

HBRP Publication Page 1-11 2022. All Rights Reserved Page 1

Research and Applications: Embedded System
Volume 5 Issue 3

Implementation of Task Scheduling Algorithms of Multiprocessor

and Mixed Critical Systems

Suhas G. K.

1
*, Charan K.V.

2

1,2
Associate Professor, Shridevi Institute of Engineering & Technology, Tumakuru-572106

*Corresponding Author

E-Mail Id: Suhask300@gmail.com

ABSTRACT

The advent of multi-core architecture rises many challenges, issues and opportunities.

Multicores have significantly increased performance of embedded real-time systems and high

performance systems. It has also created a greater impact in the way of software development

from application software’s to operating system kernels. An increasing number of high

performance systems are programmed using modern programming languages due to parallel

programming revolution created by the multicores. The cost reduction trends in modern

embedded systems induces functional consolidation which results in development of mixed

critical systems (MCS). Two critical challenges are addressed in this research work are one is

overcoming the limitations of modern programming languages to support for developing time

sensitive applications in multicore systems. Another one is developing task scheduling strategy

in multicore systems to decrease the runtime overhead as well as improving support for mixed

critical systems.

Keywords: Task Scheduling , RTOS, GPOS

INTRODUCTION

The scheduling concept is integral part of

embedded real-time system design and

analysis. Real-time system quality also

depends on the type of scheduling

mechanism used in the system design. We

identify two types of candidate algorithms

for multicore systems one is responsible

for ensuring the deterministic real-time

response of the time sensitive tasks in

mixed critical systems [2], another one

helps for developing application with

time-sensitive tasks using modern

programming languages [5,6].

It is also considered by researchers and

system designers from many years for

solving open problems in these algorithms.

Researchers in the Real-time systems field

are contributing from several decades for

empowering embedded operating systems

using new technologies and adding

extensions to the kernel source. The

problem of efficient resource scheduling

for optimal resource allocation to ensure

better quality of service for real-time

applications in multiprocessor

architectures have been unresolved in the

real time system field. Real-time

embedded systems as showninFig1.1are

key technological components in many

application domains like (i) Avionics (ii)

Medical embedded devices, (iii)

Automotive (iv) Defense and (v)

Telecommunication systems etc. When

building a real-time system with hardware

and software to obtain deterministic

response, every part of the system has to

ensure predictable timing including the

embedded operating system and

identifiable segments of it. Evaluating

modern programming languages for it’s

suitability to be used for real-time

embedded application development on

widely adopted multiprocessor embedded

systems, the literature provides many

HBRP Publication Page 1-11 2022. All Rights Reserved Page 2

Research and Applications: Embedded System
Volume 5 Issue 3

challenges and shortcomings with respect

to real-time system development support.

The inherent problems drives research

towards enhancing real-time computing by

using real-time scheduling algorithms.

 In Automotive, the embedded

real-time system are used for

controlling the breaks and engines of

the vehicle for smooth traveling

experience.

 In Avionics, the embedded real-time

systems are used for the flight

navigation and avoiding accidents.

 It is also used in health-care system

for monitoring patient condition by

regulating heart beats and blood

pressure of the patient. They can also

be used for entertaining patient with

Television, electronic games and

music.

 Embedded real-time system can also

be found in air-traffic control system

(ATC) to provide advisory services to

flights for ensuring its safe landing at

the destination airport. This is

achieved by assigning unique arrival

time for each aircraft.

 The real time systems are integral

components in industries. Consider an

example of industrial robots which are

capable of automating assembly and

repair operations in a unmanned

sector of the factory.

 The military aircraft contain real-time

embedded systems for performing

many kind of mixed critical

functionalities including navigation,

communication, display screens, and

weapon control system.

 Supervisory Control and Data

Acquisition (SCADA) also uses real

time systems. In SCADA systems raw

data is collected from the sensors that

are placed at diff erent geographical

points, this data is processed and

stored in a separate database. •

Nuclear power stations are the

unmanned areas where robots used to

handle the radioactive other

dangerous materials.

