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ABSTRACT
Visible Light Positioning (VLP) has been prevalent in provid-

ing high-precision localization systems in the past decade.

However, the commercial availability or usage is still limited

primarily due to the requirement of changing the existing

lighting infrastructure. In this paper, we propose HueSense,

an alternative technique to develop a passive VLP system by

extracting light-emission intrinsic features, such as dominant

colours present in the white LED light. The method can elim-

inate the need to change lighting-infrastructure, and only

uses cheaper and power-efficient off-the-shelf hue sensors.

Our experiments demonstrate that HueSense can achieve a

location-mapping accuracy of 80.14% with a moving robot

in uncontrolled lighting environments.

CCS CONCEPTS
• Computer systems organization → Embedded sys-
tems; • Networks→ Location based services.
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1 INTRODUCTION
Spatial awareness among robots is a key requirement in

today’s smart Internet of Things (IoT) world [1, 2]. Loca-

tion tracking is needed for performing multiple intralogistic

tasks such as moving goods and inventory control, for effi-

cient material handling or goods distribution, among others.

The location awareness services provided by visible light

technology, termed Visible Light Positioning (VLP), have

attracted much attention in the past decade because of its

enormous advantages compared to conventional Radio Fre-

quency technology, including the use of a wide unregulated

spectrum, multipath-free propagation, security and inexpen-

sive receivers, i.e., photodetectors (PDs), and for providing

high accuracy geolocation [4, 6, 7]. VLP has a broad range

of potential applications, such as service robot navigation

that may clean, monitor or assist in homes, offices, retail,

warehouse and hospital environments.

The technology employs light sources such as Light Emit-

ting Diodes (LEDs) or fluorescent lights as a transmitter and

a camera or PDs as a receiving device. However, the com-

mercial availability of such systems is mainly hampered by

the requirement of modulated light sources which in turn

requires changes to existing lighting infrastructure [5]. An

alternative, passive VLP systems which do not modulate the

light source exists in the literature [3, 4, 6]; however, most of

them use the camera as a receiver and multiple PDs to realise

the system. LiTell [9] harnesses the intrinsic characteristic

frequency of fluorescent bulbs to enable a low-cost passive

VLP system. However, the determination of characteristic

frequency can only be realised in fluorescent bulbs using

high-resolution cameras, which is not a cost-effective solu-

tion. Further, power-hungry cameras as a receiver limit their

usage in some low-power IoT device applications. A similar

feature extracted by Pulsar [10] for LEDs rather than fluores-

cent bulbs using dual-PDs, but the system requires specially

designed detectors with a specific Field Of View (FOV). An-

other solution, iLAMP [8] extracted the spatial-radiation

pattern, i.e., the intensity distribution across the light body,

to discriminate light sources. However, this method also re-

lies on power-consuming cameras and ambient light sensors,

making it a complex passive VLP system.

In this paper, we propose HueSense, a novel passive VLP

system for light identification which can be further used

for providing location services to low-power IoT devices us-

ing off-the-shelf power-efficient colour sensors as receivers.

Additionally, HueSense employs the unmodulated and un-

modified existing LED lights as anchors, removing some

barriers to commercializing VLP systems. With HueSense,

https://doi.org/10.1145/3556558.3558582
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Detected wavelength (_𝑚) at the maximum spectral power in
the wavelength range of 400-500 nm for four commodity LEDs

of the same model and brand.

LED L1 L2 L3 L4

𝝀𝒎 (nm) 448.0312 455.2858 450.2281 456.1662

Figure 1: Motivation of HueSense: LEDs have slightly
different colour spectrum that human eyes cannot dis-
tinguish. Still, the differences can be detected by colour
sensors, indicating that an LED can be uniquely identi-
fied by its spectrum without the need to modulate it.

our goal is to design a low-power, cheap, easily integrable

and computationally inexpensive passive VLP system for

IoT devices to provide ubiquitous location tracking. Our key
observation lies in that LEDs have slightly different colour
spectrum’s that the human eye cannot distinguish. Still, it can
be detected by colour sensors, indicating that a light source
can be uniquely identified by its spectrum without needing
to modulate or modify it. Figure 1 presents the motivation

of HueSense. This approach could be realised using PDs.

However, multiple PDs required with spectral sensitivity

wavelength correspond to the dominant colours present in

the light source.

In HueSense, we rely only on single-pixel colour sensors
to extract the light hue-spectrum. The key challenge lies

in effectively and efficiently distinguishing among unmod-

ulated lights so that no additional light identification (ID)

information is required to be sent. In HueSense, we lower the

complexity by using power-efficient and cheaper single-pixel

light colour sensors as detectors. To the best of our knowl-

edge, this is the first passive VLP system which employs

single-pixel colour sensors to extract the light hue-spectrum

and perform the light mapping. We summarize our contribu-

tions as follows.

