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In part I we argued that Newton’s first law implies that constant momentum (i.e. momentum
conservation) is associated with spatial invariance i.e. a lack of information in a certain direction.
This is equivalent to stating there exists no force in that direction. We argued that one may apply
the generator for translation in the spatial direction i.e. d/dx for x and apply it to a function f(x)
such that  df(x)/dx = (px). The simplest form is f(x)= (px)x. We also argued that it is precisely this
function which appears in Fermat’s least time principle because  time = distance/speed and one
may multiply time by  |p| = momentum magnitude.

Given that momentum and displacement are parallel vectors for a light ray,  p dot r = p
distance = (px)x + (py)y for a two dimensional problem (e.g. reflection or refraction). “Distance d”
is the key function to use because dd= xx + yy implies that for fixed y, d d/dx = x/d = sin(theta1)
(angle measured from y axis) so p d d/dx = (px) which is a conserved quantity if x is invariant.
Thus conservation of momentum for two rays is equivalent to extremization.  Extremization, we
argue, suggests there may be a built-in physical mechanism which allows a free particle to
correct itself if perturbed slightly  just like a Maxwell-Boltzmann gas which extremizes entropy
subject to constant average energy does.

This built-in mechanism should be linked to motion in space. Writing (px)x as ln(exp(ipx), one
not only obtains an eigenvalue equation i.e. -d/dx exp(i (px) x) = (px) exp(i px x), but the notion
of a relative change arises if exp(i px x) is interpreted as a kind of probability. A relative change
is natural because an absolute one ignores the idea that probability may differ with x even
though (px) is constant.

Thus from the idea of invariance in space found in Newton’s first law, which is equivalent to
conservation of momentum in that direction, the equation d/dx f(x) = (px) leads directly to -id/dx
exp(i px x) = (px) exp(ipx x) where exp(i px x) represents a physical probability type of wave
which stablilizes the constant (px) motion because this motion is equivalent to extremizing time
or |p| time or  p dot r / speed of light in Fermat’s principle. In other words, the quantum
mechanics of a free particle is associated with stabilizing wave behaviour exp(ipx x) which was
not seen experimentally at the time of Newton or Fermat, but seems to be part of their
formalisms, with Fermat’s principle derivable from Newton’s first law.

Conservation of Momentum and Extremization

The idea of conservation of momentum follows from Newtonian mechanics. In fact, we argue it
is present in the first law indicating that a particle with uniform speed moving in a certain
direction continues in this state unless acted on by a force. In Part I we argued that this
indicates invariance in this direction (as no force exists in the direction). As it stands, however,
this law is imposed on paper so to speak, but how is it imposed in nature?

This notion may be linked to the idea of extremization which is found in both Newtonian
mechanics and the equilibrium of a Maxwell-Botlzmann gas and which further seems to be
linked with periodic motion. Thus a particle in a stable equilibrium at x=xo may undergo periodic



motion about this point if perturbed and a gas perturbed in density may create periodic sound
waves. Also if f(e1) is increased or decreased there is a tendency for equilibrium to be restored.
In the case of Newton’s first and second laws, one does not generally think in terms of
extremization.
Extremization, on the other hand, is the basis of Fermat’s least time principle. In general,

however, Fermat’s least time principle is considered separate from Newton’s laws. In Part I,
however, we argued that an extremization equation follows from Newton’s first law.  In particular,
consider a two dimensional (i.e. two ray problem e.g. reflection) problem with the flat mirror
surface along the x axis at y=0. y=0 is a constraint so there is no invariance in the y direction in
the sense that the first ray must hit at y=0 and the second must begin at y=0. X, however, is
completely invariant, hence motion is uniform in x or more generally one has constant (px).
(One may argue that momentum and velocity are not the same. In Newtonian mechanics they
differ by the multiplicative constant mo, rest mass, but for light in a refracting medium E=pc so
p→pn and c→c/n. Thus in general the two are different and we focus on p because it is linked
with energy transfer.)

