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Abstract—In this work, we present a novel traffic prediction
and fast uplink framework for IoT networks controlled by binary
Markovian events. First, we apply the forward algorithm with
hidden Markov models (HMM) in order to schedule the available
resources to the devices with maximum likelihood activation
probabilities via fast uplink grant. In addition, we evaluate the
regret metric as the number of wasted transmission slots to
evaluate the performance of the prediction. Next, we formulate a
fairness optimization problem to minimize the age of information
while keeping the regret as minimum as possible. Finally, we
propose an iterative algorithm to estimate the model hyperpa-
rameters (activation probabilities) in a real-time application and
apply an online-learning version of the proposed traffic prediction
scheme. Simulation results show that the proposed algorithms
outperform baseline models such as time division multiple access
(TDMA) and grant-free (GF) random-access in terms of regret,
the efficiency of system usage, and age of information.

Index Terms—Age of information, fast uplink, hidden Markov
model, internet-of-things, online learning, resource allocation.

I. INTRODUCTION

Recent advances in internet of things (IoT) has led to the
deployment of a large number of machine-type communication
(MTC) devices to collect real-time information. The number of
such IoT-MTC devices is rapidly growing to realize different
use cases such as environment monitoring, remote surgery,
and autonomous vehicles [1]. In 5G, MTC service modes
are massive MTC (mMTC) and ultra-reliable low latency
communication (URLLC) [2]. The quality-of-service (QoS)
demands vary among the service modes. In addition, many
use cases have recently had more strict demands, which need
extremely low end-to-end latency in a massive deployment of
IoT devices to collect real-time information [2].

The behavior of the traffic of MTC devices (MTDs) differs
from that of the traditional human-type communication devices
(HTDs) [3]. The HTDs traffic tends to be heterogeneous,
whereas the traffic of MTDs is homogeneous and highly
correlated. To elucidate traffic correlation in MTC, we consider
the following road safety example as in Fig. 1: let event 1
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Fig. 1: Traffic correlation scenario: A speed alarm would be active only if
the motion detector is active but not vice versa. The human detector signal
would only be important if the other two sensors are active.

and event 2 correspond to a vehicle moving down the street
at normal speed, and a vehicle breaking the speed limit,
respectively. Meanwhile, sensor 1 and sensor 2 are motion
detectors, necessary to control the traffic lights, and speed limit
alarm, respectively. In this scenario, event 1 will be detected
by sensor 1 only. However, both sensors may likely detect
event 2. Hence, we infer that sensor 2 will not likely be active
except if sensor 1 is active. Moreover, if sensor 2 is active,
sensor 1 will most probably be active but not vice versa. In
such a scenario, it is essential to estimate the possible sensor
activation pattern and allocate resources at low latency. If a
human is crossing the street, a human detector or a road safety
alarm could then transmit a signal to the BS. The BS in turn
sends a compulsory brake signal to a high-speed vehicle to
enforce it to slow down the speed. This all should occur within
a window of a few milliseconds to avoid an accident. The
importance of an uplink signal from the human detector in
this scenario is also dependant on whether the speed alarm is
active or not.

Another example to illustrate traffic correlation, let Marko-
vian event 1 and Markovian event 2 correspond to the exis-
tence of fire or no fire, and someone who smokes a cigarette
or no smoke, respectively. Meanwhile, sensor 1 and sensor 2
are heat and smoke detectors, respectively. In case of fire, both
sensors will detect the event. However, in case of smoking a
cigarette, event 2 will only be detected by sensor 2. Hence,
we infer that if sensor 1 is active, sensor 2 will be active with
high probability but not vice versa.



One important metric to measure the freshness of received
data from an IoT device is the age-of-information (Aol). Aol
was first introduced in [4]. It defines the freshness of infor-
mation (time elapsed since data at a source has been collected
and transmitted to a destination). Therefore, minimizing the
Aol in IoT networks has become essential when designing
scheduling algorithms [5].

A key element in communication systems is the design of
access protocols, which allow the devices to transmit their data
in an organized manner. In what follows, we discuss the short-
comings of existing massive access protocols. In conventional
LTE systems, the devices communicate with the base station
(BS) using the random access (RA) procedures [6], e.g., each
device goes through a 4-handshake procedure initiated by the
transmission of a random preamble followed by a random-
access response from the BS side. Afterward, the device
requests a connection and the BS responds with a contention
resolution message. However, this procedure suffers from high
signaling overhead and end-to-end latency, which fails to serve
strict low latency demands and results in a relatively high
Aol. Furthermore, due to the limited number of preambles,
it is susceptible to a high number of collisions in situations
where a large number of devices sporadically try to access the
network at the same time, such as in an alarm scenario [7].