RTOS vs General Purpose OS

The real-time operating systems are

intentionally used to support operations of

the real-time applications by guaranteeing

a certain capability within a specified time

constraint. There are basically three main

diff erences compared to general purpose

operating systems (GPOS) Determinism,

Task scheduling and Pre-Emptiveness.

Determinism

Goal of the RTOS is supporting real-time

applications to obtain deterministic

response time. Deterministic timing means

we can predict task response time during

designing of system. Tasks worst case

execution time in RTOS can be

pre-defined. Unlike RTOS in GPOS

Latency is not a concern but it support for

equally sharing the computational power

among all task in a system to guarantee the

system throughput instead of deterministic

response time.

Task Scheduling

In computer operating system, task

scheduling is one of the basic functionality

in process management. It is a method of

assigning some specified work to

resources to finish the work. This kind of

scheduling activity is carried out by a

scheduler. General purpose operating

systems are used to run diff erent

applications and multiple processes

simultaneously in the same platform.

It also ensures all running tasks will

receive fair amount of processing time.

While executing the tasks sometimes

priority of the lower priority tasks will be

boosted more than the priority of the

several higher priority tasks. The RTOS

mainly uses preemptive scheduling based

on task priority, which is essential for

consistent execution of high priority tasks.

HBRP Publication Page 1-11 2022. All Rights Reserved Page 3

Research and Applications: Embedded System
Volume 5 Issue 3

Ensuring time bounded operations all

system calls are deterministic.

 All kernel operations can be

pre-empted in RTOS.

 Priority inversion problem is

prevented in RTOS using certain

mechanisms.

Pre-Emptiveness

Operating system schedules the higher

priority task by preempting the many

lower priority tasks, all operations of lower

priority tasks are blocked due to

preemption. It is used to solve problem of

more latency for higher priority task which

designer may not want. The worst case

latency or time delay in execution is

diff erent for every task in a system. Higher

priority task latency is much smaller

compared to latency of the lower priority

tasks. An infinite loop is used for

preemptive scheduling of tasks in RTOS.

Each task acts as an independent program

placed in a loop between ready and finish

place. According to certain events or

tokens or flags action will takes place but

task will not return to the scheduling point

unlike function does?

The embedded system means a software is

embedded on hardware as one of the

important component. They are widely

used in small automation to larger avionic

embedded systems. The complexity of

embedded system software is increasing as

the complexity of embedded system

hardware is also improving. Earlier 8 bit

embedded systems are not using operating

systems inside but modern 8 bit devices

are using small kernels as shown in Figure

2.

Fig. 1: Real time embedded systems examples.

Fig. 2: Spectrum of embedded devices.

HBRP Publication Page 1-11 2022. All Rights Reserved Page 4

Research and Applications: Embedded System
Volume 5 Issue 3

The embedded system means a software is

embedded on hardware as one of the

important component. They are widely

used in small automation to larger avionic

embedded systems. The complexity of

embedded system software is increasing as

the complexity of embedded system

hardware is also improving. Earlier 8 bit

embedded systems are not using operating

systems inside but modern 8 bit devices

are using small kernals as shown in Figure

2.

Multicore architecture has become the

trend of high performance processors.

Multicore or Multi-processors introduces

parallelization revolution in software or

hardware. Figure 3 shows exponential

growth of multi core processors and initial

point of its evolution. This trend is

continuing, moving from multi cores to

many cores but according to Ambdhal’s

law speed up factor is a limiting element

for chip manufactures for increasing

number of cores in the processors.

According to power usage and problems

related to thermal will hiders [7] a further

rise in the adoption of single core

processors. Multicore architectures have

got a momentum due to limitations in

using high speed single core processor.

This shift from single core to multicore

processors [4] is a very big challenge in

computing field for embedded real-time

systems developers and designers for

example consider existing old legacy

systems using uniprocessor assumptions

for its development.

There are systems developed many years

ago and maintained by developers, and

they cannot be replaced very easily due to

huge investments for developing such

systems. Another important aspect while

shifting to multicore is task allocation

among diff erent cores to improve

performance of such multicore platforms.

