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Chapter 1

Introduction

1.1 Overview

Alpine3D is a spatially distributed, land-surface type model comprising several phy-
ically and conceptually submodules: a snowpack model (SNOWPACK), a radiation
balance model, a runoff model, and a snow transport model. Additionally, it provides
some routines for interpolation of meteorological data. A brief overview of Alpine3D
and its application to hydrological issues can be found in in [2].

Alpine3D is written in C (Snowpack), C++(energy balance, Snowdrift) and Fortran
(runoff, interpolation) on Unix/Linux. It exploits the GRID technology POPC++ [1]
for parallelizing individual submodules. To use the parallel capabilities of Alpine3D
it must be installed together with POPC++. In a multiuser environment it is recom-
mended to install additionally a GRID resource management system like the Globus
Toolkit [5].



Chapter 2

Installation

2.1 System Requirements

Alpine3D is a Linux application and in its sequential mode it can be installed on every
(7) Unix/Linux system. Presently it can be used in its parallel mode only on the Linux
cluster at SLF and on the HPC cluster “Zeus” at WSL.

2.2 Source code

The Alpine3D source code is maintained with SVN. For a good online documentation

see [6], and the basic usage of the svn is also briefly described in Ch. 6. The repository

can be accessed (only locally at SLF) viathe URL svn://svn.slf.local/alpine3d
after receiving a password from the I'T team. To check out a working copy of Alpine3D

use the svn command

svn co svn://svn.slf.local/alpine3d/alpine3d/trunk

in a terminal. This will create a subdirectory t runk in your present working direc-
tory. In the trunk directory you will find the following files and subdirectories of
Alpine3D:

./main/ (main application class)

. /common/ (array classes, data marshalling functions from POPC++)

. /ebalance/ (energy balance class, radiation model, view factors etc)

./snowdrift/ (snowdrift class: saltation, suspension)

./snowdrift_par/ (parallel snowdrift implementation)

. /snowpack/ (snowpack class, core files of SNOWPACK)

./inout/ (i/o classes)

./runoff/ (runoff functions, FORTRAN!)

./interpol/ (interpolation routines for 2d meteo input, FORTRAN!)

./deploy/ (directory for popc objects )

./Interface/ (a gui for Alpine3D)
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. /doc/ (this manual, documentation)
./tools/ (some auxiliary scripts)
./current_snow/ (input directory, should be deleted from svn!)
run_dischma_seq. sh (an example start script for sequential runs)
run_dischma_par. sh (an example start script for parallel runs)
Makefile (the top level Makefile)

Makefile.par (the top level Makefile only for parallel drift)

Note that the program is continously improved and corrected. Make sure that you are
up to date by checking the status of your working copy and update if necessary by

typing
svn up

in your t runk-directory (see also Ch. 6 for details)

2.3 Environment

Using compilers, POPC++, and GT requires you to have your environment set up
correctly. At SLF, add the following lines to an appropriate dot-file, i.e. to .profile
or .bash_profile in your home directory.

#-- globus —————————————————— -
export GLOBUS_LOCATION=/usr/local/gt3/gt3.2

source S$GLOBUS_LOCATION/etc/globus-user—env.sh

export LD_LIBRARY_PATH=S$LD_LIBRARY_PATH:/usr/local/gt3/gt3.2/1lib

# Note : Var names changed from PAROC_ to POPC_ in POP-C++-1.3
export POPC_LOCATION=/usr/local/popc

export PATH=S$PATH:/usr/local/popc/bin

export POPC_JOBSERVICE=gridl.slf.local:2711

#—- fortran ———————
export PATH=S$PATH:/usr/local/intel_fc_81/bin
export LD_LIBRARY PATH=$SLD_LIBRARY_ PATH:/usr/local/intel_ fc_81/1ib

and source the file. Before complaining, make sure that everything is set correctly
(i.e. verify your environment by typing set in a terminal).



2.4 Compilation

2.4.1 Making at SLF

Compiling Alpine3D requires a C, C++ and a FORTRAN90 compiler. At SLF, gcc,
g++ and ifort (Intel compiler) is used. Compilation is done using make with the top
level Makefile: Use

make all

in your trunk directory to generate the A1pine3D executable for sequential compu-
tation. In order to generate the executable Alpine3D.popc for parallel computing
use

make all_par
and subsequently
make deploy_par

to move the popc-modules to the . /deploy directory and create the object descrip-
tion file . /deploy/objectmap.conf required by POPC++. For making the par-
allel snowdrift implementation see Ch. 7.