Meanwhile, alternative solutions have been proposed to
solve the problems of collisions and signaling overhead in IoT
networks, from legacy time division multiple access (TDMA)
to grant-free (GF) schemes, and access class barring (ACB). In
TDMA schemes, the resources are distributed equally among
the devices without considering any scheduling algorithms.
Although TDMA is straightforward and efficient in periodic
transmission scenarios, it does not perform well when the
traffic is sporadic and event-driven. Therefore, GF access has
been proposed as an efficient procedure to reduce the signaling
overhead by skipping the preamble request and reply that
constitute the first 2-steps of the 4-handshake procedure [8].
Although GF solutions reduce the signaling overhead to half
of the grant-based RA, it fails when the number of potentially
active devices exceeds the available resources. In addition,
it suffers from a large number of collisions, which cause
high Aol experienced by the devices. Among the alternative
solutions, promising results have been obtained for ACB [9].
The device generates a random number between O and 1
and compares it with the ACB factor broadcasted by the
BS. The device can only access the BS if the generated
number is less than the ACB factor. Although the literature
has a vast amount of works extending the basic idea of the
ACB, such as extended ACB [10], cooperative ACB [11], and
dynamic ACB [12], ACB still fails to satisfy strict latency
requirements [13].

To this end, the need of extreme low latency in IoT urges
the design of novel access schemes to overcome the flaws
associated with the old ones. Learning-based schemes were
discussed in many surveys as the potential solution to the
existing problems of the proposed approaches in the literature
to overcome the RA limitations [14]. Moreover, many emerg-
ing IoT applications can exploit activation correlation and

traffic prediction to enable pre-emptive resource allocation and
achieve ultra-reliable and low latency communications. The
traffic correlation behavior of MTDs enables traffic prediction
and forecasting algorithms to anticipate the set of active and
silent MTDs. In this context, Fast Uplink (FU) grant was
introduced in [15] to allow for resource allocation based on
traffic prediction schemes.

A. Fast Uplink Grant

To elaborate more on FU grant, we consider K IoT devices
and L available transmission slots, where K > L. Each
device is stimulated to generate data packets at different time
slots controlled by different processes at the application layer,
e.g., triggered external events. Whenever a device generates a
packet, it will need a transmission slot to transmit it to the BS.
In the FU scheme, the BS allocates the available transmission
slots to the set of IoT devices that it believes will transmit in
the current time slot. The designed resource allocation scheme
should exploit the correlation of traffic pattern based on the
temporal and event dimensions.

The FU scenario relies mainly on traffic prediction. The BS
has to efficiently predict the probability of each device to be
active or silent and grant the available resources to those most
likely to be active, with some fairness guarantees. Some of the
potential advantages of applying FU are:

« Absence of scheduling requests and collisions leading to
a reduction in the energy consumption of IoT devices and
uplink latency;

e Clearance of signaling overhead between the devices
since learning occurs only at the side of the BS;

« It allows for the potential use of the uplink grant signal
to partially or fully estimate the channel condition at the
IoT devices side before actual uplink process (CSIT)'.

B. Contributions

In this work, we build upon [16], where we define the main
system model that consists of a set of binary discrete events
that affects the activation patterns of massive IoT devices.
The binary events are modeled as Markovian sources. We
introduce an FU algorithm that exploits the traffic correlation
to efficiently predict the IoT devices’ traffic pattern using
hidden Markov model (HMM) and the forward algorithm. The
forward algorithm is a learning algorithm that fits the proposed
HMM. The results show that the FU algorithm outperforms the
conventional RA and TDMA schemes in terms of the accuracy
and efficiency of resource allocation.

Another novel contribution is that we post-process the
prediction of the forward algorithm to lower the average
experienced for Aol all devices at each time step while
maintaining the prediction accuracy as high as possible. We
optimize an age parameter to increase the resulting alloca-
tion index of the high-age devices and guarantee a higher
degree of scheduling fairness. In addition, we formulate a

Notice that channel estimation is a proposed advantage when applying the
FU scheme, e.g., via pilot symbols transmitted within the uplink grant signal.
However, we leave this work for future implementation.



baseline model based on the forward algorithm that forms a
distribution of the activation probability using extremely low
computation resources. Furthermore, we estimate the model
hyperparameters to exploit the formulated FU algorithm in
real-time applications without prior knowledge of the model
hyperparameters. We then propose an online-learning version
of the FU algorithm, where the BS exploits only the set
of observations at each instant to allocate the resources to
the devices using the learnt hyperparameters. The simulation
results illustrate that applying the online-learning algorithm at
each instant still captures the age and the accuracy of the actual
genie-aided model and outperforms the traditional resource
allocation schemes and the HMM baseline scheme.

The contributions of this work are summarized as follows:

o We formulate the device activation probabilities for the
described HMM system model.

o We apply the forward algorithm to predict the active
devices and perform preemptive FU grant with low com-
plexity.

o We optimize an age parameter to compensate the Aol of
the devices that have experienced high Aol while pre-
serving the accuracy of the efficient forward algorithm.

o For the case of unknown hyperparameters of the model,
we apply an expectation-maximization algorithm to es-
timate the event transition probabilities and the device
activation probabilities based only on the observations.
Then, we apply the estimation procedure to present an
offline-learning version of the FU algorithm.

o Finally, we rely on both the Aol compensation and
the learned parameters to formulate an online-learning
scheme that allows the BS to perform the FU algorithm in
real-time applications, without prior availability of large
activation data sets.

o The proposed online and offline schemes clearly outper-
form conventional GF and TDMA in terms of resource
allocation efficiency while guaranteeing a favourable
amount of fairness via age compensation.