Here partitioning algorithm is presented to

efficiently allocating tasks of the systems

to diff erent cores. The partitioning

technique also used to increase

performance of the system by ensuring its

correctness.

Fig. 3: Multicore processors tren.

LITERATURE SURVEY

Owen R. Kelly and Haken Aydlin

identified that Multi core processors

overcome many drawbacks of

uniprocessor system. The emergence of

multi core systems also received increased

attention for developing multiprocessor

scheduling algorithms of both uncritical

and multi critical real-time applications. A

majority of the research on task scheduling

approaches in real-time systems have

focused on only periodic tasks having

same degree of importance or criticality.

Research eff orts for scheduling mixed

criticality tasks on Real-time

multiprocessor system are relatively new.

Experiments are performed to evaluate

performance of the diff erent algorithms

used for priority assignment and its

schedulability tests. Simulator is

developed using Java language to generate

synthetic kind of mixed-critical task sets

HBRP Publication Page 1-11 2022. All Rights Reserved Page 5

Research and Applications: Embedded System
Volume 5 Issue 3

along with some of the varied parameters

in a larger range for representing a various

embedded hard real-time application using

this eff orts. The results obtained by this

experiments shows that by combing

priority assignment algorithm developed

by Audsley’s with Bertogna et al.

schedulability test surpass other

approaches. According to Lukas Sigrist

and Georgia. The mixed criticality

scheduling problem and several policies to

overcome the problem is rising due to use

of multi-cores in embedded system

deployments and multicritical applications

are co-hosting in the same embedded

platform. Scheduling policies to overcome

mixed critical scheduling problem

employs certain runtime monitoring

mechanisms and handles certain

exceptional events including task

overruns. Special events will be handled in

a timely fashion without compromising the

safety of the system.

This paper introducing alternative

implementations of the runtime

mechanism in mixed criticality systems.

This mechanisms are empirically

evaluated on their runtime overheads. Two

such policies are improved is flexible time

triggered scheduling and Partitioned

EDF-VD. There runtime overhead is

measured on 60 core Xeon Phi and 4 core

Xeon Phi processor. The usage of

multicore systems is significantly

increasing for embedded systems this

includes safety critical systems like

military, Automobiles, medical, avionics.

Deploying applications having diff erent

critical levels in the same embedded

system requires proper isolation among

those tasks. This kind of conditions creates

mixed critical task scheduling problem.

There are certain recently proposed

techniques and policies exist they employ

mechanisms in runtime to monitor

execution of the tasks, identify exceptional

conditions or events like overrunning of

the tasks, reacting to this events by

switching the scheduling modes.

Without aff ecting system’s safety

implementing this kind of runtime

mechanism efficiently is very important for

any scheduler to identify runtime events

and respond in a timely fashion. This paper

find out alternative implementations to

these mechanisms and evaluates

empirically how much it aff ects the

runtime overhead on the scheduling of

mixed-critical applications. Two

scheduling schemes are implemented one

is flexible time-triggered FTTS and

another one is PEDF-VD (partitioned

EDF-VD). The runtime overhead of both

proposed scheduling technique is

measured on an Intel @ Xeon Phi having

60 cores and Intel @ core i5 on 4 cores.

Extensively executing user generated task

sets on avionic applications of avionic

industry, the observation is the runtime

overheads also cannot be neglected on

massively increased cores with multi core

architectures due to which they loss

schedulability upto 97%. Runtime

mechanisms evaluation is the early phase

of the design and incorporating it’s

overheads in schedulability analysis is

becoming necessary step in the

mixed-critical systems design. The need

for small overheads bounded within a rang

motivates the development of new

improved architecture that are timing

predictable and it’s runtime environments

are targeting for mixed critical

applications. Response time analysis of the

mixed critical system is carried out by S.K.

Baruah, A. Burns and R.I. Davis in [7].