If (px) is constant we may consider (p1x) = (p2x) where p1 refers to the ray before it hits the
mirror and (p2x) after. One may further consider (p1y) = (-p2y). In such a case the magnitude of
momentum is the same before and after reflection which makes sense from the point of time
reversal symmetry. The (p1x) - (p2x) = p sin(theta1) - p sin(theta2) =0 , where theta is measured
from the y axis, is in the form of a extremum problem if sin(theta) may be written as d/dx of a
function.
The simplest function is:  A = (px) x.  Then dA/d = (px). Thus for a two ray reflection problem:

A1 + A2 = (px) x + (px)(L-x)  and d/dx (A1+A2) = 0 or (px)=(px)   ((1))

Here L is linked to the fixed starting and endpoint, namely  (x=0, Y) and (L-x, Y).
Fermat’s principle uses the more involved form:  time= distance/ speed of light with distance1 =
sqrt(xx + YY) and d2 = sqrt( (L-x)(L-x) + YY).

We note, however, that the momentum and displacement vectors of each ray are parallel to
each other so in two dimensions:

P dot r  =  (px) x + (py) y =  p distance = p sqrt( xx + YY )  or p sqrt( (L-x)(L-x) + YY)  ((2)).

Thus as noted in Part I, Fermat’s least time principle follows from Newton’s first law and
establishes a link between d/dx and (px) which is seen in free particle quantum mechanics

Concept of Probability

We have argued so far that both conservation of momentum and spatial invariance, say in the
x direction ,are found in Newton’s first law. Furthermore, we suggest that the spatial generator in
this invariant direction may act on a function A to yield the conserved quantity with:

A = (px) x  (This may be generalized ultimately to -Et + p dot r).)



One may write:   (px)x = -i ln(exp(ipx)).  We do not use exp(px x) or exp(-px x) because they
grow to infinite for different x regions.
Thus we have again “periodicity” associated with extremization. What, however, does this

periodicity mean? We argue that nature should have a mechanism to ensure constant (px) if a
particle moves in the x direction with x being invariant. This may be linked to periodic motion,
just a perturbed particle in stable static equilibrium is associated with such motion. Thus we
consider exp(ipx) to represent a kind of “probability” in space associated with a periodic
probability wave linked to constant (px) motion. One may note that the modulus exp(-ipx)
exp(ipx) = 1, so P(x) or spatial density is constant in x even though exp(ipx) is not. Such motion
could not be detected in Newton’s or Fermat’s time, but was seen in experiments in the 1920s.

We note that in information theory, ln(probability) is called information. If exp(ipx) is a kind of
probability, then (px) x might also be called formally information.

Thus we argue that the formalism of quantum mechanics pertaining to a free particle seems to
follow directly from Newton’s first law (which in turn implies Fermat’s minimum time principle).
One not only has the generator of translations in the direction of an invariant variable x i.e. d/dx
linked with (px) i.e. momentum  in that direction, but one is led to the notion of a kind of
probability exp(i px x). This form has an explicit wavelength proportional to 1/(px) which may be
seen in experiment. This suggests that conserved motion which may be expressed in terms of
extremization may have a physical mechanism which ensures the motion is stable.

Conclusion

In Part II we extend the idea of Part I that Newton’s law links invariance in a spatial direction,
say x, with conservation of momentum  (px) in that direction. The generator of translation in x is
d/dx so one may imagine a function f(x) such that df/dx = (px). The simplest is  f(x)=A(x) = (px)x
or p dot r if the p vector lies in a different direction. One may ask: What is the purpose of such a
function? We argue it is useful in an extremization problem. For example, consider a two
dimensional ray problem (e.g. reflection). (p1x) = (p2x). One may further assume that p1=p2
based on time reversal symmetry. Then:   A = (px) x + (py) y. If x is the invariant variable
because there exists a flat mirror at y=0,  p dot r = p distance = p sqt(xx+YY) and sqrt( (L-x)(L-x)
+ YY) for the two rays with initial/final points of (0,Y) and (L-x), Y). Taking d/dx of A1 + A2 and
setting it equal to 0 creates an extremization equation equivalent to conservation of (px).
At first one may consider this to be simply mathematical formalism, but the idea of extrema

appearing in stable equilibrium scenarios is found throughout physics with perturbations
associated with periodic motion. One may ask: Is there a physical mechanism ensuring that (px)
is conserved (constant) for an invariant x direction? We argue that (px) x = -i ln (exp(ipx x).
exp(ipx) may be considered as a kind of probability which does not grow to infinite. Then d/dx {
-i ln(exp(ipx x)) is equivalent to a kind of relative change linked to ensuring px remains constant.
This is the description of quantum mechanics for a free particle, which we argue follows directly
from Newton’s first law, via Fermat’s least time principle. Ultimately, however, experiment must
confirm the existence of a wavelength proportional to 1/(px), but this already happened in the
1920s.


