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INTRODUCTION

In the last decade, an increasing interest on Lagrangian particle methods has been

growing on, mainly due to the possibility of modelling physical phenomena characterized

by strong dynamics and large interface deformations. Among them, the Smoothed Particle

Hydrodynamics (SPH) is enjoying a great success because of its conservation properties (it

is relatively easy to write methods that conserve mass and energy), because of the almost

absent numerical dissipation connected with convection, and because of its ability to handle

free-surface �ows with front evolution and fragmentations (see, for instance, Colagrossi and

Landrini 1).

Recently, a considerable e�ort has been addressed to solve the Navier�Stokes equations in

Lagrangian formulation by SPH approaches (see, for instance, the reviews by Monaghan 2 ,

Springel 3), this being motivated by practical applications and by the desire of extending

the scheme beyond its original framework. Unfortunately, the solution of the Navier-Stokes

equations through SPH still represents a challenging problem, mainly due to the lack of

sound theoretical works about turbulence modelling in the Lagrangian context. In fact,

the Direct Numerical Simulation (DNS) of high Reynolds number �ows remains infeasible

because of the wide range of scales to be resolved, that span from the macroscopic ones

(determined by the length and velocity scales characterizing the problem at hand) to the

smallest dissipation scales (determined by the physical properties of the �uid).

An alternative approach is the solution of the Navier-Stokes equations in the time-

or ensemble-averaging formulation given by Reynolds averaged Navier�Stokes (RANS)

equations, where all the space and time turbulent scales are modelled. As large eddy

evolution strongly depends on the boundary conditions and on the size of the domain,

universal modelling for RANS is extremely di�cult (see, for instance, Wilcox 4). In SPH,

several attempts to use RANS approaches exist, these all relying on a direct inclusion of κ−ε

models (see, for example, Violeau and Issa 5 , De Padova et al. 6 , Leroy et al. 7).

The approach that lies in the middle between DNS and RANS is the Large Eddy

Simulation (LES), where only sub�grid turbulent eddies are modelled by space �ltering,

whereas the largest eddies are directly simulated (see, for instance, the classical reviews

by Lesieur and Métais 8 , Piomelli 9 , Meneveau and Katz 10 , Piomelli and Balaras 11). LES

modelling is expected to be easier than RANS modelling, because, when the discretization
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is �ne enough, the small sub�grid eddies should be closer to an �isotropic and homogeneous�

scenario and therefore much less dependent on the speci�c problem under investigation. This

(and the increased computer power) is probably the reason that determined the success

of LES approaches in the last years, possibly in conjunction with zonal approaches, like

Detached Eddy Simulation (see the review in Spalart 12), that bypass the strict requirements

for boundary layer simulations. In addition to these considerations, there is a further crucial

aspect that makes the LES approach most suited for modelling the Navier-Stokes equations

in the SPH sca�old, i.e. the structure of the SPH itself. Here the di�erential operators

are approximated by a space �ltering approach that somehow recalls the space �ltering

used in LES modelling, although based on a totally di�erent starting point and with a

di�erent goal. In SPH, in fact, the building block is the substitution of the di�erential

operators of the Navier�Stokes equations by their smoothed counterpart (see, for example,

Colagrossi et al. 13,14). This may be regarded as a convolution of each single operator with

a �molli�ed� Dirac function centred on particles that moves with the �uid and store the

dependent variables. The smoothed di�erential operators are, then, discretized through a

set of particles that transport the main physical variables (e.g. pressure, velocity etc.). The

way in which the continuous operators are represented at the discrete level leads to di�erent

schemes with di�erent numerical properties.

At present, various works deal with the LES modelling in particle methods such as

SPH15�18. Unfortunately, no rigorous derivation of such a procedure is provided, the LES

closures being often included by directly rewriting the Eulerian di�erential operators in the

SPH formalism. Further, most of the works that adopt LES approaches in SPH are applied

to the modelling of wave breaking or complex free-surface �ows for which the role played

by LES terms is di�cult to quantify. Recently, an attempt to validate an SPH model with

LES closures has been made by Mayrhofer et al. 19 for a 3D channel �ow. In the present

paper, we want to reformulate, in a rigorous and general way, LES modelling in the SPH

framework, in order to pave the way to a whole family of LES-SPH schemes. To this end, it

is necessary to reformulate LES �ltering in a Lagrangian context. This is done by using both

a space and time �ltering, this being the most general approach. This allows retaining the

simple structure of the Lagrangian Navier�Stokes equations (where the material derivative

of the velocity is proportional, via the mass, to the forces acting on the particle) and leads

to additional terms in the �ltered equations when adopting the SPH formalism, that must
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be properly modelled to re�interpret SPH �ltering as a sort of LES.

After proper closure formulas are provided (some prototypes are derived in the present

work), the proposed LES-SPH model may be in principle capable of representing very

challenging problems. Thanks to its Lagrangian structure, it may be suitable for the

modelling of complex �ows characterized by large deformations/fragmentations of the �uid

domain (e.g. free-surface �ows) and, at the same time, give a sound and reliable description

of the turbulent e�ects.

The paper is organized as follows: the Navier�Stokes equation in Lagrangian formalism

are recalled at �rst; Lagrangian Large Eddy Simulation with space�time �ltering is then

developed in section I; the SPH approximation of space operators is discussed in a LES

perspective in section II while a classical test case for the free decay of two-dimensional

turbulence is provided in section VI. Conclusions wrap up the paper. Details of Lagrangian

�ltering for LES are given in appendix.

I. LAGRANGIAN LARGE EDDY SIMULATION

In the present section, we cast the Large Eddy Simulation in a Lagrangian fashion. The

resulting scheme is used in the sequel to de�ne a general LES-SPH modelling.

In Lagrangian formalism, the Navier-Stokes equations for a barotropic weakly-

compressible Newtonian �uid read:

dρ

dt
= − ρ∇ · u ,

du

dt
= − ∇p

ρ
+ ν∆u + (λ′ + ν)∇ (∇ · u) ,

dx

dt
= u , p = F (ρ) ,

(1)

where u is the �ow velocity, p and ρ denote the pressure and density �elds respectively

and F represents the state equation. The hypothesis that the �uid is weakly-compressible

corresponds to assume:

dp

dρ
= c2 � max

(
‖u‖2 , p

ρ

)
, (2)

where c = c(ρ) is the sound speed (see e.g. Monaghan 20 , Marrone et al. 21). The viscosity

coe�cients ν, λ′ indicate the ratios between the Lamé constants µ, λ and the density ρ. The
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�uid being weakly-compressible, ν and λ′ are assumed constant. For incompressible �ows,

equations (1) reduce to 

∇ · u = 0 , ρ = constant ,

du

dt
= − ∇p

ρ
+ ν∆u ,

dx

dt
= u ,

(3)

Now, let us de�ne a Lagrangian �lter with compact support in R3 × R as follows:

φ = φ ( x̃p(t)− y, t− τ ) . (4)

The �lter is supposed to depend only on ‖x̃p(t)−y‖ and |t− τ |, and to be an even function

with respect to both arguments. Here x̃p(t) indicates the position of a material point that

moves with the velocity

ũ ( x̃p(t), t ) =

∫
R3

∫ +∞

−∞
φ (x̃p(t)− y, t− τ)u(y, τ) dτ dVy , (5)

that is:

x̃p(t) =

∫ t

t0

ũ( x̃p(τ), τ ) dτ . (6)

Hereinafter, we refer to x̃p and ũ as the �ltered position and velocity, respectively. We

underline that, unless the turbulent process may be regarded as an ergodic one, the time

and space �ltering procedures are not equivalent and do not correspond to an ensemble

averaging. The use of a space-time �lter is the most general formulation for Lagrangian

problems and is speci�cally suited for particle methods.

