
Microservice-Based Unsupervised Anomaly
Detection Loop for Optical Networks

Carlos Natalino1, Carlos Manso2, Lluis Gifre2, Raul Muñoz2, Ricard Vilalta2,
Marija Furdek1, Paolo Monti1

1. Electrical Engineering Department, Chalmers University of Technology, Gothenburg, Sweden.
2. Centre Tecnologic de Telecomunicacions de Catalunya (CTTC/CERCA), Spain.

carlos.natalino@chalmers.se

Abstract: Unsupervised learning (UL) is a technique to detect previously unseen anoma-
lies without needing labeled datasets. We propose the integration of a scalable UL-based
inference component in the monitoring loop of an SDN-controlled optical network. ©
2022 The Author(s)

1. Introduction

Machine Learning (ML) models are expected to enable the automation of several operations in optical networks.
Thanks to Optical Performance Monitoring (OPM) and network telemetry [1], more data are available, making
ML the perfect candidate to support provisioning, monitoring, maintenance, and quality assurance of Optical
Channels (OChs) [2]. Among them, ML-based Anomaly Detection (AD) is used to identify deviations from normal
operating conditions caused, for example, by performance degradation in optical devices, misconfiguration, or
even malicious activities [3–5]. Unsupervised Learning (UL) models are a promising candidate for the AD task.
They can detect anomalies using only current OPM data, without the need of models trained over previously
collected labeled datasets. One challenge with UL is scalability, since AD needs to be periodically performed
over all the OChs in the network. Executing UL models for several OChs over short monitoring intervals can
become impractical if models are not implemented and deployed appropriately. The work in [6] shows how a
microservice-based architecture improves the efficiency of the monitoring task in optical networks. However,
the authors considered only the application of Supervised Learning (SL) models, which have resource-intensive
training but lightweight inference. UL models, on the other hand, do not require training, but have resource-
intensive inference due to the need to process tens or hundreds of samples.

Leveraging the microservice-based architecture presented in [7], this work presents two deployment options,
i.e., stateless and stateful, for AD using UL models. For the stateless option, each inference request includes
all samples to be processed, and the inference component does not store any samples between requests. For the
stateful option, the inference component keeps a cache with the samples processed so far. As a result, an inference
request needs to include only the latest (i.e., newest) samples to be processed. The paper assesses the pros and
cons of both deployment options, coming to the conclusion that the stateless one is the most appropriate in terms
of scalability for the anomaly detection use case. Performance of a stateless anomaly inference component based
on the Density-Based Spatial Clustering of Applications with Noise (DBSCAN) algorithm is then validated in an
experimental setting showing the ability to scale the monitoring to up to 960 OChs while maintaining a suitable
response time (i.e., between 5 and 20 ms).

2. Microservice-Based Architecture for Unsupervised Anomaly Detection in Optical Networks

This work considers the microservice-based optical Software-Defined Networking (SDN) controller proposed in
[7]. Within the controller we propose 3 new components (Fig. 1a) for detecting anomalies in the OChs established
over the physical infrastructure. The anomaly detector performs anomaly cognition, i.e., it obtains OPM data,
interacts with the anomaly inference, and consolidates the inference results. The anomaly inference hosts the AD
model; it receives the raw OPM samples, executes the model over them, and returns the model result. Finally, the
anomaly mitigator computes, upon detection an anomaly, a solution to mitigate the effect of the anomaly.

Detecting anomalies using UL requires the processing of a given number of samples. This number defines the
accuracy of the inference results. In this work, we assume that the anomaly inference component requires W
samples to perform AD. The anomaly detection loop works as follows. The telemetry component collects OPM
samples from the device and/or the OCh being monitored every T time units. The anomaly detector queries the
inference component every D time units, with D ≥ T . Two options are available when deploying the anomaly
inference component. With a stateless option, each request from the anomaly detector contains all W samples to
be processed. With a stateful option, an extra cache component is deployed in the controller, which stores the
latest W samples associated with a particular device or OCh. As a result, a request to the anomaly inference by

(c)

Architecture

19/10/2021 6Secured autonomic traffic management for a Tera of SDN flows

Cloud-native Optical SDN Controller

…

…
Anomaly

Detector

AI AnalyticsAnalyticsAnomaly

Inference

Anomaly

Mitigator

Telemetry

(a)

Anomaly detection microservices

Telemetry Anomaly detector Anomaly inference Anomaly mitigator
Cache

OPM(id, data)

Stateless deployment

loop [for each optical channel]

Infer(id, samples)

Response(c_ids)