(1) A novel power-efficient and cost-effective passive light
feature extraction method enables single-pixel colour
sensors to extract the power of dominant wavelengths

in the white LEDs.

(2) Further exploitation of this feature to differentiate be-

tween unmodified and unmodulated white LED light

sources for light identification, which is a vital initial

step in providing spatial-awareness services.

(3) Preliminary experimental validation ofHueSense based

on a full-fledged implementation on theArduino boards

for light identification.

2 HUESENSE DESIGN
In this section, we first present the principle of the proposed

passive light identification method, answering the question

of howwe can effectively differentiate between unmodulated

LED light sources. Then, we present the technique to extract

and analyse those hidden discriminating features (termed

light ID in this paper) using cheap colour sensors.

2.1 Preliminary
The wavelength of light emitted by LEDs, and thus its colour,

depends on the materials forming the LED chip. Due to un-

avoidable manufacturing imperfections, e.g., the variations

in the phosphor coating thickness and the non-uniformity,

different optical properties of the light originate such as the

change in radiant flux and colour temperature. These im-

perfections make LEDs’ radiated power for particular wave-

lengths different, which motivates the design of HueSense.

In the case of white LED light, the three dominant emitted

wavelengths are _𝑅 , _𝐺 , and _𝐵 at Red (R), Green (G), and

Blue (B) channels, withmore contribution from B and G chan-

nels, compared to the R channel. To generalise this property,

we use the spectrometer
1
to extract the LED light spectrum

from four different white LED lights in a room. The resultant

extracted spectrum is shown in Figure 2, which plots themov-

ing average of intensity to remove unwanted peaks/intensity

fluctuations due to ambient noise. We capture the spectrum

for different LEDs within their FOV, showing that each LED

has a unique hue-spectrum and verifying that the spectrum

properties remain constant at different positions. Moreover,

to show that the spectrum series are statistically different,

we perform the t-test
2
on the L1’s spectrum mean with zero

mean difference as the null hypothesis. Table 1 shows the

results. These p-values confirm the statistical significance

and validates the principle of HueSense.

Furthermore, more variations in the light spectrum can

be observed around 450 nm wavelength. The emitted wave-

length corresponding to the maximum power peak in this

wavelength range of 400-500 nm is also different for different

lights. Figure 1 shows themaximumpower peakwavelengths

for four lights in this wavelength range (the maximum power

variation region). This interesting feature can be used as the

1
https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=3482

2
A t-test is a type of inferential statistic used to determine if there is a

significant difference between the means of two groups, which may be

related in certain features.

https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=3482
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Figure 2: Detected LED spectrum using high-spectrum resolution spectrometer at different incident angle (\ ).

Table 1: Performed t-test on LED L1 spectrum with other LEDs (L2, L3) obtained at different spectrometer positions
(P1-P5) within the FOV of the LEDs.

Position, LEDs P1, L1-L2 P1, L1-L3 P2, L1-L2 P2, L1-L3 P3, L1-L2 P3, L1-L3 P4, L1-L2 P4, L1-L3 P5, L1-L2 P5, L1-L3

h-value 0 1 1 1 1 1 1 1 1 1

p-value 0.4914 3.6448e-05 1.1421e-05 5.9617e-10 2.8785e-36 0.0024 3.4147e-281 4.0482e-289 5.0735e-101 3.0002e-06

Figure 3: RGB power ratio comparison among 12 commodity LEDs of the same model & brand.

ID of LED lights. However, the extraction is feasible only

using the spectrometer, an expensive solution and difficult

to fit into small IoT devices. In the next section, we will

present an alternative cost-effective approach to realise the

hue properties of LED lights using off-the-shelf hue sensors.

2.2 Light ID: Distinguishing LEDs Through
Their Hidden Colour Features

An important hidden feature, which can be derived from Fig-

ure 2, is that the ratio of power at dominant wavelengths (i.e.,

_𝑅 , _𝐺 , and _𝐵 , in case of the white LED lights) at different

positions remains constant. The principle of HueSense is to

extract the power around the dominant wavelengths present

in the unmodulated white LED bulbs and use this hidden

feature as a discriminative feature among lights. To obtain

this hidden feature, small off-the-shelf hue sensor
3
can be

used to extract the spectral power at _𝑅 , _𝐺 , and _𝐵 wave-

lengths. This type of sensor can be easily deployed into the

tiniest IoT devices, and they can directly extract the dominant

wavelengths of white lights from LED bulbs. For example,

Figure 3 shows the obtained power ratios for 12 LEDs under

Line-of-Sight (LoS) scenarios in a lab environment.