Since the state equation is generally nonlinear, F̃ (ρ) is di�erent from F (ρ̃) and,

consequently, the �ltering procedure cannot be applied to both pressure and density. To

avoid inconsistency, when we refer to �ltered pressure we mean

p̃ = F (ρ̃) . (7)
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Under this hypothesis, we apply the �lter in (4) to the Navier-Stokes equations for weakly-

compressible �ows and, integrating over R3×R, we obtain (see the appendix A for details):

dρ̃

dt
= − ρ̃∇ · ũ + ∇ · [ ρ̃ũ− ρ̃u ] ,

dũ

dt
= − ∇p̃

ρ̃
+ ν∆ũ + (λ′ + ν)∇ (∇ · ũ) − ∇

[
G̃(ρ) − G(ρ̃)

]
+ ∇ · T` + ũ∇·u ,

dx̃p
dt

= ũ , p̃ = F (ρ̃) , G(ρ) =

∫ ρ 1

s

dF

ds
ds ,

(8)

where

T` =

∫
R3

∫ +∞

−∞
φ (x̃p − y, t− τ) [ ũ(x̃p, t)− u(y, τ) ]⊗ u(y, τ) dVydτ = ũ⊗ ũ− ũ⊗ u .

the tensor T` being the Lagrangian equivalent of the sub-grid stress tensor. Note that the

symbol d/dt now stands for the Lagrangian derivative following the �ltered velocity �eld ũ.

For incompressible �ows (i.e. ρ̃ = ρ = const and p̃ indicates the �ltered pressure �eld as

in equation (5)), the system (8) simpli�es to

∇ · ũ = 0 ,

dũ

dt
= − ∇p̃

ρ
+ ν∆ũ + ∇ · T` ,

dx̃p
dt

= ũ ,

(9)

It is to be noticed that the choice of the space�time �lter (4) yields a system of equations

that retains the simple Lagrangian structure of the un�ltered Navier�Stokes equations (i.e.

a system of equations where the time derivative is computed on �uid particles that move

with the �ltered velocity). The same structure can be obtained by using a simple space

�lter, even though a di�erent closure is required for the additional terms as a consequence

of the absence of the time �lter.

Finally, we observe that the space-time �lter in the Lagrangian context is formally

identical to the analogous operation in the Eulerian context. Consequently, it can be veri�ed

that the formal relations between �ltered quantities with di�erent kernel supports (e.g.

Germano's identity22) still hold true and can possibly be applied for the development of

dynamic models.
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II. SPH APPROXIMATION WITH A LES PERSPECTIVE

Using the results of the previous section, we are now in a position to de�ne the main

ingredients of a generic weakly-compressible LES-SPH model. First, we brie�y recall

the structure of SPH and, then, we proceed to the construction of the �ltered LES-SPH

equations.

The smoothing procedure used in all SPH approaches somehow recalls the one used to

obtain the Lagrangian LES. The main di�erences between these �ltering procedures is that

SPH approaches adopt a �lter (�kernel� in the SPH terminology) that depends only on

the spatial variables (x̃p − y); furthermore, the smoothing procedure is not applied to the

Navier-Stokes equations, but rather to the di�erential operators, that are replaced by their

smoothed counterpart (see Colagrossi et al. 13,14).

It is possible, nevertheless, to reinterpret the Lagrangian LES through the SPH approach.

To this purpose, we split the �lter φ into

φ ( x̃p(t)− y, t− τ ) = W ( x̃p(t)− y ) θ( t− τ ) , (10)

where W indicates the SPH kernel. In SPH notation, the smoothing procedure of a generic

scalar �eld f is indicated as

〈f〉 ( x̃p(t), t ) =

∫
R3

W ( x̃p(t)− y ) f(y, t) dVy . (11)

Here, a time �ltering alone is introduced by the symbol

f (y, t) =

∫
R
θ ( t− τ ) f(y, τ) dτ . (12)

From the above de�nitions

f̃ =

∫
R3

∫ +∞

−∞
φ (x̃p(t)− y, t− τ) f (y, τ) dτ dVy

=

∫
R3

W ( x̃p(t)− y )

[∫ +∞

−∞
θ ( t− τ ) f (y, τ) dτ

]
dVy

=

∫
R3

W ( x̃p(t)− y ) f(y, t) dVy = 〈 f 〉 .

(13)

Note that, since x̃p depends on time, time �ltering and SPH smoothing (space �lter) do

not commute, i.e. 〈 f 〉 6= 〈f〉 (see, for example, the Appendix A 1). Since the time �lter is

the inner one, the overall LES-SPH scheme may be regarded as a spatial Lagrangian �lter
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applied to a set of time-averaged variables. In this sense, the time �lter may be thought

as an implicit �lter whose presence is accounted for through the modeling of the additional

terms.

Now, suppose that we want to compute a high Reynolds number �ow, for which LES

�ltering is required. Then, we need the �ltered variables ũ, p̃, ρ̃ for each �uid particle at

positions x̃p; at the same time, we want to approximate the operators in equation (8) in the

SPH fashion. Considering the SPH approach (see the appendix A for details), we can write:

∇ · ũ = ∇ · 〈u〉 = 〈∇ · u〉 . (14)

Of course, we cannot use time��ltered quantities like u to approximate the operator,

because we can compute only space-time �ltered variables ũ, ρ̃, p̃ associated to the particles

at position x̃p that move with speed ũ. However, note that, far from the boundaries,

di�erentiation and space �ltering commute and the operator is linear; therefore, the

divergence of the �ltered velocity can be recast as

∇ · ũ = 〈∇ · u〉 = 〈∇ · (u+ ũ− ũ)〉 = 〈∇ · ũ〉+ 〈∇ · (u− ũ)〉 . (15)

For con�ned �ows, the non-commutability of �ltering and di�erentiation must be taken into

account for a rigorous extension of the �ltering close to the boundaries (i.e. in those points

whose distance from the boundaries is smaller than the kernel radius). The above procedure

can be applied to all the remaining operators. By doing so, in SPH formalism the system

(8) reads:



dρ̃

dt
= − ρ̃ 〈∇ · ũ〉 + C1 + C2 ,

dũ

dt
= − 〈∇p̃〉

ρ̃
+ ν〈∆ũ〉 + (λ′ + ν) 〈∇ (∇ · ũ)〉 + M1 + M2 ,

dx̃p
dt

= ũ , p̃ = F (ρ̃) ,

(16)
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where:

C1 = − ρ̃ 〈∇ · (u− ũ ) 〉 , C2 = ∇ · [ ρ̃ũ− ρ̃u ] , (17)

M1 = − 〈∇ ( p− p̃ ) 〉
ρ̃

+ ν 〈∆ (u− ũ ) 〉 + (λ′ + ν) 〈∇ (∇ · (u− ũ) ) 〉 , (18)

M2 = −∇
[
G̃(ρ) − G(ρ̃)

]
+ ũ∇·u + ∇ · T` . (19)

Here C1 andM1 come from the SPH approximation procedure and require a SPH closure,

whereas C2 andM2 include all terms from the Lagrangian LES and require a LES closure.