2.4.2 Specifics on Zeus

A brief summary of the HPC cluster Zeus at WSL is given below. You can login to
zeus@wsl.ch after receiving a password from Markus Reinhard
(markus.reinhardt@wsl.ch)

e CPUs: AMD Opteron Dual Core 64 Bit processors. Each unit has two Dual
CPUs and the cluster comprises 16 nodes (ip-adresses 172.16.2.1-16) which
makes 16 x 2 x 2 = 64 cores

e Memory: Each unit has 8 GByte RAM.

e Netork: The units are connnected by a Gigabyte Ethernet via switch. Addi-
tionally, compute nodes are connected by Myrinet. The transfer rate is 900
MBytes/s (r+w).

e OS: Suse Linux 9.3

e Software: Sun Grid Engine (sge), Is-dyna, globus, mpich, petsc, pathscale (Com-
piler), R, IDL, ganglia, nagios



Moving the program to Zeus or any other computer requires to modify compilers
and libraries in the top level makefile Makefile. On Zeus, gcc, g++ and the pathscale
Fortran compiler pathf90 can be used. Besides updating your environment accordingly
the top level makefile Makefile has to be changed: Make sure that the respective
linker flag

FLIBS=-L/usr/local/intel_fc_80/1ib -1limf -lifcore
valid at SLF is replaced by the appropriate pathscale flag
FLIBS=-L/opt/pathscale/1ib/2.2 -lmpath -lpathfortran

In addition, make sure to add the flag —~fno-second-underscore to FFLAGS.
Then go on with making as described in the previous Section.
Note: Sometimes nothing happens when Alpine3D.popc is started on Zeus. Try to
open the . /deploy/objectmap.conf file and remove the exports directory
in the object description, 1.e. replace /exports/home/... by /home/. ...
It is also possible that the job manager unexpectedly dies on Zeus. In order to
restart it, login as popc and run the command popc—-1.0-inst/sbin/SXXpopc start.



Chapter 3

Running Alpine3D

3.1 Testing Alpine3D

After successful compilation, you can immediately test the sequential and the parallel
version. By simply typing Alpine3D it will print a usage-message and you will get
a list of possible command line switches with explanations.

An example call to Alpine3D with appropriately set command line switches can be
found in the example shell scripts run_dischma_*.sh in your trunk directory.
These scripts start examples start your local version of Alpine3D with input data for
the Dischma domain in the directory
/usr/local/org/FE/SCHNEEP/SMM/projects/alpine3d-testcases/dischma
The input data sets up a simulation of the Dischma catchment with 2d meteorological
input. Unfortunately, this directory is presently only accessible for the team “Snow-
cover and Micrometeorology”.

The output and the logfile stdouterr. log is written to
/usr/local/org/FE/SCHNEEP/SMM/projects/alpine3d-testcases/dischma/output/test
Output fields are compatible with the Ascii-ArcInfo grid format. All files follow the
naming convention <julian-day>.<extension> where extensions are used as
given in Tab. 3.1

dwr  long wave radiation

.swr short wave radiation

.sdp snowdepth

.alb  albedo

.swe  snow water equivalent
.tss  snow surface temperature
.sca  snow covered area

Table 3.1: File name extension in Alpine3D



You can open these output files, e.g. with the Alpine3D GUI by switching to
Interface subdirectory, typing view.bat and opening one of the files in that
directory.

3.2 Setting up a simulation

Setting up your own simulation can be done by preparing input data and adjusting
the parameters and paths in the example start scripts. Note, presently there are two
(three) different files where parameters and paths have to be adjusted if you want to do
simulations with 1d (2d) meteorological input. These are

e The start script.

e The snowpack parameter file specified by the -snowparam switch in the start
script

e The runoff/interpolation parameter file specified by the -meteopath switch in the
start script (only for 2d meteo input)

Make sure to have all paths in all files set correctly.



Chapter 4

Input Data

4.1

General

To be filled: Directories, formatting, time stamps, etc

4.2

Meteorological input

To be filled. Also ask for [7]. Even in case 2d meteorological input is applied, some
attention has to be paid concerning the remaining 1d meteorological input. Therefore,
better read the 1d meteorological input section too.