C. Outline

The rest of the paper is organized as follows: Section II
discusses the related literature. Section III depicts the system
model for the IoT device. It also explains performance metrics
that are used to evaluate the performance of the proposed FU
schemes. Next, Section IV applies the forward algorithm to
predict the traffic pattern of IoT devices. After that, Section V
discusses the online-learning version of the FU algorithm.
Section VI depicts and discusses different results for the
performance evaluation. Finally, Section VII concludes the
paper and discusses future research directions.

Notation: Boldface lowercase letters denote vectors. Pr
denotes the probability equation. In addition, [z]T refers to
max (0, z), arg max is the maximization notation, and arg min
is the minimization notation. Z is the mean of x and C(a,b)
is the cost function, where a and b are the parameters to be
optimized. To make the paper more tractable, we summarize
the key abbreviations and symbols that will appear throughout
the paper in Table 1.

TABLE I: Important abbreviations and symbols.

ACB access class barring

Aol age-of-information

CMAP coupled Markovian arrival process
CMMPP coupled Markov modulated Poisson process
DRL deep reinforcement learning

FU fast uplink

GF grant-free

HMM hidden Markov model

LSTM long short-term memory

MTD machine-type communication device
NOMA non-orthogonal multiple access
PDF probability density distribution
RA random access

RNN recurrent neural network

SVM support vector machine

TDMA time division multiple access

K number of IoT devices

L number of frequency resources

N number of Markovian events

Z number of Baum-Welsh iterations
€0, €1 temporal transition probabilities
Ink activation probabilities

wt wrong allocations

[t missed allocations

Jo] age parameter

It(i)l scheduling priority index

R average regret

A average age

II. STATE OF THE ART

Many learning-based schemes have been proposed in the
literature for resource allocation in IoT networks. In this
section, we present a brief literature review of the existing
schemes and discuss their limitations. To begin with, in [17],
[18], the authors studied the activation of devices following
coupled Markov modulated Poisson process (CMMPP) and
coupled Markovian arrival process (CMAP) traffic models,
respectively. However, they did not offer resource allocation
schemes based on these traffic models. In [19], the authors
used an HMM model to build a decision fusion algorithm that
investigates the correlation time between binary sources in a
wireless sensor network (WSN). In the same context, the work
in [20] exploited the correlated activity of devices to develop
heuristic protocols for GF RA. Sinusoidal spreading sequences
were proposed in [21] to enable FU grant based on free non-
orthogonal multiple access (NOMA), whereas authors in [22]
discussed hybrid resource allocation schemes to overcome the
large signaling overhead and collision problems resulting from
message replications in GF transmission. Moreover, in [23],
Samad et al. introduced a multi-armed bandit algortihm to
perform FU grant in IoT networks. However, this work also
came short from exploiting the traffic correlation on the event-
temporal basis.



The authors in [24] present an FU grant algorithm based on
support vector machines (SVM) and long short-term memory
(LSTM). However, the addressed algorithm needs efficient
hardware at the BS to carry out complex neural networks
computations. Authors in [25] presented an FU grant-based
federated learning approach, where the BS relies on the traffic
estimation at the side of the devices. Although performing the
estimation at the side of the devices side reduces the com-
plexity at the BS side, which is responsible only to perform
allocation, it requires the low power end devices to perform
complex computations. In addition, authors in [26] formulate
a reinforcement learning algorithm for resource allocation
in device-to-device (D2D) communications, whereas authors
in [27] propose a recurrent neural network (RNN) model based
on meta-learning to predict the millimeter wave (mmWave)
link blockages. Mohammadi et al. [28] presented a multi-
agent deep reinforcement learning (DRL) solution for resource
allocation, authors in [29] proposed a clustering-based solution
to perform resource scheduling depending on each cluster
priority and demands, and the work in [30] presented a
survey of recent artificial intelligent (Al)-based frameworks for
resource allocation in diverse use cases. Table II summarizes
the existing reviewed literature.

The majority of the referred literature relies on the use of
machine learning and reinforcement learning schemes, which
need to perform complex computations either at the BS side
or the IoT devices side. This requires powerful hardware and
a long training duration that reflects some challenges on the
usage of machine learning in communication systems [31].
In addition, IoT networks are often driven by interactive
applications, where observations are provided based on hu-
man/machine interaction over time, which means that adding
a set of new observations to the collected observations for a
period of time changes the model and the learning problem.
Therefore, online learning becomes necessary [32]. Hence,
generalized complex machine learning schemes might not be
able to train real-time IoT networks as they require extremely
powerful hardware to perform their learning algorithms online
and simpler, specially tailored, learning schemes are required
for online learning scheduling algorithms [33]. In this work,
we present a stochastic-based solution, which fits well with the
proposed HMM model. Moreover, it is very efficient in terms
of prediction accuracy and simpler than the existing machine
learning solutions in the literature.

III. SYSTEM MODEL AND PROBLEM FORMULATION

Consider an IoT network, such as NB-IoT, with K IoT
devices relay their information to a single BS as depicted in
Fig. 2. As in conventional LTE FU, the transmission resources
are link is divided into time slots, and in every time slot the BS
can schedule up to L devices for transmission in L frequency
slots. The scheduled devices are assigned to transmission slots
and they transmit only if they are active (i.e. if they have data
to transmit). If a device is scheduled for transmission while
inactive, the uplink resource is wasted.

We denote the activation of device k in discrete time slots
t = 1,2,... by the random variable Agk). Agk) = 1if

TABLE II: Sumary of the literature review.