Incidentally, we note that the term C2 is not present in LES models for compressible �ows

where Favre-�ltered variables are adopted (see, for example, Moin et al. 23).

The �ltered functions can be split as

ũ = u+ u′ , p̃ = p+ p′ . (20)

where u′, p′ represent small scale ��uctuations� in space. By doing so, C1 and M1 can be

rewritten as

C1 = ρ̃ 〈∇ · u′〉 , M1 =
〈∇p′ 〉
ρ̃

− ν 〈∆u′ 〉 − (λ′ + ν) 〈∇ (∇ · u′ ) 〉 . (21)

The system (16) can be regarded as a general LES-SPH model. The speci�c closures adopted

for terms C1, C2,M1 and M2 will de�ne a whole family of methods based on a consistent

inclusion of the LES approach in the SPH framework.

III. CLOSURES FOR C1 AND M1

In this section we provide some estimates for the terms C1andM1 of the LES-SPH model

in (16). Let us consider a scalar �eld f and its Taylor expansion:

f(y) = f(x) + ∇f
∣∣
x
· (y − x) +

1

2
(y − x) ·H[f ]

∣∣
x
· (y − x) + O

(
‖y − x‖3

)
, (22)

where the tensor H[f ] indicates the Hessian of the function f , namely Hij = ∂2f/∂xi∂xj.

Applying the spatial �lter and using its standard properties, we immediately obtain:

〈f〉 = f + αh2 ∆f + O(h4) , (23)
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and, substituting the leading order in the Laplacian, we also �nd:

〈f〉 = f + αh2 ∆〈f〉 + O(h4) . (24)

Here, h is a reference length of the spatial �lter support (generally denoted smoothing length

in the SPH literature) and α is a positive dimensionless parameter de�ned as follows:∫
R3

(y − x)⊗ (y − x)W (x− y ) dVy = 2αh2 1 . (25)

Following the works of Violeau and Leroy 24 and Dehnen and Aly 25 , we use the standard

deviation σ =
√
αh as a reference length for the SPH �ltering procedure instead of h. Using

equation (24), we obtain:

u′ = ũ− u = 〈u〉 − u = σ2 ∆〈u〉+O(σ4) , p′ = p̃− p = 〈p〉 − p = σ2 ∆〈p〉+O(σ4) ,

that is:

u′ = ũ− u = σ2 ∆ũ + O(σ4) , p′ = p̃− p = σ2 ∆p̃ + O(σ4) .

The above relations allows us to estimate the terms C1 and M1 de�ned in equation (21).

Speci�cally, substituting them in the de�nition of C1 and retaining the leading-order term,

we �nd:

C1 ' ρ̃ 〈∇ ·
(
σ2∆ũ

)
〉 , (26)

where the right-hand side represents the closure for C1. Substituting the above expression

in the continuity equation of the system (16) and using equation (24), we obtain:

dρ̃

dt
= − ρ̃ 〈∇·

(
ũ− σ2∆ũ

)
〉 + C2 = − ρ̃ 〈∇ · u〉 + O(σ4) + C2 = − ρ̃∇ · ũ + O(σ4) + C2 .

Similarly, applying the same procedure to estimate M1, we can rearrange the momentum

equation of the system (16) as follows:

dũ

dt
= − 〈∇p〉

ρ̃
+ ν〈∆u〉 + (λ′ + ν) 〈∇ (∇ · u)〉+ O(σ4) + M2 =

= − ∇p̃
ρ̃

+ ν∆ũ + (λ′ + ν)∇ (∇ · ũ) + O(σ4) + M2 ,

con�rming that the overall accuracy of the SPH approximation is O(σ4).
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IV. CLOSURES FOR C2 AND M2

For what concerns C2 and M2, we adopt a typical LES modelling. Note that this

corresponds to neglecting the action of the time �lter, that, in any case, can be taken

into account with more general and complex closures for C2 and M2. For the time being,

following Yoshizawa 26 we write:

M2 = ∇ · T` = ∇ ·
[
− q

2

3
1 − 2

3
νT Tr(D̃)1 + 2 νT D̃

]
, (27)

where q2 represents the turbulent kinetic energy, νT is the turbulent kinetic viscosity and D̃

is the strain-rate tensor, that is D̃ = (∇ũ+∇ũT )/2. Similarly to Yoshizawa 26 , we assume:

q2 = 2CY σ
2 ‖ D̃ ‖2 , νT = (CS σ)2 ‖ D̃ ‖ , (28)

where ‖D̃‖ is a rescaled Frobenius norm, namely:

‖ D̃ ‖ =
√

2 D̃ :D̃ . (29)

The dimensionless parameters CY and CS are respectively called the Yoshizawa and

Smagorinsky constants. In Yoshizawa 26 CY = 0.044 is used while, regarding the

Smagorinsky constant, CS = 0.12 has been adopted like in Lo and Shao 17 and in Dalrymple

and Rogers 18 . Note that the �rst two terms in expression (19) forM2 are neglected based

on the low Mach number �ow assumption (i.e. Ma< 0.1). For a general discussion on the

in�uence of compressibility in turbulent �ows see e.g. Blaisdell et al. 41 , Passot et al. 42 .

Further, as commented in Suh et al. 43 , also the �rst two terms in equation (27) are not

relevant for the same reasons.

For what concerns the term C2, we follow a similar approach and assume a Fick-like

di�usion law. Speci�cally, we put:

C2 = ∇ · [ ρ̃ũ− ρ̃u ] = ∇ · ( νδ∇ρ̃) , (30)

where νδ has the dimension of a kinetic viscosity and represents a turbulent di�usion

coe�cient. Similarly to the expression of νT , we assume the following structure:

νδ = (Cδ σ)2 ‖ D̃ ‖ , (31)

where Cδ is a dimensionless coe�cient. This has been set equal to 1.5 after some preliminary

numerical experiments. A complete calibration is postponed to future works.
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If the spatial derivatives of νδ are negligible, the above expression simpli�es as follows:

C2 = νδ ∆ρ̃ . (32)

This structure of C2 is practically identical to the di�usive term proposed by Molteni and

Colagrossi 27 . Both formulas in (27) and (30) have been modelled by using the standard

SPH di�erential operators. The details of the numerical implementation are described in

the following section.

V. NUMERICAL IMPLEMENTATION

Here we provide the details about the numerical implementation of the LES-SPH model.