Stateful deployment

loop [for each optical channel]

Infer(id, sample)

GetSamples(id, sample, query)

Response(samples)

Response(c_ids)

Mitigating anomaly

Mitigate(id, a_id)

oc_id: optical channel id

c_ids: cluster ids

(b)

Fig. 1. (a) Anomaly detection components; (b) Messages exchanged among the proposed microser-
vices; and (c) Messages and services exposed by the anomaly inference component.

the anomaly detector contains only the latest n=dD/Te OPM samples, while the inference component obtains the
remaining and most recent W−n samples from the cache. Regardless of the deployment option (i.e., stateless or
stateful) a request to the anomaly inference results with an indication whether or not each one of the W samples
was detected as an anomaly. This is done by assigning a cluster ID value to each sample.

Fig. 1b shows the message exchange of the anomaly detection loop. First, the anomaly detector obtains the OPM
data from the telemetry component. In case of a stateless deployment, the anomaly detector queries the anomaly
inference component with a message including all of the W samples. In case of a stateful deployment, the anomaly
detector queries the anomaly inference component with a message including only n samples, while the anomaly
inference component retrieves the remaining W−n OPM samples from the cache. Regardless of the deployment
option, the anomaly inference returns the cluster ID values for all W samples. If an anomaly is detected, the
anomaly detector queries the anomaly mitigator, specifying the ID of the affected device or OCh and the anomaly
ID value. It becomes clear that W impacts not only the accuracy of the AD model, but also impacts the size of the
anomaly inference and cache messages. Depending on the deployment option (i.e., stateless or stateful) we need
to carefully tune the value of W . Fig. 1c shows the gRPC-like (gRPC Remote Procedure Call) data model used
to define the anomaly inference microservice, the related messages, and their respective parameters [8], inspired
by the Scikit-Learn Application Programming Interface (API) design [9]. The figure is specific for the DBSCAN
algorithm, but the model can be adapted to other anomaly detection algorithms. With the DBSCAN algorithm, we
need to specify the metric used to compute the distance between each sample pair (we use the Euclidean distance
as an example in Fig. 1c). Each OPM sample is defined in terms of floating point numbers that represent the values
of each feature. A detection request includes the ε (eps) and MinPts (min samples) parameters of the DBSCAN
algorithm, as well as the distance metric to be used and the set of samples to be processed. It may also include an
identifier of the source of the OPM sample (i.e., the device or OCh ID). A detection response contains as many
integer numbers as there are samples, representing the cluster ID of each sample. In our implementation, we use
−1 to indicate an anomaly, while normal clusters are identified by positive integers.

When comparing the stateless and stateful deployment options, the following observations can be made. In a
stateless deployment, the inference component is simpler and does not have to manage the interface with the cache.
Not having to deploy and maintain an extra cache also simplifies the architecture of the microservice-based SDN
controller. It also eliminates the need to query the cache for data at every inference. Therefore, in the performance
assessment work described in the next section we consider a stateless deployment only.

3. Performance Assessment

In this section, we focus on the anomaly inference component and its interaction with the anomaly detector. We are
interested in evaluating the impact of the number of samples W and the number of monitored OChs on the system
performance. We implemented the components from Fig. 1b using gRPC and the Rust programming language,
and deployed them over a Kubernetes cluster, which is responsible for monitoring and scaling the components
as their resource utilization varies. We enabled a Linkerd network mesh to perform load balancing among the
anomaly inference replicas [10].

We evaluate first how many samples are necessary to achieve the desired anomaly detection accuracy. For this
assessment, we use the physical layer security dataset described in [5] with 33 features collected from a coherent
transceiver for every sample. Besides the normal operating conditions, the dataset contains 3 different attack
strategies, each one with two intensities, for a total of six different attack scenarios. We build a detection request
containing 30 samples from one of these attack scenarios (chosen at random), and vary the number of samples

100 200 300 400 500
(a) W

0.75

0.80

0.85

f1
 sc

or
e

f1 score

W=330
f1=0.873

0 2000 4000 6000 8000 10000
(b) Time [sec]

0

50

100

150

CP
U
ut
iliz
at
io
n
[%
]

30 60
120

240 480 960

Scaling threshold
Utilization

2

4

6

8

Nu
m
be
r o
f R
ep
lic
as

Replicas

30 60 120 240 480 960
(c) Number of optical channels

0

10

20

30

40

Av
g.
 re

sp
on
se
 ti
m
e
[m

s]