Main scope Literature Sub-topics
M. Laner et al. [17] CMMPP
Traffic Models | E. Grigoreva et al. [18] CMAP
P. Rossi et al. [19] HMM in WSN
A. E. Kalgr et al. [20] GF-RA

RA-based S. M. Hasan et al. [21] NOMA FU grant
7. Zhou et al. [22] Hybrid resource allocation
S. Ali et al. [23] Multi-armed bandit

FU grant E. Eldeeb et al. [24] SVM and LSTM

O. Habachi et al. [25] Federated learning

1. AlQerm et al. [26] Reinforcement learning

A. E. Kalgr et al. [27] Meta-learning and RNN

Deep learning F. Mohammadi et al. [28] | Multi-agent DRL

X. Liu et al. [29] Clustering
D. Hejji et al. [30] Al survey
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Fig. 2: The considered activation model, in which N On-Off Markovian
processes control the activation of K devices. If process n is in the On-state
it activates device k£ with probability gy, x.

the device is active, otherwise Agk) = (. The activation
of IoT devices at time ¢ is indicated by the vector A; =
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A. State Transition Probabilities

The activation of the devices is controlled by N independent
two-state Markov processes. The Markovian processes swing
between On and Off states, where at time ¢, the state St(n) S
{1,0}, is governed by temporal transition probabilities e%"),
€y as shown in Fig. 2, where
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To this end, we define the state vector at time ¢ as S; =
{St(l), ...,St(N)}. The Markov processes that are in the On

state, i.e. St(") = 1, may activate specific [oT devices, where
the probability that Markov process n activates device k is
given by qnk-

B. Device Activation Probabilities

A certain device becomes active if one or more of the
Markovian states activates it. Thus, the probability that device
k is active at time ¢ is

Pr (A,Ek) - 1‘st) —1- ﬁv] Pr (Ai’“ - o‘st(”)) )
n=1

N
=1- [0 - au)™”, ©)
n=1
where the activation is considered to be conditionally inde-
pendent given the state vector S;.
Furthermore, the probability that IoT device k£ will be active
at the future time instant ¢ + 1 given the state vector at time
t can be written as

N
Pr (Ag@l —1 st) —1-()Pr (Agf?l —0 St(”)) )

n=1

N
=1- ] r(n), (8)

n=1

where
h(n) _ 1- 6(1n) + 6(ln)(l - an)v Sign) =0 9)
(11— gu), S =1

C. Performance Evaluation Metrics

Next, we define key performance metrics that are essential
to evaluate the proposed FU scheme with traffic prediction and
compare it to existing allocation schemes.

1) Regret: The regret is one of the key metrics used
to evaluate the performance of scheduling algorithms using
learning schemes [15]. We define one unit of regret as wasting
aresource on an inactive device while one active device did not
receive a resource. Therefore, regret is the accumulated regret
units at each time slot that resulted from the prediction and
scheduling of active devices. Consider the uplink grant vector
U, = {ugl), e ,uﬁm}, where ugk) =1 if a slot is allocated

to device k at time ¢ and ugk) = 0 if device k does not receive

a transmission slot. The number of wrong allocations at time
instant ¢ can be calculated as the difference between the uplink
grant vector u,(fk) at time instant ¢ and the activation vector
Agk) at time instant ¢ as follows

K

b=

(10)

where [z]T = max(0,z). In addition, the number of missed
allocations can be computed as the difference between the

activation vector Agk)

at time instant ¢ and the uplink grant
vector ugk)

at time instant ¢ as follows:

K
= {Aﬁk) - U§k)] "

k=1

(1)

Hence, the regret function at time ¢ is defined as
R(t) = min {ws, ps } .

Then, minimizing the long-term R(t) is an important target,
when designing an FU grant scheme.

The meaning of the regret function can be understood by
considering the following three cases. First, if M > L devices
are active and all the L uplink grants are given to a subset of
the active devices, then w; = 0 and u; = 0. This results in
a regret of R(t) = 0, reflecting that the number of unserved
devices is minimized. If no devices are active, and the L grants
are given to inactive devices, w; = L and p; = 0. This also
results in R(t) = 0, again reflecting a minimum number of
unserved devices. Finally, if M < 2L devices and scheduler
assigns grants to M /2 of the active devices and L — M/2
inactive devices, then wy = L — M/2 and pu; = M/2. The
regret is then R(t) = min(L — M/2, M/2), which renders the
number of unserved devices that could have been served if the
allocation process was more accurate.

2) System usage: We propose the system usage metric
which would help with evaluation the efficiency of the pro-
posed FU grant allocation scheme. The average system usage
1y at time t is defined as the ratio between the number of
transmission slots that are successfully used by an IoT device
to the total number of available slots L averaged over time.
That is

(12)

1<

m=r> L—w. (13)
7=0

The average system usage marks the percentage of transmis-

sion slots that are successfully used for uplink by the IoT

devices.

3) Age of Information: To measure the freshness of data
and the degree of fairness in scheduling the devices, we define
the discrete Aol [5], [34] of device k as the time passed since
the device transmitted a packet. That is the last time instant in
which device k was active and received a transmission grant
and

AP =¢ ¢ (14)

where t;, < t is the last time slot before ¢, when Agf) =
ugi) = 1 and the Aol should be a non-negative integer. The
average age per device at a certain time is defined as

1 K
A=Y AW,

Meanwhile, the peak age per device can be noted as
maxy {A®)}.