4.2.1 1d meteorological input

No time gaps are possible; make sure the gaps are eliminated by extrapolation
before starting Alpine3d since the sun position in the radiation balance module is
always computed from the expected date following the main imposed Alpine3D
time step.

Starting time and time steps should be consistent between 1d- and 2d meteoro-
logical input.

The radiation input (global shortwave and longwave radiation or cloud cover
fraction) has to be measured at an exposed measurement site.

Latitude, Longitude in the header of 1d meteorological file should be the co-
ordinates of the center of the model domain; Swiss Coordinates and height in
the header of 1d meteorological file should be the coordinates and height of the
radiation input station.

All meteorological input has to be in winter time (e.g.Davos: UTC+1) (i.e. no
summer time is accounted for).
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4.2.2 2d meteorological input
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Chapter 5
ToDo

5.1 Model problems

e The model overestimates snowdepth in low elevations and underestimates it in
higher elevations.

5.2 Implementation problems

e Reorganization (i.e. simplification) of the specification of parameters and paths
(e.g.: each module should come up with its own parameter class <module>Param.cc/h/ph
and paths can be set only in the start script)

e Improve portability (i.e. GNUization with the configure/autoconf/automake mech-
anism)

e Some binary output is generated by one of the Fortran codes and written to stdout
or stderr and hence to the logfile. This prevents to search the logfile with grep.
->Incovenient.

12



Chapter 6

Subversion in a nutshell

6.1 RTFM

Documentation can be found on the website
http://subversion.tigris.org/
and in the online book (sectioned html)
http://svnbook.red-bean.com/
which nicely tells you what it is all about:
If C gives you enough rope to hang yourself, think of subversion as a sort of rope
storage facility (from the preface)

6.2 Before you start

e The repository at SLF has the (url) location
svn://svn.slf.local/alpine3d/alpine3d/trunk.
If you prefer access to the svn via command line it might be convenient to to set
export SVN_ROOT="svn://svn.slf.local/alpine3d/alpine3d/trunk"
There are also nice and more convenient x-applications for accessing the repos-
itory. Check it out.
e If you even fail at closing old-school vi without the reference card (like me)
better
export EDITOR=emacs

in your shell before committing something via command line.

6.3 Basic work cycle

e Initial checkout:

13



svn checkout S$SVN_ROOT (alias: svn co S$SVN_ROOT)

creates a working copy of the repository by copying the complete directory tree
(including the directory trunk) from the repository to your present working
directory. Additionally . svn subdirectories are created in each subdirectory
which hold status information about your working copy.

Updating the working copy with the most recent version. Type

svn update (alias: svn up)

in your t runk directory. If you want to update your working copy with an older
(less buggy?) version use

svn up —-revision < revision no >

You can also update only particular directories/files of your working copy by
using

svn up <filename>

Making changes to your working copy. Change your working copy by by mov-
ing, copying, deleting or adding files. Use

svn add, svn delete, svn copy, svn move These changes take
place immediately in your working copy and the repository is changed after
your next commit. Note: if you simply invoke system commands, e.g. rm, to
delete a file, the deletion is not scheduled as a future change in the repository
and you might receive an error at next commit.

Checking the status of the working copy:

svn status

reports if there are changes in your files after your last update. If you want to
know what has changed use

svn diff

If you want to suppress status information about your messy working with bunch
of additional files use the —q option. If you want to additionally have information
if there are more recent versions in the repository use

svn status —qu

The first column of the output contains flags indicating the status of the file, the
most important is a capital “C”: Conflict, then your version won’t compile. “M”
means modified, “A” added and “D” deleted. If a file has a “*” in the second
column, a more recent version of that file is available in the repository.

Undo:

svn revert alpine3dFile.cc

recovers the state of the file at previous update.
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e Commit your changes:
svn commit
If not invoked with the "-m" switch the default editor will open for entering
comments on your changes.
e Examining the revision history of the project:
svn log

By passing a filename, the history of only this file is shown. If you want to make
sure to read the complete history of alpine3d-changes then use

svn log svn://svn.slf.local/alpine3d/alpine3d/trunk

All missing revision increments stem from changes in snowpack which is main-
tained in the same repository in

svn://svn.slf.local/alpine3d/snowpack/
If you really want to read every commit message of the whole repository, type

svn log svn://svn.slf.local/alpine3d

6.4 Rules

Needless to say:
1. Don’t commit without comment.