The di�erential operators have been discretized through the expressions usually adopted for

the weakly-compressible SPH schemes (see, for example, Colagrossi et al. 13,14 , Le Touzé

et al. 28). Then, the discrete scheme reads:

dρ̃i
dt

= − ρ̃i
∑
j

(uj − ui ) · ∇iWij Vj + C(i)2 ,

dũi
dt

= − 1

ρ̃i

∑
j

(
pj + pi

)
∇iWij Vj + f i +

µ

ρ̃i

∑
j

πij∇iWij Vj + M(i)
2 ,

dx̃i
dt

= ũi , p̃i = c20 ( ρ̃i − ρ̃0 ) , Vi = mi/ρ̃i .

(33)

where µ, c0 and ρ0 indicate respectively the dynamic viscosity, the selected speed of sound

and the reference density. To satisfy the weakly-compressible assumption, c0 is chosen to

be at least one order of magnitude greater than the maximum �ow velocity (see Marrone

et al. 21 for details). The subscript `i' indicates the quantities associated with the i-th particle

at the position x̃i. Conversely, the letter `j' is used for a generic quantity associated with

a particle which is inside the compact support of the SPH kernel, i.e. Wij = W (x̃i − x̃j).

Consistently, the gradient ∇i indicates the di�erentiation with respect to x̃i, the symbols ρ̃i

and Vi are respectively the density and the volume of the i-th particle while the vector f i

represents a generic body force acting on the i-th particle. The particle mass, namely mi, is

maintained constant during the �ow evolution, thus ensuring the global mass conservation.

The �ltered pressure and velocity of the i-th particle are denoted through p̃i and ũi, while,
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in accordance with the results of Section III, pi and ui are expressed as follows:

pi = p̃i − σ2 ∆p̃i = p̃i − 2σ2
∑
j

( p̃j − p̃i )
x̃ji · ∇iWij

‖x̃ji‖2
Vj , (34)

ui = ũi − σ2 ∆ũi = ũi − 2σ2
∑
j

( ũj − ũi )
x̃ji · ∇iWij

‖x̃ji‖2
Vj , (35)

where x̃ji = (x̃j − x̃i) and the Morris et al. 29 formula has been adopted for the Laplacian.

As discussed in Section III, the above formulas leads to an overall approximation of order

O(σ4). The symbol π indicates the molecular viscosity term (see Monaghan 2) expressed as

function of u according to the results of Section III. It reads:

πij = K
(uj − ui ) · x̃ji
‖ x̃ji ‖2

, (36)

where K = 2(n+ 2) and n is the number of spatial dimensions. For what concerns C(i)2 and

M(i)
2 , we use the following expressions (see Section �IV):

C(i)2 = 4
∑
j

(
ν
(i)
δ ν

(j)
δ

ν
(i)
δ + ν

(j)
δ

)
( ρ̃j − ρ̃i )

x̃ji · ∇iWij

‖x̃ji‖2
Vj , (37)

M(i)
2 = −

∑
j

(
q2j + q2i

)
∇iWij Vj + 2

∑
j

(
ν
(i)
T ν

(j)
T

ν
(i)
T + ν

(j)
T

)
π̃ij∇iWij Vj . (38)

These derive from a straightforward generalization of the Laplacian of Morris et al. 29 and

of the viscous term of Monaghan 2 . Note that π̃ij is evaluated by using ũi instead of ui.

The expressions for q2i , ν
(i)
T and ν

(i)
δ are given in equations (28) and (31) while the strain-rate

tensor is computed through the formula below (see Colagrossi et al. 14):

D̃i =
1

2

∑
j

[ (ũj − ũi)⊗ (Li · ∇Wij) + (Li · ∇Wij)⊗ (ũj − ũi) ] Vj , (39)

where Li indicates the gradient renormalization tensor:

Li =

[∑
j

x̃ji ⊗∇Wji Vj

]−1
, (40)

which guarantees the �rst order completeness for the equation (39) (for details see30). The

C2 Wendland kernel has been chosen for the spatial �lter W (see e.g. Colagrossi et al. 31),

this implying α = 5/18 [see equation (25)], and a fourth-order Runge-Kutta scheme has been

implemented to advance in time the model. Furthermore, the packing algorithm described in
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Colagrossi et al. 32 has been used to obtain the so-called �glass-con�gurations� for the initial

particle positions. The main characteristic of these con�gurations is that the particle inter-

distance is close to the mean global value ∆x. Consequently, it is possible to associate the

same initial volume, namely ∆x2, to all particles even if their distribution is not perfectly

regular. These con�gurations are preferable to the Cartesian lattice since they avoid the

particle resettlement during the early stages of the evolution (see Antuono et al. 33). A ratio

σ/∆x = 2
√
α is used in all the simulations, this corresponding to about 50 particles (in 2D)

in the kernel support. In order to evaluate the energy spectrum during the post-processing

stage, the magnitude of the velocity �elds have been interpolated on a uniform Cartesian

mesh with spacing equal to ∆x. For the interpolation of the SPH scattered data, a Moving

Least Square technique has been used as described in Shi et al. 34 .

VI. NUMERICAL RESULTS: A PROOF OF CONCEPT

A. Freely-decaying turbulence in 2D

As a proof of concept of the modelling outlined above, we report some simulations of free

decay of two dimensional homogeneous turbulence, with di�erent values of the viscosity and

various discretizations. An exhaustive and in-depth analysis of this preliminary numerical

scheme is out of the scope of the present work and is postponed to future studies.

The initial conditions were chosen similarly to those of the physical experiment described

in Tabeling 35 for a regular con�guration with 64 vortices. These were cast in an array of

8 × 8 Taylor�Green vortices in a bi-periodic domain with size L × L (the reference length

L is set equal to 1). The maximum value of the velocity �eld in the initial con�guration is

U = 1 while a positive constant value, namely P0 = 2 ρ0 U
2, has been added to the pressure

�eld to avoid the onset of the so-called �tensile-instability� (see Swegle et al. 36). The initial

vorticity and pressure are shown in �gure 1.

In the �rst simulation, the Reynolds number was Rel = lU/ν = 1250, with l = L/8 the

vortex size. The turbulent �eld is displayed in �gure 2 in terms of vorticity distribution at

the non dimensional time tU/L = 3, for both a DNS and a LES simulation. In this case,

a direct simulation is still feasible with a discretization l/σ = 144, as shown in �gure 3

(here σ2 indicates the second momentum of the spatial �lter W as de�ned in Section III).
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In fact, the direct simulation is able to capture the main features of the energy spectrum

predicted by the Kraichnan's theory (see Kraichnan 37) and the direct and inverse energy

cascades with slope −3 and −5/3 are visible in both simulations. For this value of the

Reynolds number, the direct simulation shows a �attening of the spectrum for large wave

numbers (i.e. above kL > 200). This behaviour is typical of the standard SPH scheme and

FIG. 1. Two-dimensional freely-decaying turbulence. Initial con�guration: vorticity (left) and

pressure (right) �elds.