Proposed LED’s light ID. Based on the captured power

ratio values, we propose to construct the ID 𝐿𝑖 of the 𝑖th LED

using the following tuple

𝐿𝑖 :

〈
𝑃𝐵𝑖

𝑃𝐺𝑖

,
𝑃𝐺𝑖

𝑃𝑅𝑖
,
𝑃𝐵𝑖

𝑃𝑅𝑖

〉
(1)

where 𝑖 = {1, · · · , 𝑁 },𝑁 is the total number of LEDs; 𝑃𝑅𝑖 , 𝑃𝐺𝑖
,

and 𝑃𝐵𝑖
are the received spectral power at R, G, B channels,

3
https://www.hamamatsu.com/eu/en/product/optical-sensors/photo-

ic/color-sensor/rgb-color-sensor.html
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Algorithm 1 Light identification with multiple sensors.

1: procedure LED Light ID assignment

2: For each sensor 𝑆 𝑗 , 𝑗 ∈ {1, 2, 3}, extract the power at R, G, B
wavelengths for each light 𝐿𝑖 , 𝑖 ∈ {1, 2, · · · , 𝑁 } in the database

as 𝑃𝑅𝑖 𝑗 , 𝑃𝐺𝑖 𝑗
, 𝑃𝐵𝑖 𝑗

, and store the ID as

𝐿𝑖 𝑗 :

〈
𝑃𝐵𝑖 𝑗

𝑃𝐺𝑖 𝑗

,
𝑃𝐺𝑖 𝑗

𝑃𝑅𝑖 𝑗
,
𝑃𝐵𝑖 𝑗

𝑃𝑅𝑖 𝑗

〉
3: procedure Light Identification

4: Let �̃�𝑘 𝑗 denote the measured ID values at location 𝑘 .

5: At current location 𝑘 , calculate the Euclidean error as 𝐸𝑖
𝑘 𝑗

=√︃
(𝐿𝑖 𝑗 [1] − �̃�𝑘 𝑗 [1])2 + (𝐿𝑖 𝑗 [2] − �̃�𝑘 𝑗 [2])2 + (𝐿𝑖 𝑗 [3] − �̃�𝑘 𝑗 [3])2

6: Find the minimum error value for each sensor as

𝐷𝑘 𝑗 = min

𝑖
𝐸𝑖
𝑘 𝑗

and store the corresponding argument where the minimum is

obtained as𝑀𝑘 𝑗 .

7: For location 𝑘 , find the predicted values 𝑃𝑘 as

8: if 𝑀𝑘1 ≠ 𝑀𝑘2 ≠ 𝑀𝑘3 then
9: 𝑃𝑘 = argmin

𝑗
𝐷𝑘 𝑗

10: else
11: 𝑃𝑘 = 𝑀𝑘1

respectively. In reality, these IDs can be calculated from the

measurements of the LEDs and are stored in a database for

future light identification during testing.

Light identification withmultiple sensors. The sensor
module can be placed on top of robots with the stored LED

ID database information that can estimate their locations

in a room, i.e., under which LEDs they are moving. This

estimation can be done by finding the minimum Euclidean

error between the stored LED ID values and newly measured

power ratios at dominant wavelengths, denoted as �̃�.

However, how do we differentiate between light sources with
the same power ratios of R, G, B channels or approximately
negligible difference between the power ratios? To eliminate

this problem, we employ multiple sensors with different inci-
dent angles. This approach facilitates the sensor modules to

have the information of neighbouring LEDs that will help

with the light identification. The design is shown in top part

of Figure 4, where sensors S2 and S3 are inclined at 45-degree

angles with respect to the centre sensor S1. The optimum

inclination angle can be found based on the separation be-

tween different light sources and link distance. However,

with HueSense, the motivation is to design a flexible solution

which works for different illumination infrastructures. We

choose the inclination angle as 45 degrees as the minimum

separation between light sources is usually a few meters.

The three sensors extract the hue-spectrum properties of the

nearest LED and its neighbouring LED lights, provided these

LED lights are in the sensor’s FoV. The procedure for passive

Figure 4: Our implemented prototype: robot equipped
with three hue sensors to collect light features and
send them over aWiFi network for light identification.

positioning by identifying the LED lights using the detected

hue properties is presented in Algorithm 1.