2. Don’t commit if it doesn’t compile.
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Chapter 7

Snowdrift module

7.1 Overview

The following description refers to the parallel version of the snowdrift module located
in snowdrift_par. From the computational point of view it is identical to the
sequential version at the date where this directory was committed (20. December
2007). But in the parallel implementation in snowdrift_par all redundant routines
have been removed and the naming of functions and variables has been made more
intuitive.

The snowdrift module comprises three different classes. The base class SnowDrift
(Interface in SnowDrift.h and SnowDrift.ph and the derived classes
SnowDriftParallel (Interface in SnowDriftParallel.h
and SnowDriftParallel.ph)and SnowDriftWorker (Interface also in
SnowDriftParallel.h and SnowDriftParallel.ph) The implementation
ofthe SnowDriftParallel classcan be found exclusively in SnowDriftParallel.cc
whereas the implementation of SnowDrift and SnowDriftWorker is distributed
over the files

SnowDrift.cc

Suspension.cc (contains solely the SnowDriftWorker::SubSuspension method)
SnowDriftFEInit (contains initialization routines for the FE method)
SnowDriftFENumerics (contains numerical element routines for the FE metho
SnowDriftFEControl (contains additional FE routines for SnowDrift and
SnowDriftWorker)

The remaining files

PackSnowDrift.cc
PackSnowDriftWorker.cc
checksum.cc

marshal_ drift.cc
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are required for PopC++ and finally clock.h/cc contains a simple class for time
measurements.

For a basic understanding of the computation flow of the snowdrift model check the
method SnowDrift::Compute () in the file SnowDrift .cc which consists ba-
sically of a call to the Saltation and the Suspension routine (besides some initialization
and io-operations).

For the Saltation you have to dig into the file Saltation.cc. Some of the
routines required there are still located in the snowpack_core subdirectory of the
repository in the file . /snowpack/snowpack_core/Saltation.c

For the suspension the main sequence of actions can be found in
SnowDriftWorker: :SubSuspension () inthefile Suspension. cc with self-
explenatory naming of the routines.

7.2 Details of the implementation of the Finite Element
method

All theoretical preliminaries can be found in Marcs report [4]. As explained there,
linear, hexahedral elements are used for the FE method. In the following I give further
details about the location of individual procedures of the FE method.

7.2.1 Isoperimetric transformation

The nodes in the reference Element K have coordinates

PO = (1,-1,-1) P® = (1,-1,1) (7.1)
P® = (1,1,-1) PO® =(1,1,1)

P® = (-1,1,-1) PO = (~1,1,1)

PW = (-1,-1,-1) P® = (-1,-1,1)

Note that the coordinate system in the reference element is different from global coor-
dinate system (cf. Fig. 7.1. The 8-node trilinear hexahedron basisfunctions defined on
the reference element K are explicitely given by

3

9O = [0 +&P), k=18 (1.2

a=1

The implementation can be found in computePhi () in SnowDriftFEnumerics.cc.
In terms of the gzﬁk, the isoperimetric transformation F' : K — K reads

8

Fo(§) =) QY ¢ (¢) (7.3)

=1
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Figure 7.1: Enumeration and coordinate systems in the reference and original element
respectively

and hence the Jacobian of the transformation is given by

(7.4)

which is implemented in computeJacobian in SnowDriftFEnumerics.cc.
The gradients of ¢* required for the jacobian are computed in computeGradPhi ()
in SnowDriftFEnumerics.cc.

7.2.2 Integrals over elements

The integrals over elements are performed by integrating over reference elements. The
weak solution of involves integrals over the original elmenents /. The integration is
performed by transforming to the reference element & via 1. Accordingly, integrals
are computed over K = F~* (K) with the transformation formula

/K & f(x) = /K 0 | det(J(€))] F(F(€) (1.5)

The integrals over reference elements are done by a two-point (per dimension)
Gaussian quadrature with points 4-1/+/3 ~ 0.57735. These points are setin set QuadarturePoints
in SnowDriftFEnumerics.cc.
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Since some integrals over elements involve the inverse of the jacobian J (see Eq.
in [4]) it is advantageous it in terms of the adjugate of J (denoted by .J, in [4]. The
inverse of .J and the adjugate adj(J) = are related by

J~1 = det(J) tadj(J) (7.6)

This matrix is computed in computeAdjugateMatrixin SnowDriftFEnumerics.cc.

