reference is
consistent, and suppressing the GIA signal in regions where no
signal is suspected, to obtain GIA at 1◦ grid resolution. The final
GIA product can be used for Earth system science.

One of the most difficult part is the uncertainty estimation. Since
we are augmenting real GPS data with synthetic data in the spatial
domain and then solving the problem to obtain parameters in the
SH domain, statistically meaningful propagation of uncertainty is
non-trivial. Therefore, we opted for a Monte-Carlo type uncertainty
assessment with up to ±50 per cent changes in the amplitude of
prior GIA model used to generate the synthetic field. Addition-
ally, we allow the observation vector Y of eq. (9) to vary within
±20 per cent of its magnitude at a location and solve the model 300
times to obtain 300 GIA estimates that are then downscaled using
the forward modelling approach. The standard deviation of these
outputs is then referred to as the uncertainty in the GIA we ob-
tained, which is shown in Fig. 9. The uncertainty is highest near the
main GIA bulge over North America where we expect the largest

GIA signal, which can be explained as the allowed variability is
a function of percentage of the observation vector and prior GIA
magnitude. The uncertainty obtained is comprehensive but a proper
error propagation is required that we plan to attempt in another study.
The results over Alaska are meaningful because the uncertainty (≈
0.4 mm yr−1) is much smaller than the update on GIA signal (around
5 mm yr−1 of VLM) with respect to ICE-6G GIA model. Similarly
over Greenland the update on GIA is around 2 mm yr−1 of VLM
and the uncertainty is around 0.3 mm yr−1. However, over Antarc-
tica, the update is around 2 mm yr−1 of VLM and the uncertainty is
around 1.5 mm yr−1, which makes the GIA estimate over Antarc-
tica subject to scrutiny. The uncertainty over Antarctica is still low
compared to the absolute magnitudes and once can rely on our es-
timates as well as on any of the prior GIA model used. A better
coverage of GNSS over Antarctica will help us increase accuracy.
However, over Alaska and Greenland the results appear reliable.
Our results indicate that contemporary Greenland mass change es-
timates obtained using GRACE and ICE-6G GIA model might be
slight overestimated.
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Figure 9. Uncertainty in the estimated high-resolution GIA fields. Units are mm yr−1 VLM.

4 C O N C LU S I O N S

Separating the GIA signal from present day surface mass redis-
tribution is a challenging task. In this study, we provide a robust
mathematical framework that uses GNSS data and GRACE data to
solve this problem. The efficacy of the method is demonstrated in an
ideal synthetic closed loop environment. In reality, the application
of this method is limited by poor spatial coverage of GPS stations.
To overcome this limitation, GPS data compiled by the NGL are
augmented using virtual GPS stations with synthetic VLM data to
estimate the GIA VLM trend and the PDSMC trend between 2005
to 2015. We find that the method is heavily data-driven and not
very sensitive to the prior GIA model used for generating synthetic
VLM data. The results from our approach agree very well with the
general GIA pattern and we observe a significant deviation over
Alaska. We also provide data and scripts for users to include more
GNSS time-series from additional networks and separate GIA from
PDSMC with our data-driven framework.
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