FIG. 2. Two-dimensional freely-decaying turbulence at Rel = 1250. Vorticity �eld at non-

dimensional time tU/L = 3, DNS-SPH (left), LES-SPH (Right).
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is not caused by an insu�cient spatial discretization, but rather by a spurious energy �ux

towards high frequencies. This has been explained in Ellero et al. 38 , as heuristically shown

in Colagrossi et al. 31 . On the contrary, the LES modelling seems to prevent and attenuate

this non-physical behaviour, and, at the same time, gives a correct representation of the

theoretical energy spectra for lower wave numbers.

Far more interesting is the simulation with Rel = 125, 000. For this case, three di�erent

particle discretizations were adopted, namely l/σ = 18, 36, 144. These are all insu�cient

for a correct direct simulation through the standard SPH scheme but are �ne enough

for the proposed LES-SPH model. This is con�rmed by the energy spectra of �gure 4,

where the three discretizations are reported. For the two coarser particle resolutions, the

energy distribution in frequency of the standard SPH is completely unrealistic, the slope

of the spectrum being even opposite to the expected one in most of the range. On the

contrary, the �nest discretization is able to reproduce the correct energy distribution up

to kL ∼ 30, while for higher frequencies the spectrum attains a non-physical plateau that

unveils a dissipation connected with the numerical approximation rather than with physical

phenomena. Conversely, when performing LES simulations, the portion of the spectrum

connected with inverse cascade (i.e. slope −5/3) is correctly captured with all the particle

FIG. 3. Two-dimensional freely-decaying turbulence at non-dimensional time tU/L = 3 for

Rel = 1250. Left: energy spectrum from a DNS-SPH simulation. Right: energy spectrum from a

LES-SPH simulation.
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spacings adopted, while for higher frequencies the energy content quickly drops, because of

modelling e�ects. As expected, the amount of resolved energy increases when re�ning the

discretization, as shown by the upward shift of the curves. Figure 5 shows the computed

vorticity �eld at the dimensionless time tU/L = 2 by both DNS and LES simulations; in the

former case the amount of non-physical noise on the solution is clearly visible in the left plot.

The increase of resolved energy with �ner discretizations is further con�rmed by the values

of the eddy viscosity, displayed in �gure 6. In fact, for l/σ = 18 the computed maximum

eddy viscosity was 60 times larger than the physical viscosity; for the �nest resolution, this

ratio drops to about 2.

For a chosen spatial resolution, we observe an increase of about 30% of the computational

costs of the LES-SPH models with respect to the simulations without the additional terms

C1,M1, C2 andM2.

1. Comparison with an existing SPH model

Here we show a comparison with the SPH model described in Dalrymple and Rogers 18 ,

this corresponding to the present LES-SPH scheme if C1,M1 and C2 are set to zero.

FIG. 4. Two-dimensional freely-decaying turbulence at non-dimensional time tU/L = 2 for

Rel = 125, 000. Left: energy spectrum from a DNS-SPH simulation. Right: energy spectrum

from a LES-SPH simulation.
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FIG. 5. Two-dimensional freely-decaying turbulence at Rel = 125, 000. Vorticity �eld at non-

dimensional time tU/L = 2. Top: DNS-SPH using spatial resolution l/σ equal to 36 (left) and

144(right). Bottom: LES-SPH using spatial resolution l/σ equal to 36 (left) and 144(right).

Figure 7 displays the energy spectrum obtained by using the model of Dalrymple and

Rogers 18 (black lines) and the proposed LES-SPH scheme (blue lines) for Rel = 1250 (left

panel) and Rel = 125, 000 (right panel). In the former case, the behaviour of the spectrum

in the inertial range is correctly described by both the models, while for the largest Reynolds

number the scheme of Dalrymple and Rogers 18 displays non-physical kinetic energy content

for high wave numbers.
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FIG. 6. Two-dimensional freely-decaying turbulence at Rel = 125, 000. Contour plot of the ratio

νT /ν at non dimensional time tU/L = 2, using di�erent spatial resolutions l/σ = 18 (left) and

l/σ = 144 (right).

FIG. 7. Two-dimensional freely decay turbulence. The energy spectrum obtained by using the model of

Dalrymple and Rogers 18 (black lines) and the proposed SPH-LES scheme (blue lines) for Rel = 1250 (left

panel) and Rel = 125, 000 (right panel).

This di�erence is mainly due to the action of the term C2 which, similarly to the di�usive

term in the δ-SPH scheme of Antuono et al. 40 , allows for a drastic reduction of spurious
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FIG. 8. Two-dimensional freely decay turbulence. The pressure �eld for Rel = 125, 000 as predicted by the

model of Dalrymple and Rogers 18 (left) and by the proposed LES-SPH scheme (right).

high-frequency oscillations that generally a�ect the weakly-compressible SPH schemes. The

e�ects of the action of C2 are displayed in �gure 8 where the pressure �eld predicted by the

two models is compared at t U/L = 2 for Rel = 125, 000. The left panel shows the results

obtained by using the model of Dalrymple and Rogers 18 while the right panel displays the

results of the present model.

The terms C1 andM1 generally play a secondary role. They principally act in opposition

to C2 andM2 since they behave as anti-di�usive terms [see equation (26)]. Speci�cally, they

limit the dissipation induced by C2 andM2 at high frequencies.

B. Decay of homogeneous turbulence in 3D

As a proof of concept for the proposed �ltering in three dimensions, in the present section

we report the simulations of homogeneous turbulence for various values of the Reynolds

number. The simulations are carried out in a tri-periodic box, namely 0 < xi < 2πL with

i = 1, 2, 3 and L = 1, and the initial conditions are generated in the Fourier space as in

Mansour and Wray 39 .

In particular, the Fourier components of the velocity are computed as

ûi(κ) = αe1i + βe2i , (41)
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where e1i and e2i are two mutually orthogonal unit vector in the plane orthogonal to the

wave vector κ. The complex coe�cients α and β are given by:

α =
E(κ)

4πκ2
exp (iθ1) cos (φ) , β =

E(κ)

4πκ2
exp (iθ2) sin (φ) , (42)

where θ1, θ2 and φ are uniformly distributed random numbers on the interval (0, 2π) and

κ = |κ|. The spectrum E(κ) is assumed as

E(κ) =
q2

2A

κς

κς+1
p

exp

[
− ς

2

(
κ

κp

)2
]
, (43)

where κp = 9 is the wave number at which the spectrum is maximum, ς = 4, q2 = 3 and

A is computed so that the initial turbulence intensity is unitary. This value U is taken as

reference velocity. Since the actual computation is in the real space, the velocity vector is

computed as:

ũ(x̃p, 0) = <
(
F−1[û]

)
(44)

where F−1[û] is the inverse Fourier transform of û and < is the real part. As stated in

Mansour and Wray 39 , although rather unrealistic as initial conditions, the spectrum evolves

toward the expected shape at a later time. The initial value for the Reynolds number based

on the Taylor microscale λ, i.e. :

Reλ = E

√
20

3 νε

(ε = −∂E/∂t being the dissipation rate) is around 1500, whereas it drops to 500 at the

�nal time tU/L = 5. The simulations were carried out with three di�erent discretizations,

namely 643, 1283 and 2563 particles initially arranged on a Cartesian lattice.