Certification requirement is a major

challenge for many of the safety critical

embedded systems using tasks having

multiple critical levels. In many cases only

few of the system functionality are safety

critical and hence require certification. The

rest of the functions are they do not require

any certification or they are very less

HBRP Publication Page 1-11 2022. All Rights Reserved Page 6

Research and Applications: Embedded System
Volume 5 Issue 3

critical in nature. The runtime monitoring

is very challenging and scheduling

analysis of such systems of such systems is

very complex in mixed criticality systems.

The paper contains novel implementation

technique for fixed priority scheduling of

multi criticality systems on uniprocessors.

The proposed scheme monitors the jobs

during run-time. An optimal scheme for

task priority assignment is developed and

sufficient amount of response time analysis

is also derived. The proposed novel idea is

dominate all previously implemented

schemes. Benefits of the proposed scheme

is also evaluated. There are three kind of

priority assignment techniques as shown

below

 Partitioning the criticality (PC), it is

most commonly used scheme also

called as criticality monotonic priority

assignment scheme. Here task having

higher criticality will be assigned a

higher priority.

 Static mixed criticality (SMC), all

jobs of a task can execute only up to

its bounded execution time but it

cannot execute further any more time.

Tn such cases they are aborted and

scheduled again when it is safe to

execute. Here priorities of the jobs

cannot change once assigned.

 Adaptive mixed criticality (AMC), the

proposed priority assignment

technique is used in adaptive mixed

criticality. Run time monitoring of the

tasks and switching its priority levels

enhances its performance compared to

static critical systems. unlike SMC

here job is not withdrawn from the

execution if it exceeds representative

execution time instead of that its

priority will be enhanced allowing it

to finish its execution

According to Ramirez and Arnoldo since

from few couple of years Real-time

systems have been dependent on

multiprocessor architectures. However,

the significant improvement in multi core

architectures, which is having many units

of processing on a unique chip, has raised

the interest in solving many problems for

developing such systems. As a result of

this, task scheduling technique for multi

core and many core architectures now a

days have obtained a huge amount of

attention. In past decade there are many

scheduling techniques have been

developed. Many cases have received only

50 % of least upper bound in the system

utilization, this is very pessimistic.

Investigation of schedulability of the

real-time tasks on this multi core and many

core systems, Theoretical schedulability

tests can be used. However, task sets with

good system utilization bound, one of the

best alternative method is exhaustive

simulation of the system. RealtssMP is

also one of the simulation tool among few

tools to conduct such simulations of

scheduling algorithms and also perform

schedulability analysis. Simulation tools is

also proved to be beneficial in the

evolution of the algorithms in terms of its

performance and developing new

scheduling techniques or algorithms. This

kind of tools also used as an educational

tools for academic purpose. Alejandro

Alonso, Emilio Salazar, and Miguel A. de

Miguel identified tool set for developing

mixed critical partitioned system in.

Virtualized mixed-criticality multicore

systems exhibit new challenges for its

development and it is becoming active

research now a days. There is an added

complexity exist: Now it is required to find

exactly how to partition the tasks and

assign those tasks to partitions. Here many

issues are discussed including application

criticality level, dependability and security

requirement and timing requirement etc.

The MultiPARATES tool depends on

model driven engineering’s (MDE’s) that

is more appropriate approach in this

settings, it supports or helps in bridging the

gap between partitioning and design

issues. How systems are developed now a

days can be changed by MDE.

HBRP Publication Page 1-11 2022. All Rights Reserved Page 7

Research and Applications: Embedded System
Volume 5 Issue 3

Generally, modeling technique have

showing their benefits when adopted to

embedded systems. These kind of

advantages can be achieved by reusing

with intensively abstracting or generating

all boiler plate codes automatically.

Integrating so much functionality on a

single hardware to exploits its power of

processing hardware leads to many

advantages and also presents possible

problems. Toolset Architecture the major

components of the toolset and flow of data

is shown in Figure 4 System modeling: It

is the main input tool of a system. It is

comprised of 3 models for preparing the

executing platform, the advantages and

certain kind of restrictions to be used

during partitioning.

Fig. 4: Overall tool set architecture.

Maxime Cherony, Anne-Marie and

Pierre-Emmanuel Hladik [3] have

enlightened issues about need of

simulators for numerous modern task

scheduling algorithms.