Fig. 2. (a) Accuracy of the AD model; (b) CPU utilization and number of replicas over time (insets
represent the number of active OChs); (c) Average response time and its standard deviation when
varying the number of active OChs.

for normal operating conditions between 30 and 500. Fig. 2a shows the accuracy of the AD model averaged
over 50 experiments as a function of W . The accuracy is measured using the f1 score which ranges from 0 to 1,
with 1 representing the highest accuracy. Accuracy increases with up to 330 samples, while it slightly degrades
after that. This is why for the scalability performance assessments we assume W=330. We vary the load of the
inference component by changing the number of actively monitored OChs. The anomaly inference component
was configured to keep a minimum of two replicas, each with guaranteed 300 mCPUs and able to reach up to 500
mCPUs, and scale whenever its average CPU utilization over all replicas exceeds 50% of the guaranteed CPUs.
For a particular number of OChs, we generate detection requests every D=30 seconds during 15 minutes. Between
tests, we stop the anomaly detection requests for 10 minutes to allow the system to return to the initial state.

Three properties of the inference component are of interest: (i) CPU utilization, (ii) number of replicas, and (iii)
response time. Fig. 2b shows the relative CPU utilization (the % of CPUs used over the total CPUs guaranteed to
the component) and the number of replicas over time. Two replicas are sufficient to support the anomaly inference
for up to 120 OChs. For a higher number of OChs, we need more replicas. We also note that when the CPU
utilization increases beyond 50%, the component is quickly scaled (i.e., a new replica is instantiated) and the CPU
utilization stabilizes below 50%. We also monitor the average response time and its standard deviation experienced
by the anomaly detector after each detection request as a function of the number of OChs (Fig. 2c). Thanks to the
scaling of the anomaly inference component, the response time does not increase with the number of monitored
OChs. The average varies between 20 and 5 ms, which can be considered a very good response time given the
complexity of the DBSCAN algorithm. When compared to the response time reported in [6] for an SL model, i.e.,
an Artificial Neural Network (ANN) with a response time of 1 ms, performing a similar ML task, our UL model is
5−20x slower. Nevertheless, the response time is suitable for a 30-seconds monitoring interval with a significant
number of monitored OChs.

4. Conclusions

In this work, we proposed a scalable anomaly detection loop assisted by UL models suitable for optical network
infrastructures controlled by microservice-based SDN controllers.After considering pros and cons of both stateless
and stateful deployment options, we use the former for a performance assessment analysis. The obtained results
highlight the relation between accuracy and the number of samples processed during each inference. Moreover,
our analysis shows that by properly scaling the number of replicas, it is possible to maintain a relatively low
response time regardless of the number of monitored OChs.

Acknowledgements: Work partially supported by the EC H2020 TeraFlow (101015857), Spanish AURORAS
(RTI2018-099178-I00) and Vetenskapsrådet (2019-05008). Upon publication, the source code of this work will
be available at https://github.com/carlosnatalino/2022-OFC-unsupervised-learning.

References

1. F. Paolucci et al., JLT 36, 3142–3149 (2018). DOI: 10.1109/JLT.2018.2795345.
2. D. Rafique et al., JLT 36, 1443–1450 (2018). DOI: 10.1109/JLT.2017.2781540.
3. S. Varughese et al., in Proc. of OFC, (2019), p. W2A.46.
4. X. Chen et al., JLT 37, 1742–1749 (2019). DOI: 10.1109/JLT.2019.2902487.
5. C. Natalino et al., J. Light. Technol. 37, 4173–4182 (2019). DOI: 10.1109/JLT.2019.2923558.
6. C. Natalino et al., in Proc. of ECOC, (2021), p. We3E.2.
7. R. Vilalta et al., in Proc. of ECOC, (2019), p. Tu.3.E.2. DOI: 10.1049/cp.2019.0874.
8. “gRPC remote procedure call,” https://grpc.io/. Accessed: 2021-10-19.
9. L. Buitinck et al., in ECML PKDD Workshop, (2013), pp. 108–122. ArXiv 1309.0238.

10. “Linkerd service mesh,” https://linkerd.io/. Accessed: 2021-10-19.

https://github.com/carlosnatalino/2022-OFC-unsupervised-learning
https://doi.org/10.1109/JLT.2018.2795345
https://doi.org/10.1109/JLT.2017.2781540
https://doi.org/10.1109/JLT.2019.2902487
https://doi.org/10.1109/JLT.2019.2923558
https://doi.org/10.1049/cp.2019.0874
https://grpc.io/
https://arxiv.org/abs/1309.0238
https://linkerd.io/