The two coarsest grids were also used to compute the turbulent decay without the

proposed LES �ltering, in order to highlight its e�ect. The results are shown in �gure 9 for

both simulations, along with the initial spectra. It can be clearly seen that the spectrum

evolves towards the expected shape (i.e. with an inertial range with slope −5/3) only for

the simulations with LES �ltering, the direct simulations being too coarse to capture the

proper energy cascade.

The comparison of the simulations for the three particle resolutions is shown in �gure

10, where it can be clearly seen that, as expected, the amount of resolved kinetic energy

increases with the resolution, because the reduced particle spacing is driving the simulation

toward a resolved direct simulation.
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FIG. 9. Three-dimensional homogeneous turbulence decay. Comparison between DNS-SPH and

LES-SPH simulations at tU/L = 5. Left: particle resolution 643. Right: particle resolution

1283. Initial spectra are also shown. The spectra are scaled with the average initial kinetic energy

< Ek0 >.

FIG. 10. Three-dimensional homogeneous turbulence decay. Comparison among di�erent

resolutions at tU/L = 5. The spectra are scaled with the average initial kinetic energy < Ek0 >.

The computed vorticity �elds are reported in �gure 11 for the simulation with 1283

particles with and without the LES modeling. It can be seen that the under-resolved direct
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simulation causes the persistence of high-frequency components that, on the contrary, are

quickly damped when the LES �lter is applied.

FIG. 11. Three-dimensional homogeneous turbulence decay at Reλ = 500. Comparison between

the intensities of the vorticity �elds for DNS-SPH (left) and LES-SPH simulations (right) using a

particle resolution equal to 1283.

VII. CONCLUSIONS

In the present paper, a general LES-SPH model is de�ned. First, Large Eddy Simulation

is reformulated in a Lagrangian context by �ltering all the variables in both time and space;

this procedure allows maintaining the Lagrangian structure of the Navier�Stokes equations

in term of material derivatives computed on particles that move with the �ltered velocity.

The Lagrangian formulation of LES is then used to re�interpret the SPH approximation

of di�erential operators as a speci�c model based on the decomposition of the LES �lter into

a spatial and time �lter. The derived equations represent a general LES-SPH scheme and

contain terms that in part come from LES �ltering and in part derive from SPH kernels. The

last ones lead to additional terms (with respect to LES �ltering) that contain �uctuations in

space, requiring adequate modeling. Finally, a closure of the LES-SPH scheme is proposed;

the model is then implemented in a numerical code, and some numerical simulations are

reported for free decay of two� and three�dimensional homogeneous and isotropic turbulence.

The obtained results prove that the expected characteristics of the �ow evolution are well
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captured by SPH simulations with relatively coarse particle discretization, if the correct LES

modeling is included.

It is to be underlined that no rigorous calibration of the coe�cients that appear in the

model was performed, because the main goal of the paper was to outline a correct LES

�ltering procedure in the SPH framework.

Future studies will be devoted to an in-depth analysis of the additional terms of the

LES-SPH scheme and to the extension of the proposed model in �nite domains (e.g., in

the presence of walls and/or �uid-�uid interfaces). This remains a major issue in LES-SPH

simulations of turbulence (see, for example, Mayrhofer et al. 19).
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Appendix A: Large Eddy Simulation in a Lagrangian framework: details of

computation

We �rst focus on the derivation of the �ltered momentum equation and consider the

Lagrangian derivative of ũ. Using the de�nition in (5), we obtain:

dũ

dt
=

d

dt

∫
R3

∫ +∞

−∞
φ (x̃p−y, t−τ)u (y, τ) dτ dVy

=

∫
R3

∫ +∞

−∞

d

dt
φ (x̃p−y, t−τ)u (y, τ) dτ dVy

=

∫
R3

∫ +∞

−∞

[
∂φ (x̃p−y, t−τ)

∂t
+
dx̃p
dt
· ∇xφ (x̃p−y, t−τ)

]
u (y, τ) dτ dVy

=

∫
R3

∫ +∞

−∞

[
∂φ (x̃p−y, t−τ)

∂t
+ ũ (x̃p, t) · ∇xφ (x̃p−y, t−τ)

]
u (y, τ) dτ dVy . (A1)

Since the �lter has a compact support, we can integrate by parts and drop the contributions

of the boundary integrals. Speci�cally, we can write:∫
R3

∫ +∞

−∞

∂φ (x̃p−y, t−τ)

∂t
u (y, τ) dτ dVy

= −
∫
R3

∫ +∞

−∞

∂φ (x̃p−y, t−τ)

∂τ
u (y, τ) dτ dVy

=

∫
R3

∫ +∞

−∞

[
−∂ [φ (x̃p−y, t−τ)u (y, τ)]

∂τ
+ φ (x̃p−y, t−τ)

∂u (y, τ)

∂τ

]
dτ dVy

=

∫
R3

∫ +∞

−∞
φ (x̃p−y, t−τ)

∂u (y, τ)

∂τ
dτ dVy . (A2)

Similarly, it follows:∫
R3

∫ +∞

−∞
[ũ (x̃p, t) · ∇xφ (x̃p−y, t−τ)]u (y, τ) dτ dVy

=

∫
R3

∫ +∞

−∞
[−ũ (x̃p, t) · ∇yφ (x̃p−y, t−τ)]u (y, τ) dτ dVy

=

∫
R3

∫ +∞

−∞
{ũ(x̃p, t) · ∇y [−φ(x̃p−y, t−τ)u(y, τ)] + φ(x̃p−y, t−τ) ũ(x̃p, t) · ∇yu(y, τ)} dτ dVy

=

∫
R3

∫ +∞

−∞
φ (x̃p−y, t−τ) ũ (x̃p, t) · ∇yu (y, τ) dτ dVy . (A3)

Therefore, summing up the two terms, we �nd:

dũ

dt
=

∫
R3

∫ +∞

−∞

d

dt
φ (x̃p−y, t−τ)u (y, τ) dτ dVy

=

∫
R3

∫ +∞

−∞
φ (x̃p−y, t−τ)

[
∂u (y, τ)

∂τ
+ ũ (x̃p, t) · ∇yu (y, τ)

]
dτ dVy (A4)
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The integrand can be rewritten as follows:

∂u (y, τ)

∂τ
+ ũ (x̃p, t) · ∇yu (y, τ)

=
∂u (y, τ)

∂τ
+ [ũ (x̃p, t)− u (y, τ) + u (y, τ)] · ∇yu (y, τ)

=
∂u (y, τ)

∂τ
+ u (y, τ) · ∇yu (y, τ) + [ũ (x̃p, t)− u (y, τ)] · ∇yu (y, τ)

=
du (y, τ)

dτ
+ [ũ (x̃p, t)− u (y, τ)] · ∇yu (y, τ)

= −1

ρ
∇yp+ ν∆yu (y, τ) + (ν + λ′)∇y (∇y · u (y, τ)) + [ũ (x̃p, t)− u (y, τ)] · ∇yu (y, τ)