Modernhardwarearchitecturesaredesigned

withdiff erentspecificationssuchascache

and memory access platforms. We need to

design tools for studying those hardware.

Using accurate simulators otherwise even

real-time platform having multiprocessors

can be used to execute tasks. Here, it

requires scheduler to be developed in a C

or Assembly language and incorporated it

into an operating system. This is lot of time

consuming, as well as various realistic

tasks need to be generated for evaluation

purpose in laboratory. It is also preferred

to use Average simulator to accurately

simulate the behavior of hardware and

software components of the system that

influences on its performance.

This kind of simulators are useful in

prototyping the system, it does not require

real-time implementation of the operating

system and its tasks. However, simulator

allows for the extensively experimenting

with diff erent use cases. Or Diff erent kind

of matrix can also be used for the analysis

purpose. It is one of the limitations is. It

never shows real-time task scheduling

behavior in detail on a system, but enough

amount of good insights on possible

consequences and tendencies can be

identified. In two level hierarchical

scheduling algorithm (2LHiSA) [8] author

has improved

theruntimeperformanceandtotalsystemutili

zationusingEDFatbothtopleveland local

levels. Lower runtime complexity in fixed

priority algorithms for job scheduling on

multi core processor architecture can be

obtained using earliest deadline first

scheduling scheme. However, EDF also

not an optimal algorithm in multiprocessor

architecture. The author introduced a novel

migration based scheduling algorithm with

certain restrictions for task migration on

multiprocessor systems. The proposed

system divides the multiprocessor

scheduling problem into two levels of

schedulers. It work in two phases.

Partitioning a task in which task is

statically assigned to a particular

processor, it cannot migrate to any other

processor during execution. Those task

that cannot be assigned to any processor

due to bin-packing problem they are

qualified for migration to any processor.

HBRP Publication Page 1-11 2022. All Rights Reserved Page 8

Research and Applications: Embedded System
Volume 5 Issue 3

Underutilizationofprocessorsisavoidedbyu

singadditionalprocessorgrouping phase,

sum of the unused processor time from

each group of processors is equal to

processing ability of one processor. Figure

5 shows local level scheduler with no

migrations. Figure 7 shows Global level

scheduler with full migration. Figure 8

shows two level scheduling with restricted

migration. Figure 6 shows proposed two

level hierarchical scheduling it is based on

restriction in task migration. The

experimental evaluation is provided for

theoretical scheduling analysis. THe

STORM simulator is used for performing

the experiments. Number of task

preemptions and migrations have been

reduced compared to Pfair and ASEDZL

algorithms.

Table 2.4: Various Multiprocessor task scheduling Algorithms and it’s challenge
Algorithm Mechanism used Features Challenges and limitations

EDF Uses dynamic Priority Assignment

and deadline based scheduling

criteria

CPU utilization is full It is more difficult to implement

RM Uses static Priority Assignment and

period based scheduling criteria

Simple to implement It does not work for multicore

processors

LLF Uses dynamic Priority Assignment

and Laxity based scheduling criteria.

CPU utilization is full

and efficient in all

conditions

It is more difficult to implement

U-EDF It uses vertical EDF (G-EDF) and

horizontal EDF with slight variation

in EDF

It is optimal for task

preemptions, migrations

have been reduced

It will not work for sporadic

tasks because prior knowledge

of the task arrival times is

required

Pfair Set of sub tasks have been created

using a large task, Within the time

interval they must execute all

subtasks.

Optimal scheduling of

periodic tasks on unicore

and multicore

processors.

It uses more assumptions, less

practical.

HLFEL First simple algorithm for statically

scheduling task graph, Priorities of

task is decided by certain static level

attributes.

Scheduling technique

used for parallel

processing.

Communication time is

neglected.

ISH Same as HLFET but it uses idle

times created by processors due to

partial scheduling.

Scheduling technique

used for parallel

processing

It will not consider all kinds of

static attributes.

MCP Task priorities are determined based

on as late as possible (ALAP’S)

attribute.

It gives higher

performance to tasks

which is having

minimum start time.