Aol is important in the proposed scenario since it provides
a measure for the freshness of the data received from each
IoT device. This means that if a device is rarely scheduled for
transmission, the information stored at the BS from this device

15)



will be outdated as the device’s age becomes too high.Hence,
it is also considered as a measure of fairness, where higher
average ages mean that some devices are rarely scheduled and
low average age means that devices are fairly scheduled.

Remark 1. We assume that the BS has pre-knowledge of the
environment, and hence knows the state transition probabilities
€™ and the device activation probabilities qyni. Therefore,
the BS aims to jointly minimize the regret and the Aol and
maximize the system usage by scheduling the available trans-
mission resources to the devices. In addition, we investigate
the same objective while assuming that the state transition
probabilities and the device activation probabilities are not
fully known by the BS. Hence, the BS needs to estimate the
model hyperparameters via estimation algorithms.

IV. THE PROPOSED FAST UPLINK ALGORITHM

This section analyzes the device’s temporal activation prob-
abilities and exploits them to develop the traffic prediction-
based FU scheme. The BS uses the set of past observations
of each device to predict the hidden states for each event.
Afterward, it uses the set of predicted hidden states to generate
an estimate for the future observations for each device.

A. Traffic Prediction

The BS does not know the states of the Markov processes
and hence, continuously needs to estimate them based on the
observations. Notice that the activation process of the IoT
devices can be described by an N-HMM as typically detailed
in [35]. Concretely, the forward algorithm can be applied by
the BS to learn the probability of events being in a certain
state given the history of IoT devices activation observations
done by the BS [36]. The BS can exploit the learned state
distribution to estimate future device activation probabilities
and patterns.

To obtain a clear understanding of the forward algorithm,
consider the joint probability p(S;, A;). The forward algo-
rithm is able to efficiently compute this joint probability in
a recursive way as in [37]. Herein, the forward algorithm is
described as follows

P(St, A1) = p (A¢[St) Z P (SelSt—1) p(St—1, Ar:—1)-
Si 1
(16)
Then the most likely hidden state for the events can be learned
using
S; = argmax p(S¢, A1t). 17)
The estimated hidden states at time instant ¢ are used to predict
the activation probabilities of each device at time instant ¢+ 1
using (7). The predicted device activation probabilities can be
formulated as

Pr (A:_g) =1

s;‘) —1- (N] Pr (Ag@l - 0‘3;*(")) . (18)
n=1

Alternatively, the BS can use the forward algorithm results
directly to predict the maximum likelihood of the pattern of
the devices in the next time instant

A= ar§; max Z Pr(A:+1]St) p(St, A1)
t+4+1 St

19)

K
= argmaXZp(St,Al:t) H Pr (Aglj_)l = bk‘st) ,
k=1

At S,
(20)

where A7 ; is the maximum likelihood estimate of the set of
active ToT devices at time ¢ + 1, and by, € {1,0}.

Note that (19) evaluates the probability of a full pattern.
Hence, it gives the most likely activation pattern and does not
consider the activation probability of each device separately.
Meanwhile, when performing uplink grant allocation, the BS
should select the L devices which are most likely to be jointly
active. In order to determine these devices, we assume that
the system is in the most likely state, found from (17), and
exploit this assumption to compute the transition probability
of the events as follows

RS =Pr (s =1

which will be used to determine the activation likelihood of
each device as

2D

S = 1) :

Pti(tf;/)ice = P(g111) “q1k U

Péﬁ) “q2k U

U (24)

(25)

(22)
(23)

P(()LL) “n k-

Finally, the devices are sorted by their activation probability,
and the L devices most likely to be active are scheduled in
the next slot.

B. Baseline Model

We develop a baseline model that can capture the behavior
of the devices efficiently with low computational complexity
using the steady-state probabilities of the events p (St(n)) as
follows

Praf =1)=1-3% ﬂ (1= au)¥ " 'p (), 26)

S n=1
where -
6071 S(n) =0
), () - = U
p(s) = {4 o 27)
—— S =1
OO t

The steady-state probabilities of the events, as calculated
in (27), describe how likely each state will be active long
enough during the simulation time [38]. We formulate a prob-
ability density distribution (PDF) by multiplying the steady-
state probabilities the device activation probabilities as in (26).
This PDF describes the probability of a device to be active
affected by the steady-state probability of the states. Hence,
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this distribution gives a simple description of the activation
pattern of the devices without performing any forecasting
computations. Afterward, the devices are scheduled by the
BS according to this distribution. Note that we refer to this
scheduling algorithm as the baseline model.

C. Aol Compensation

We introduce the age parameter 5 to map the priority of
scheduling devices that have high Aol. Higher values of (8
mean that the BS gives higher priority to devices that have
not transmitted for a long time (i.e, devices with higher Aol).
The scheduling priority index for device k at time ¢+ 1 is thus
defined as

1 = Pr (4l =1]8.) + 8 p(S.) AN @) @8)
N

=1—[[ rn) + B p(S...) AP (). (29)
n=1

Instead of sorting the devices according to their probability of
activation, the BS sorts the devices according to their index
I. Then the L devices with the highest index I are scheduled
for transmission.