7.2.3 Boundary conditions

As opposed to [4] boundary conditions are now implemented as weak Robin boundary
conditions which has the advantage of higher flexibility.

Additional element contributions

The derivation of the weak formulation of Eq. (25) in [4] (i.e. by multiplying with
a test function v and integrating by parts) in general leads to an additional boundary
term, viz

- /Q do [V - (K (2)Ve(e)]o(z) = /Q de [K(2)Ve()] - Vo@)  (17)

—/ da n(z) - [K(z)Ve(z)]v(z) ,(7.8)
)

where n(z) is the outward normal vector field on the boundary 0f) of the domain ).
The most general Robin boundary condition (also: generalized Neumann or flux
boundary condition) can be defined in the form

—n(z) - [K(2)Ve(z)] = v(2)(c(z) — gp(z)) + gn(@) (7.9)
in terms of functions v, gp, gx Which are defined on the boundary 0€2. The limiting
case of pure Dirichlet conditions ¢(z) = gp(z) can be formally obtained by y(z) — oo
and pure Neumann conditions —n(z) - [K(z)Ve(z)] = gy by setting (z) = 0.

Consequently, the weak imposition of the Robin boundary condition (7.9) in Eq.
25 of [4] can be achieved by inserting (7.9) into (7.7) which leads to two additional
terms in the weak formulation (27) in [4]: An additional contribution of the load on
the rhs of Eq. (27) in [4] is given by (counting minus-signs correctly)

b(0) = [ da [r(@hanla) — ax(o)]o(o) 7.10)

And the additional contribution from the Robin condition to the element matrix on the
lhs of Eq. (27) in [4] reads

bi(c,v) == /asz da vy(x)c(z)v(z) (7.11)

Note, to obtain the consistently stabilized conterpart of Eq. (31) in [4] with the Robin
boundary conditions, both additional terms (7.10,7.11) have to be evaluated with sta-
bilized test functions.
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Integrals over element surfaces

The respective element contributions of the surface integrals (7.10,7.11) are also com-
puted by transformation on the reference element /. The isoperimetric transformation
F in 7.3 induces six mappings G, , from the surfaces

Apoy={€€K:=0,0==+1, =123} (7.12)

of the reference element K to the surfaces of the A, of K given by the restriction of
F on the respective surface G5 1= F| 5

Then, the usual transformation formula for surface integrals applies to the surfaces
of the element K via

F(F(©)

fa=0

(7.13)

/ daf(a.y.2) = / A€, dE, ||, F(€) % 0c, F(E)]
Aaor Aao

a=0

and «, 3, chosen cyclic in 1, 2, 3. The surface jacobian can be expressed in terms of
the adjugate J of the jacobian via

1/2

10, 7(€) x 0, PO = (3 [Ta] ) (7.14)
B

The application of Robin boundary conditions is done in the method
SnowDriftWorker: :applyRobinBC in SnowDriftFEControl.cc. The
functions v, gp, gn can be specified in SnowDrift::InitializeSystemin
SnowDriftFEInit.cc.

7.2.4 Testing the numerics

By choosing the diffusion K = diag(0, 0, K), the flow u = (0,0, w) and the source
term as f(z) = mz with constants m, K, w the stationary problem reduces to the
one-dimensional advection diffusion equation

K, d"(2) +ud(z) = mz (7.15)

which can be solved analytically. It can be easiliy verified that with Dirichlet boundary
condition ¢(L) = ¢, at the top of column and a Neumann boundary condition ¢/(0) = ¢
the solution can be written as

c(z) = AK/u exp{uz/K} + B +m(Kz + uz*/2) /u* (7.16)
where the constants A, B are determined by the boundary conditions via

A=(—km/u®*, B=cL—m(KL+ulL?/2)/u* — AK/uexp{uL/K} (7.17)
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Figure 7.2: Comparison between exact Figure 7.3: Comparison between exact
and numerical solution for an diffusion and numerical solution for an advection
dominated case dominated case

The comparison between the exact solution and the numerical solution for values K, =
100,u =1,m=1,¢, =5,( =1,Az =1, L = 32 is given in Fig. 7.2.

The imposition of the Dirichlet condition has been done by setting v(0) = 107.
Note, that different values of K, u, etc might require to adjust (0) to a higher or lower
value in order get a suitably well conditioned linear system of equations.