3 IMPLEMENTATION
In this section, we present the implementation of HueSense.

Our implemented prototype is shown in Figure 4. We im-

plement HueSense using three HAMATASU colour sensors

and integrate the sensors with an Arduino board to simulta-

neously collect the R, G, and B channel power, i.e., 𝑃𝑅 , 𝑃𝐺 ,

and 𝑃𝐵 , respectively, from each sensor. The employed sen-

sors are power efficient and can run on a 3.3-volt (V) battery.

The integration of sensors with Arduino is done using the

repository
4
defined for TCS34725-colour-sensors, with mod-

ifications in alignment with our sensors. The Arduino board

is 33-Nano-IoT
5
with integrated WiFi capability, compact

and power-efficient runs on 3.3 V, perfect for low-power IoT

devices. The light identification analysis is done in MATLAB,

and the Arduino board is flashed with a Simulink model.

We also integrate the robot odometry with the Arduino

board to provide the ground truth positions to investigate

the performance of HueSense for moving objects for light

identification. Further, the extracted data is transmitted over

the WiFi network to a laptop to perform light identification

analysis.

4 PRELIMINARY RESULTS
In this section, we present the preliminary results of HueSense

for passively identifying the LED lights with a robot under

both static and moving scenarios. The experiments are per-

formed in an uncontrolled lighting environment, the corridor

at our premises. The experimental setup is shown in Figure 5.

4
https://github.com/adafruit/Adafruit_TCS34725

5
https://docs.arduino.cc/hardware/nano-33-iot

https://github.com/adafruit/Adafruit_TCS34725
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Figure 5: Experimental setup at our premises.

4.1 Impact of Distance and Incident Angle
First, we evaluate if the spectral power ratio values remain

constant with varying the distance and incident angle with

respect to the light source. As shown in Figure 6a, we per-

form the evaluation using one LED and measure the spectral

power at different incident angles (by moving the sensor

from position 𝐴 to position 𝐵, at a distance of 1 m) and

various distances (by moving a sensor from position 𝐶 to

position 𝐷). Figure 6b and Figure 6c show the measurement

results. It can be observed that the ratio of the dominant

wavelengths remains approximately constant (±0.01) over
different LED positions and different incident angles, which

propel the average ratio value of the spectral power at the

dominant wavelength to be considered as LED ID.

4.2 Light Identification
Static scenario: The goal of HueSense is to passively differen-

tiate between light sources based on hue properties. We first

evaluate the performance of HueSense under static scenarios,

i.e., when the sensor is not moving and located exactly below

the light source. We assess this in different environments,

e.g., lab, corridor. The identification results obtained with

four LEDs are shown in Figure 7 and Figure 8, where the

LEDs with the lowest Euclidean distances are interpreted as

the identified corresponding LED. We can see that the light

identification performance of HueSense is 100%.

Moving scenario: For testing the performance with a mov-

ing target, a robot, as shown in Figure 4 carrying the sensor

module, is used for evaluation. The benefit of using the ro-

bot is that it can provide the ground position while moving

based on the odometry analysis. The robot is moved from

LED1 towards LED4 (robot trajectory shown in Figure 5).

The sensor module collects the power values and transmits

the collected light hue information to the system. We run the
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Figure 6: Impact of distance and incident angle on the
power ratio.
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Figure 7: Light identification under the LEDs in an
uncontrolled lighting environment.

MATLAB code for light identification on the system, which

has the data stored of light’s IDs collected during the ID

collection phase and the light installation map. We followed

the procedure described in Algorithm 1 to identify the true

LED under which the robot is moving.

With our approach Algorithm 1, we successfully identified

the correct LED ID with 80.14% accuracy with a moving tar-

get. The results are presented in Figure 9. The robot projected

a curved path instead of a straight line due to the friction

errors in the wheel. This makes the sensor module predict
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Figure 9: Light identification accuracy with a moving
robot in an uncontrolled lighting environment.

incorrect LED ID when under the LED L3. At this position,

the robot moves closer to the wall, and the ambient light

source introduces noise, making the identification difficult.

4.3 Potential Application
HueSense can be employed for providing spatial awareness,

location-based services to humans, and Automated Guided

Vehicles such as robots, to name a few. When we use VLC

for passive localization, the first step in performing that is

to know the LED IDs, the initial requirement that HueSense

is fulfilling.

5 CONCLUSION
To our knowledge, HueSense presents the first passive VLP

system to extract the hue-spectrum of unmodulated LEDs for

light identification using the single-pixel hue sensor.We have

successfully implemented and shown that different unmod-

ulated LED lights can be distinguished by exploiting their

intrinsic colour properties. We believe the salient features

of HueSense will help promote the usage of VLP in a wide

range of location-based applications such as autonomous

robot navigation and indoor navigation.
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