It will neglect communication

cost when computing task

priorities.

ETF Earliest start times of the task is

determined and particular task

having smaller time to start is

selected. It is also uses static level

attributes.

Scheduling technique

used for parallel

processing

It will not minimize the duration

of scheduling at each step

DLS Priorities of tasks are determined

based on dynamic level attributes

instead of static level attributes.

Scheduling technique

used for parallel

processing.

Scheduling list is not maintained

during scheduling process.

CNPT Criticality node (CN’s) is used as a

task priorities, works in two phases

Listing and processor assignment.

Performance is greater

and complexity is less.

It will not consider other

dynamic and static attributes

EDZL Zero laxity jobs are given the top

priority

More number of task

sets meet their deadline

It will not guarantee that

arbitrary deadline independent

sporadic tasks will be scheduled

successfully

HBRP Publication Page 1-11 2022. All Rights Reserved Page 9

Research and Applications: Embedded System
Volume 5 Issue 3

Fig. 5: Task scheduling with no migration.

Fig. 5: Proposed 2lHiSA.

Fig. 7: Task scheduling with full migration.

HBRP Publication Page 1-11 2022. All Rights Reserved Page 10

Research and Applications: Embedded System
Volume 5 Issue 3

Fig. 8: Task scheduling with restricted migration.

CONCLUSION

The advent of multi-core architecture rises

many challenges, issues and opportunities.

Multicores have significantly increased

performance of embedded real-time

systems and high performance systems.

It has also created a greater impact in the

way of software development from

application software’s to operating system

kernels. An increasing number of high

performance systems are programmed

using modern programming languages due

to parallel programming revolution created

by the multicores.

The cost reduction trends in modern

embedded systems induces functional

consolidation which results in

development of mixed critical systems

(MCS). Two critical challenges are

addressed in this research work are one is

overcoming the limitations of modern

programming languages to support for

developing time sensitive applications in

multicore systems.

Another one is developing task scheduling

strategy in multicore systems to decrease

the runtime overhead as well as improving

support for mixed critical systems.

REFERENCES

1. Chen, S., Mulgrew, B., & Grant, P. M.

(1993). A clustering technique for

digital communications channel

equalization using radial basis function

networks. IEEE Transactions on

neural networks, 4(4), 570-590.

2. Duncombe, J. U. (1959). Infrared

navigation—Part I: An assessment of

feasibility. IEEE Trans. Electron

Devices, 11(1), 34-39.

3. Lin, C. Y., Wu, M., Bloom, J. A., Cox,

I. J., Miller, M. L., & Lui, Y. M. (2000,

May). Rotation-, scale-, and

translation-resilient public

watermarking for images. In Security

and watermarking of multimedia

contents II (Vol. 3971, pp. 90-98).

SPIE.

4. Suhas, G. K., Devananda, S. N.,

Jagadeesh, R., Pareek, P. K., & Dixit,

S. (2021). Recommendation-Based

Interactivity Through Cross Platform

Using Big Data. In Emerging

Technologies in Data Mining and

Information Security (pp. 651-659).

Springer, Singapore.

5. GK, M. S., Verma, V. K., Devananda,

S. N., BR, C. R., Manchale, P., &

Pareek, P. K. An Exploration on

Recommendation Based Interactivity

HBRP Publication Page 1-11 2022. All Rights Reserved Page 11

Research and Applications: Embedded System
Volume 5 Issue 3

through Multiple Platforms in Big

Data.

6. GK, D., SN, D., Pareek, P., & MS, N.

M. (2021, April). A Altmetrics

analysis in social media using Bigdata.

In Proceedings of the International

Conference on Innovative Computing

& Communication (ICICC).

7. NR, D., GK, S., & Kumar Pareek, D.

(2022). A Framework for Food

recognition and predicting its

Nutritional value through Convolution

neural network.

8. Hossain, M. D., Kabir, M. A., Anwar,

A., & Islam, M. Z. (2021). Detecting

autism spectrum disorder using

machine learning techniques. Health

Information Science and Systems, 9(1),

1-13.