The BS needs to choose an appropriate value for 8 in (29)
to control the trade-off between the devices’ Aol and regret
optimalities. This introduces an optimization problem at the
BS side, where the cost function C(R,A) is defined as the

multiplication of the average regret R and the average Aol A

argmin C = R - A, (30)
B

st. B>0. €2y

As illustrated in Fig. 3, we can notice that the cost function
is convex and can be optimized easily to get the optimal 3
that lowers down the Aol while maintaining the regret in an
appropriate region for a given network setup.
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Fig. 4: Achievable region for the Aol and the regret while applying the Aol
compensation for different values of the age parameter 5.

To address the trade-off between the Aol and the regret,
we investigate Fig. 4 that depicts the achievable region for
Aol and regret using different values of § for different setup
of the network (the number of devices, the number of binary
events, and the available number of resources). The smaller
the network setup K, N, and L, the smaller the resulting age
and regret. Therefore, each BS needs to optimize its own [
according to the prior knowledge of the network parameters.
If 3 is set to 0, the scheduling resets to its basic form without
the age compensation term (fair regret), whereas if g is set
to asymptotically oo, the scheduler will act as round-robin,
where the resources are distributed equally among the devices
(fair age).

V. ONLINE LEARNING BASED ON MODEL ESTIMATION

The forward algorithm and the HMM mainly depend on
prior knowledge of the hyperparameters of the model, namely,
the transition state probabilities for each event and the activa-
tion probabilities when affected by active events. Sometimes,
it is difficult to have prior knowledge of these parameters.
Therefore, the BS aims at estimating the hyperparameters of
the model using only the possible observations from the real-
time model. Next, we present the estimation algorithm for both
qnk and e.

The activation probabilities of device k at time instant ¢
given the set of states S; are the set of values that result
in an activation pattern that is as close as possible to the
actually observed activation pattern A,Ek). To estimate q,,, we
formulate the following likelihood maximization formula

st

S; ) is calculated as follows

T
q’, = argmax || Pr (Ag’“) — by (32)

Unk t=1

where by, € {1,0}, Pr (Agk) = by,

* 1- Nf 1- n S:(">7 b :17

Pr (Agk) = by st) = NHn—l( ?S*’fz) k
Hn:l(l - an) t y bk‘ = 0»
(33)



with the constraint 0 < ¢,r < 1. Note that (32) can be
solved via geometric programming which can be solved for
each device k using any programming tool, such as fmincon,
which is available in Matlab, or cvx (available in both Matlab
and Python) [39], or even using a basic exhaustive search
algorithm to find the solution of the optimization problem.
In this context, the cvx tool is considered the best fit for such
complex problems with multiple local maxima, where it can
solve geometric programming problems efficiently. However,
the optimization problem relies on predicting the most likely
hidden state S; from (17) using the forward algorithm, which
uses the actual hyperparameter values g, and €. This problem
can be solved iteratively using the Baum-Welsh algorithm [37].

The Baum-Welsh method relies on the forward-backward
algorithms, where at time instant ¢, it estimates the expected
number of visits of each state and the number of transitions
from state S; to state S; during the time period T (0 < T < ¢#).
Afterward, it exploits the number of visits and transitions to
generate an estimate of €*. The estimated temporal transition
probabilities €* along with the previous estimate of ¢, are
used to predict the most likely hidden state, which will be used
to update the estimate of ¢;,. These iterations are repeated
until convergence (desired error threshold). It is expected that
the Baum-Welsh algorithm? converges after a limited number
of iterations Z according to the complexity of the model. After
convergence, we can exploit the estimated hyperparameter
values ¢, and €* to perform resource allocation for the
devices. After initializing ¢,;(0), € (0) and €™ (0), we
apply the following equations that illustrate the expectation-
maximization estimation procedure

S (i) = argmax p(S¢, A1)

)

St an:q:;k(ifl),egz):e:;")(i71)
34)
Pr (Agw = by s;(i)) _
LTI (= qu)™ 0, by =1, (35)
Hg:l(]‘ - q"k)st (n)(i)a bk - 07
T
q;, (i) = argmax [ Pr (A,Ek) = by, Sf(z‘)) . (36)
nk  4=1

In fact, this learning process requires enough number of
observations to ensure an accurate estimation procedure. If
the BS has prior knowledge to a number of observations
that is large enough to perform the estimation, we refer to
it as FU-offline learning. On the other hand, applying this
iterative expectation-maximization procedure at each time-step
converts the ordinary algorithm to an online version of the
FU algorithm. First, the BS collects the observations at time
instant ¢, where it utilizes them to iteratively estimate the
model hyperparameters q,,;, and e. Afterward, it predicts the
activation pattern probability of each device at time instant
t + 1 using the forward algorithm. Moreover, it optimizes the
age parameter 3 to compensate for the age of the devices that

2A more interested reader can refer to [37] for more details about the
Baum-Welsh expectation-maximization algorithm.

Algorithm 1: Traffic prediction based fast uplink grant
algorithm.

1t=1

2 Define K, N, L, and Z.

3 Initialize the age vectors AR,

4 Initialize the regret vectors R(*),

5 while True do

6 | Initialize g, (0), €{™ (0) and €™ (0).
7 Collect the observations A;.