For an advection dominated case we choose K, = 1,u = 10,m = 1,¢;, = 5,( =
—1,Az = 0.01, L = 32 and obtain Fig. 7.3 Note, that the solution remains stable
(no oscillations) also for quite larger grid spacings Az whereas the error is drastically
increased. It is recommended to apply a posteriori error bounds to the advection dif-
fusion problem for the particular cases of interest to better judge the quality of the
solution.

7.3 Details of the implementation of parallelism

7.3.1 Background
General

As detailed elsewhere, the snowdrift model is basically an advection diffusion equation
for a passive tracer. The old implementation of the model was an explicit Euler scheme
for the time integration of the transient advection diffusion equation. Its parallelization
was easily accomplished by domain decomposition. Due to the advection dominated
behaviour of the equation the scheme was however unstable and an implicit solution
was desired. Initiated by Marc Ryser (cf [4]) an semi-implicit scheme (SUPG with
Crank Nicolson time stepping) was implemented which requires the solution of a large,
unsymmetric, sparse linear system. For an efficient parallel implementation of the
solution the whole workflow of the finite element algorithm should be parallelized,
i.e. parallel data (vectors, matrices) parallel assembling (domain decomposition) and,

21



most important for efficiency, a parallel solver (stabilized bi-conjugate gradient)

MPI/PETSc

Since the GRID middleware POPC++ (cf [1]) does not come with parallel libraries
for standard numerical problems (linear algebra) we was either forced to re-invent the
wheel or to combine well-established libraries with POPC++.

An appropriate starting point is PETSc (cf. [3]) which is an MPI based, parallel-
numerics library. Standalone example programs are included in the documentation
of PETSc such that a standalone parallel snowdrift model can be implemented in a
straightforward manner. Here the main difficulty remains to unify the parallelization
in such a manner that the inter-module GRID parallelism achieved by POPC++ (ebal-
ance, snowpack, snowdrift, runoff, etc) can be maintained while introducing additional
intra-module parallelism within the snowdrift module with MPI/PETSc.

POPC++ version 1.1

A new (temporary) version of POPC++ was released which regards certain mod-

ules as MPI/PETSc processes. In this way, “workers” of a particular modules (such

as in snowpack, snowdrift) can be initialized as MPI/PETSc processes and standard
MPI/PETSc-code can be simply used in the worker class. Basically, this can be

achieved by a new construction mechanism of the SnowDriftWorker class and eventu-

ally using the -’ " object=petsc’ ' -flag during linking of the snowdriftworker.module
In this way the GRID-parallel class SnowDrift simply spawns its workers as MPI/PETSc
processes. For details I refer to the source code (interface of SnowDriftParallel

and the construction of the workers in SnowDriftParallel.cc)

7.3.2 Implementation details
Node and element enumeration

Ideally the complete parallelization should be done by using solely PETSc which sup-
port appropriate data structures with ghost nodes and mapping between different enu-
meration schemes.

However, here the old structure of the domain decomposition has been maintained,
where the whole simulation domain, is cut (by PopC++) into approximately equal
chunks along planes parallel to the yz coordinate plane. The implementation always
assumes a regular grid where N,,, NV, IV, are the global number of nodes in each coor-
dinate direction. Within such a domain decomposition the (processor-) local numbers
of nodes in each coordinate direction, denoted by n,, n,, n, are related to the global
values by N, = n, and N, = n_ and only the local n, is different from N,. The il-
lustration of the domain decomposition is depicted in Fig. 7.3.2. The overlap (or ghost
nodes) between adjacent domains is determined by PopC and contains two layers of
nodes. Thus, the global N, is not simply the sum over the local n, due to the overlap.
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Figure 7.4: Domain decomposition, here for an example with three SnowDriftWorkers
and N, = 24. Only the bottom layer of nodes of the whole simulation domain in the
2y plane is shown. Some examples values of the variables used in the code are shown.