Let us focus on the �rst term of the above expression. First, we introduce the variable G(ρ):

G(ρ) =

∫ ρ 1

s

dF

ds
ds ⇒ 1

ρ
∇yp = ∇yG(ρ) . (A5)

Then, integrating by parts, we obtain:

−
∫
R3

∫ +∞

−∞
φ (x̃p − y, t− τ)

1

ρ
∇yp dτ dVy

= −
∫
R3

∫ +∞

−∞
φ (x̃p − y, t− τ)∇yG(ρ) dτ dVy

=

∫
R3

∫ +∞

−∞
∇yφ (x̃p − y, t− τ)G(ρ) dτ dVy

= −
∫
R3

∫ +∞

−∞
∇xφ (x̃p − y, t− τ)G(ρ) dτ dVy = −∇xG̃(ρ) . (A6)

Since we work on the variable ρ̃, we rearrange the above result as follows:

−∇xG̃(ρ) = −∇xG(ρ̃) − ∇x

[
G̃(ρ)−G(ρ̃)

]
= − 1

ρ̃
∇xp̃ − ∇x

[
G̃(ρ)−G(ρ̃)

]
, (A7)

where p̃ is given by (7). The remaining terms of the integral are rearranged by using the

properties of the �lter. We obtain:∫
R3

∫ +∞

−∞
φ (x̃p − y, t− τ) ∆yu (y, τ) dτ dVy = ∆xũ (x̃p, t) (A8)

∫
R3

∫ +∞

−∞
φ (x̃p − y, t− τ)∇y (∇y · u (y, τ)) dτ dVy = ∇x (∇x · ũ (x̃p, t)) (A9)
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The last integrand term deserves a special attention. First, we write:∫
R3

∫ +∞

−∞
φ (x̃p − y, t− τ) [[ũ (x̃p, t)− u (y, τ)] · ∇yu (y, τ)] dτ dVy

=

∫
R3

∫ +∞

−∞
φ (x̃p − y, t− τ)∇y [[ũ (x̃p, t)− u (y, τ)]⊗ u (y, τ)] dτ dVy

+

∫
R3

∫ +∞

−∞
φ (x̃p − y, t− τ) [∇y · u (y, τ)] u (y, τ) dτ dVy (A10)

Then, using again the properties of the �lter, we obtain:∫
R3

∫ +∞

−∞
φ (x̃p − y, t− τ) [[ũ (x̃p, t)− u (y, τ)] · ∇yu (y, τ)] dτ dVy = ∇x · T` + ũ∇·u ,

where the tensor T` is given by

T` =

∫
R3

∫ +∞

−∞
φ (x̃p − y, t− τ) [ũ (x̃p, t)− u (y, τ)]⊗ u (y, τ) dτ dVy = ũ⊗ ũ− ũ⊗ u .

Summarizing, the �ltered momentum equation reads:

dũ

dt
= − ∇p̃

ρ̃
+ ν∆ũ+ (λ′ + ν)∇ (∇ · ũ)−∇

[
G̃(ρ)−G(ρ̃)

]
+∇ · T` + ũ∇·u . (A11)

As to the continuity equation, the �ltering procedure leads to the following result:

dρ̃

dt
= − ρ̃∇ · ũ + ∇ · [ ρ̃ũ− ρ̃u ] . (A12)

1. Non commutability of the spatial and time �lters

Here we provide an estimate of the di�erence between 〈f〉 and 〈f〉. Let us consider the

following expansions:

x̃p(t) = x̃p(τ) + ũ(t) (t− τ) + O
(
| t− τ |2

)
, (A13)

W (x̃p(t)− y) = W (x̃p(τ)− y) + ∇W
∣∣
x̃p(t)
· ũ(t) (t− τ) + O

(
| t− τ |2

)
. (A14)
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We multiply the latter equation for the time �lter θ(t − τ) and for a scalar �eld f(y, τ),

obtaining:

W (x̃p(t)− y) θ(t− τ) f(y, τ) =

W (x̃p(τ)− y) θ(t− τ) f(y, τ) + ∇W
∣∣
x̃p(t)
· ũ(t) (t− τ) θ(t− τ) f(y, τ) + O

(
| t− τ |2

)
=

W (x̃p(τ)− y) θ(t− τ) f(y, τ) + ∇W
∣∣
x̃p(t)
· ũ(t) (t− τ) θ(t− τ) f(y, t) + O

(
| t− τ |2

)
.

Integrating over (y, τ) ∈ R3 × R, we �nd:

〈 f 〉 = 〈f〉 + ε γ ũ · 〈∇f〉 + O(ε2) , (A15)

where ε is a reference period of the compact support of θ(t− τ) and∫
R
(t− τ) θ(t− τ) dτ = ε γ . (A16)

If θ is even, then γ = 0 and the overall error is of order O(ε2).

REFERENCES

1A. Colagrossi and M. Landrini, �Numerical Simulation of Interfacial Flows by Smoothed

Particle Hydrodynamics�, J. Comp. Phys., vol. 191, pp. 448�475, 2003.
2J. J. Monaghan, �Smoothed particle hydrodynamics,� Reports on Progress in Physics,

vol. 68, pp. 1703�1759, 2005.

3V. Springel, �Smoothed particle hydrodynamics in astrophysics�, Annual Review of

Astronomy and Astrophysics, vol. 48, pp. 391�430, 2010.
4D. Wilcox, Turbulence modeling for CFD. DCW industries La Canada, CA, 1998, vol. 2.

5D. Violeau and R. Issa, �Numerical modelling of complex turbulent free surface �ows with

the SPH Lagrangian method: an overview�, Int. J. Num. Meth. Fluids, vol. 53(2), pp.

277�304, 2006.

6D. De Padova, M. Mossa, and S. Sibilla, �SPH numerical investigation of the velocity �eld

and vorticity generation within a hydrofoil-induced spilling breaker�, Environmental Fluid

Mechanics, vol. 16, no. 1, pp. 267�287, 2016.
7A. Leroy, D. Violeau, M. Ferrand, and C. Kassiotis, �Uni�ed semi-analytical wall boundary

conditions for 2-D incompressible SPH�, J. Comput. Phys., vol. 261, pp. 106�129, 2014.

28



8M. Lesieur and O. Métais, �New trends in large-eddy simulations of turbulence�, Annual

Review of Fluid Mechanics, vol. 28, no. 1, pp. 45�82, 1996.
9U. Piomelli, �Large-eddy simulation: achievements and challenges�, Progress in Aerospace

Sciences, vol. 35, no. 4, pp. 335�362, 1999.
10C. Meneveau and J. Katz, �Scale-invariance and turbulence models for large-eddy

simulation�, Annual Review of Fluid Mechanics, vol. 32, no. 1, pp. 1�32, 2000.
11U. Piomelli and E. Balaras, �Wall-layer models for large-eddy simulations�, Annual review

of �uid mechanics, vol. 34, no. 1, pp. 349�374, 2002.
12P. R. Spalart, Trends in turbulence treatments. American Institute of Aeronautics and

Astronautics, 2000.