8 fori=1,..,7 do

9 Si(i) =

arg maxg, p(S¢, A1)

(Ink:(I:,,k(i_l)ﬁegz):ﬁ,;n)(i_l)

10 Update 622”)(1').
1 4y, (1) =
arg maxg Hle Pr (Agk) = by Sf(z))
12 end
13 Optimize the age parameter (.

14 Compensate Pr (A:_(ﬁ) =1

S; ) using 3.

1 = Pr (4l =1]80) + 8 p(S1..) AW (1),
15 Allocate the L resources.
16 Update the age vector A¥) for each device.
17 Update the regret vector R(¥) for each device.
18 t=t+1.
19 end

experience high age. Finally, the BS allocates the resources to
the devices with the highest priority index. We refer to this
procedure as online learning-enhanced Aol, which is depicted
in Algorithm 1.

VI. RESULTS AND DISCUSSION

In this section, we present the simulation results of the
proposed FU algorithm based on the forward algorithm and the
further discussed extensions. We consider a setup of a single
BS with L = 10 available frequency resources at each time
instant and K = 50 sensors affected by N = 5 Markovian
events. The temporal state transition probabilities are eé”) and
e§”> are uniformly distributed on the interval [0,0.5]. Note
that, low values of e result in forcing the events to be active
for longer times and cause congested traffic. Meanwhile the
activation probabilities ¢,r € [0,1]. We present a detailed
comparison between the proposed algorithms and some of
the existing models. For instance, we discuss the GF, where
the active devices send a request to the BS using a random
preamble, and the TDMA, where round-robin is followed to
schedule the resources for the devices. In addition, we present
the FU-genie-aided that refers to the case in which the states
of the events are assumed to be perfectly known to the BS.
Herein, the FU-limited info refers to the scenario in which
the BS observes only the activation of the scheduled sensors.
Meanwhile, in the FU-feedback, the BS is allowed to also
observe the activation of the devices that were not scheduled
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TABLE III: The parameters used in the simulation setup.

Parameter Value \ Parameter Value
K 50 N 5
L 10 T 100
Z 40 B 0.0233
5875? [01 05] dnk [01 1}

through a feedback signal. The FU-baseline is presented as the
low computational version of the FU algorithm as presented
in IV-B. The term FU-enhanced Aol corresponds to the FU
algorithm after performing the age compensation as discussed
in IV-C. Finally, FU-offline learning corresponds to applying
the estimation algorithm discussed in V while assuming a
prior knowledge of enough observations offline to be used to
estimate the model hyperparameters, whereas online learning-
enhanced Aol is the online version of the presented algorithm,
where no prior information is assumed to be known and age
compensation is applied as discussed in algorithm 1. Table III
illustrates the parameters used in the simulation.

Fig. 5 demonstrates the regret and the average Aol
performance metrics when applying the discussed sched-
ulers. In Fig. 5-(a), we evaluate the regret function, where
the FU-feedback scheme significantly outperforms both GF
and TDMA. Specifically, when applying the proposed FU-
feedback scheme, the regret function is reduced to 4 times
less than the regret in the case of TDMA and 50 times less
than the regret of GF due to the high number of collisions in
GF. Moreover, the FU-limited info scheme has close results in
terms of the regret to the genie-aided model which assumes
perfect knowledge of the events. The feedback version of the
FU algorithm exploits the cost of having imperfect information
about the activation of the devices, which reflects on the
resulting regret. However, the performance is still close to that
of the genie-aided model and outperforms existing models (GF
and TDMA).

Fig. 5-(b) shows the average Aol per device, where the

proposed FU-feedback scheme has relatively higher ages when
compared to GF and TDMA, which motivates the need for
an enhanced Aol version of the FU algorithm. In addition,
we calculate the system usage using (13), where the FU-
feedback achieves nearly a 0.95 system usage, which indicates
that the BS has successfully allocated 95% of the resource to
the transmitting devices. Hence, the proposed scheme is more
efficient than TDMA which uses only 78% of the resources,
and the GF that has only 50% of system usage due to the high
number of collisions.

Solving the optimization problem in (31) renders S =
0.0233 as the optimal value for the addressed setup. The
BS applies the age parameter S to address the fairness issue.
Fig. 5 shows the age enhancement which results from applying
the fairness parameter 8 = 0.0233 while scheduling the
devices. The average age per device for the FU-enhanced
Aol is significantly improved when compared to the basic
implementation with 8 = 0. The average age per device is
much lower than GF and asymptotically almost converges to
TDMA as time passes instead of being much higher than
TDMA in the case of = 0. Meanwhile, the FU-enhanced Aol
still maintains a significant performance advantage regarding
regret and system usage when compared to GF and TDMA.