13A. Colagrossi, M. Antuono, and D. Le Touzé, �Theoretical considerations on the free-

surface role in the Smoothed-particle-hydrodynamics model�, Physical Review E, vol. 79,

no. 5, p. 056701, 2009.

14A. Colagrossi, M. Antuono, A. Souto-Iglesias, and D. Le Touzé, �Theoretical analysis

and numerical veri�cation of the consistency of viscous smoothed-particle-hydrodynamics

formulations in simulating free-surface �ows�, Physical Review E, vol. 84, p. 026705, 2011.
15H. Gotoh, T. Shibahara, and T. Sakai, �Sub-particle-scale turbulence model for the

MPS method - Lagrangian �ow model for hydraulic engineering�, Advanced Methods for

Computational Fluid Dynamics, vol. 9, no. 4, pp. 339�347, 2001.
16D. Violeau, S. Piccon, and C. J.-P., �Two attempts of turbulence modelling in Smoothed

Particle Hydrodynamics�, in Proceedings of the 8th International Symposium on Flow

Modeling and Turbulence Measurements, vol. 4. World Scienti�c, 2001, p. 6.

17E. Y. Lo and S. Shao, �Simulation of near-shore solitary wave mechanics by an

incompressible SPH method�, Applied Ocean Research, vol. 24, no. 5, pp. 275�286, 2002.
18R. Dalrymple and B. Rogers, �Numerical modeling of water waves with the SPH method�,

Coastal Engineering, vol. 53 (2-3), pp. 141�147, 2006.

19A. Mayrhofer, D. Laurence, B. Rogers, and D. Violeau, �DNS and LES of 3-D wall-bounded

turbulence using Smoothed Particle Hydrodynamics�, Computers & Fluids, vol. 115, pp.

86�97, 2015.

20J. Monaghan, �Simulating Free Surface Flows with SPH�, J. Comp. Phys., vol. 110, no. 2,

pp. 39�406, 1994.

29



21S. Marrone, A. Colagrossi, A. Di Mascio, and D. Le Touzé, � Prediction of energy losses in

water impacts using incompressible and weakly compressible models �, Journal of Fluids

and Structures, vol. 54, pp. 802�822, 2015.
22M. Germano, U. Piomelli, P. Moin, and W. H. Cabot, �A dynamic subgrid-scale eddy

viscosity model�, Physics of Fluids A: Fluid Dynamics (1989-1993), vol. 3, no. 7, pp.

1760�1765, 1991.

23P. Moin, K. Squires, W. Cabot, and S. Lee, �A dynamic subgrid-scale model for

compressible turbulence and scalar transport�, Physics of Fluids A, vol. 3, no. 11, pp.

2746�2757, 1991.

24D. Violeau and A. Leroy, �On the maximum time step in weakly compressible SPH�,

Journal of Computational Physics, vol. 256, pp. 388�415, 2014.
25W. Dehnen and H. Aly, �Improving convergence in smoothed particle hydrodynamics

simulations without pairing instability�, Monthly Notices of the Royal Astronomical

Society, vol. 425, no. 2, pp. 1068�1082, 2012.
26A. Yoshizawa, �Statistical theory for compressible turbulent shear �ows, with the

application to subgrid modeling�, Physics of Fluids, vol. 29, p. 2152, 1986.
27D. Molteni and A. Colagrossi, �A simple procedure to improve the pressure evaluation in

hydrodynamic context using the SPH�, Computer Physics Communications, vol. 180, pp.

861�872, 2009.

28D. Le Touzé, A. Colagrossi, G. Colicchio, and M. Greco, �A critical investigation of

smoothed particle hydrodynamics applied to problems with free-surfaces�, International

Journal for Numerical Methods in Fluids, vol. 73, no. 7, pp. 660�691, 2013.
29J. P. Morris, P. J. Fox, and Y. Zhu, �Modeling Low Reynolds Number Incompressible

Flows Using SPH�, Journal of Computational Physics, vol. 136, pp. 214�226, 1997.
30T. Belytschko, Y. Krongauz, J. Dolbow, and C. Gerlach, �On the completeness of meshfree

particle methods�, Int. J. Numer. Methods Engineering, vol. 43, no. 5, pp. 785�819, Nov.

1998.

31A. Colagrossi, A. Souto-Iglesias, M. Antuono, and S. Marrone, �Smoothed-particle-

hydrodynamics modeling of dissipation mechanisms in gravity waves�, Phys. Rev. E,

vol. 87, p. 023302, Feb 2013.

32A. Colagrossi, B. Bouscasse, M. Antuono, and S. Marrone, �Particle packing algorithm for

SPH schemes�, Computer Physics Communications, vol. 183, no. 2, pp. 1641�1683, 2012.

30



33M. Antuono, B. Bouscasse, A. Colagrossi, and S. Marrone, �A measure of spatial disorder

in particle methods�, Computer Physics Communications, vol. 185, no. 10, pp. 2609�2621,

2014.

34Y. Shi, X. X. Zhu, M. Ellero, and N. A. Adams, �Analysis of interpolation schemes for

the accurate estimation of energy spectrum in Lagrangian methods�, Computers & Fluids,

vol. 82, pp. 122�131, 2013.

35P. Tabeling, �Two-dimensional turbulence: a physicist approach�, Physics Reports, vol.

362, no. 1, pp. 1�62, 2002.

36J. W. Swegle, D. L. Hicks, and S. W. Attaway, �Smoothed Particle Hydrodynamics

Stability Analysis�, Journal of Computational Physics, vol. 116, pp. 123�134, 1995.
37R. Kraichnan, �Inertial Ranges in Two-Dimensional Turbulence�, Physics of Fluids, vol. 10,

no. 7, pp. 1417�1423, 1967.

38M. Ellero, P. Español, and N. A. Adams, �Implicit atomistic viscosities in smoothed particle

hydrodynamics�, Phys. Rev. E, vol. 82, no. 4, p. 046702, Oct 2010.
39N. Mansour and A. Wray, �Decay of isotropic turbulence at low Reynolds number�, Physics

of Fluids, vol. 6, no. 2, pp. 808�814, 1994.
40M. Antuono, A. Colagrossi, S. Marrone, D. Molteni, �Free-surface �ows solved by means of

SPH schemes with numerical di�usive terms�, Comp. Phys. Comm., vol. 181, pp. 532�549,

2010.

41, GA. Blaisdell, NN. Mansour, WC. Reynolds, �Compressibility e�ects on the growth and

structure of homogeneous turbulent shear �ow�, Journal of Fluid Mechanics,vol. 256, pp.

443�485, 1993.

42T. Passot, A. Pouquet. �Numerical simulation of compressible homogeneous �ows in the

turbulent regime�, Journal of Fluid Mechanics,vol. 181, pp. 441�466, 1987.
43J. Suh, S.H. Frankel, L. Mongeau, M.W. Plesniak, �Compressible large eddy simulations of

wall-bounded turbulent �ows using a semi-implicit numerical scheme for low Mach number

aeroacoustics�, Journal of Computational Physics, vol. 215(2), pp. 526�551, 2006.

31