Fig. 6 illustrates the convergence of the estimated hyper-
parameter values ¢, and ebin). The error is measured as the
difference between the true regret of the forward algorithm
using the true hyperparameter values g, and € and the regret
resulting from scheduling the resources for the devices using
the estimated hyperparameter values. We initialize the values
of ¢}, and eblgn) and run the iterative optimization algorithm
as described in section V. We solve (32) for each device
using both exhaustive search and CVX, where exhaustive
search results in a more accurate estimation, while CVX
is much simpler and more efficient in terms of estimation
time. Afterward, we run the Baum-Welsh algorithm for 40
iterations, where it convergences to reasonable values for

eb(") and ¢, that truly describe the observations. We can
k n
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Fig. 6: The convergence of estimation of the model hyperparameters using
the Baum-welsh algorithm.

notice the convergence of the model hyperparameters after
looping the algorithm for a sufficient number of iterations.
Typically, the convergence is significantly faster for a small
setup of the system model as the number of states and devices
controls the number of the hyperparameters to be estimated.
We run the mentioned estimation procedure to be used in
the learning algorithm offline (FU-offline learning) and online
(online learning-enhanced Aol), where the former assumes
prior knowledge of enough number of observations to run
the estimation upon it, whereas the latter runs the estimation
algorithm online while accumulating the observations.

Fig. 7 shows the performance evaluation of the online
learning-enhanced Aol algorithm in terms of regret and aver-
age Aol, respectively. As the algorithm has no prior knowledge
about the states and the hyperparameters of the model, it ap-
plies the forward algorithm and the age compensation strategy
based on the given set of previous observations collected at
each time step. We can see in Fig. 7-(a) that the behavior of
the algorithm is not efficient in the initial time steps as there
are not enough observations that can describe the model and
correctly estimate the model hyperparameters. Afterward, the
hyperparameters estimation gets better (almost after 16 time
instants) as the model collects a suitable amount of observa-
tions that truly describe the model and are used efficiently in
the estimation procedure. In Fig. 7-(b), the algorithm experi-
ences a large Aol compared to the TDMA in the initial time
steps, where the age compensation strategy optimizes the age
parameter J assuming that the prediction results are efficient
enough to compensate the true high age devices. Afterward,
the online learning-enhanced Aol algorithm collects enough
observation to efficiently predict the model hyperparameters,
where the age compensation strategy almost captures the Aol
of the TDMA after 40-time instants.

Fig. 8 summarizes the regret, Aol, and system usage perfor-
mance metrics when applying the proposed resource allocation
schemes. It is worth mentioning that the GF results are omitted
from the bar plots as it has extremely poor performance com-
pared to all other schemes due to high number of collisions,
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Fig. 7: Regret and Aol evaluation of the online learning-enhanced Aol
algorithm. K = 50 sensors, N = 5 events, and L = 10 available frequency
resources.

and this would affect the comprehensive comparison of the
schemes on the plots (namely, on the regret bar plot). It results
in regret of around 3000, an Aol of 52, and system usage of
65%. The FU-feedback achieves a reduced regret to 50 times
less than the GF and a slightly less system usage than the FU-
genie-aided case with 2% difference. The TDMA has the best
Aol results as it is considered as the fair age scheduler. There-
fore, age compensation is applied within the FU-enhanced Aol
algorithm that captures the Aol of the TDMA of 2.3 at the
expense of slightly higher regret, where it has a 40 more regret
than the FU-feedback. However, it still outperforms the regret
and the system usage of TDMA and GF schemes. We can
observe that the FU-baseline achieves 3 times lower regret
than and 9% higher system usage than TDMA. Therefore, the
FU-baseline still outperforms the TDMA and the GF resource
allocation schemes regarding regret and system usage with
lower computational demands.

Moreover, we fit the estimated parameters to the scheduling
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algorithm to calculate the model’s regret, system usage, and
average Aol. We can observe that both FU-offline learning
and online learning-enhanced Aol outperform the regret of the
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TDMA and almost captures the regret of the FU-feedback. In
addition, the online learning-enhanced Aol has almost double
the regret of the FU-offline learning (65 and 120 for the FU-
offline learning and the online learning-enhanced Aol, respec-
tively) as the online version suffers from inaccurate estimation
at the beginning of the simulation as there are not enough
observations to be used in the estimation, whereas the offline
version assumes prior knowledge of enough observations for
the estimation. In addition, the online learning-enhanced Aol
performs an Aol compensation step after estimating the model
hyperparameters, which enables the algorithm to achieve the
Aol of the TDMA while preserving the regret to still outper-
form the TDMA. Finally, There is an interesting analogy be-
tween the FU-limited info and the FU-offline learning results,
where both algorithms suffer from missing information as the
former has limited information about the actual activation of
the devices and depends only on its prediction, whereas the
latter relies on a collection of past observations to estimate the
model hyperparameters.

VII. CONCLUSIONS

This paper considers Markovian events which serve to
model the activity of the massive deployment of IoT devices.
We proposed an FU algorithm that efficiently predicts the
activation pattern of the IoT devices based on the forward
algorithm and grants the available resources to the devices
with the highest likelihood of activation probabilities. We
formulated an optimization problem that compromises a small
value of the regret to minimize the Aol of the IoT devices
and achieve a desirable degree of fairness. In addition, we
formulated an expectation-maximization algorithm based on
the Baum-Welsh procedure to estimate the system hyperpa-
rameters. Finally, we developed an online-learning version
of the proposed scheme. Simulation results showed that the
proposed algorithm outperforms the existing models, e.g.,
TDMA and GF, regarding regret, system usage efficiency, and
Aol

The proposed algorithms were much simpler than machine
learning-based predictors regarding the complexity of the
computations. Therefore, the proposed algorithms could be
used as traffic predictors in critical applications, e.g., predictive
UAV positioning [40], road safety, and other applications with
low latency communications demands [6].
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