For the present decomposition it is advantageous to use a node enumeration such
that consecutive blocks of node-numbers are hold by one processor. This leads to a
global node enumeration as shown in Fig. 7.5: The global mapping of a node with
global coordinates I, I, I, onto an global node index [ is given by I = I, N.N, +
I.N, + I, i.e. the lattice is traversed along coordinate directions in the order y, 2, .
Global node indices for an element with local element number are available on each
processor via the globalNodeMap array which is defined in SnowDriftWorker.cc
It maps the node numbers € {0,1..8} within an element with local element num-
ber € {0,1..(n; — 1)(n, — 1)(n, — 1) — 1} to the global node index which is e.g.
€ {bN,N,,.18N,N, — 1} for Worker no 2 in the three processor example given
above. Note, that the elements are enumerated by traversing the lattice in along coor-
dinate directions in the order z, v, 2.

In contrast, locally the nodes are enmuerated also in the x, y, z-scheme which was
the old enumeration scheme and which was left for data structure which survived
in the present parallel implementation (i.e. the nodes-array). More precisely the
enumeration is according to ¢ = i, + iyn, + i.n,n, for a node with local coordi-
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global node no = 18NyNz-1 local node no = nxnynz—1=13nynz-1
& <

ﬁ local element no= nx-2=11 ﬁ local element no= nx-2=11

global node no = 17NyNz _ local node no = nx-1=12
5 local node no = 0 z
Vo b
X x

Worker #2 Worker #2
globalNodeMap[(nx-2)][1]=17NyNz nodeMap][(nx-2)][1]=12

.
global node no = 5NyNz

Figure 7.5: Global node enumeration on  Figure 7.6: Local node enumeration on
the example of Worker 2 from the domain  the example of Worker 2 from the domain
decomposition in Fig. 7.3.2 decomposition in Fig. 7.3.2

nates i, ¢, 7, and local index :. The nodeMap-array is defined in SnowDrift.cc
such that node numbers € {0, 1..8} within an element with a local element number
€ {0,1..(n, — 1)(ny, — 1)(n, — 1) — 1} is mapped onto the the local node index
€ {0,1..nynyn, — 1}. Again, the elements are enumerated in the x, y, z-scheme.

Communication

During the assembling and the solution of the linear system the communication is
automatically done by PETSc. The values of the solution vector on the processor do-
main boundary are afterwards distributed to neighboring processors by POPC++ in the
ExchangeBoundSuspension method in SnowDriftWorker . cc. This is nec-
essary to compute the deposition flux in SnowDriftFEControl. cc consistently.

7.3.3 Problems with the present parallel drift
No unifying source code for sequential and parallel mode

The main problem of the present parallel implementation is that it cannot be run se-
quentially. To explain this difficulty it is necessary to understand the following details
of the implementation: Every MPI/PETSc program requires the initialization of the
parallel communicator viaPetscInitialize () whichinturncallsMPI_TInit ().
This is implicitely done by POPC++ during construction of the SnowDriftWorkers.
This implies i) all PETSc variables (vectors,matrices) have to be members of the
SnowDriftWorker-class and ii) all workers are automatically ready to execute
MPI/PETSc code.

This reveals the two problems when one wants to take over this implementation to
a sequential mode: Presently, in sequential mode no workers are constructed. Conse-
quently i) no PETSc variables are available at all ii) and no call to Pet scInitialize ()
is done.
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A workaround might be possible by (a lot of?) conditional compilation: First, in
sequential mode Pet scInitialize () must be invoked manually somewhere else
(where? probably in AlpineMain). Second, in sequential mode all PETSc variables
must be members of the class SnowDr1i ft and not members of the class SnowDriftWorker.
Vice versa in parallel mode.

Therefore, the parallel version is included in an additional directory snowdrift_par
in the repository.

Dynamic library completion

It is necessary to additionally hack the snowdriftworker.module after running make deploy_par
in order to appropriately include the dynamic libraries. This is achieved by the helper

application parocexe which s located in the t oo1s directory located in your t runk

directory. The call to parocexe is included in the Makefile.par.

7.3.4 If you want to use it

1. adjust your environment: source ./tools/popc-petsc.env
2. make all_par —-f Makefile.par
3. make deploy_par —-f Makefile.par

4. ./sc_drift_par.sh

With the present “installation” of popc only the MPI processes are computed in
parallel, the remaining modules are running on your local machine.

74 TODO

1. install a proper version of popc-1.1 in /usr/local against mpi (should be the ver-
sion /usr/local/mpich-1.2.5.2 since petsc-2.3.0 is compiled against
it) and petsc-2.3.0-popc
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Chapter 8

Data Assimilation Module

8.1 Files

The data assimilation module in . /assimilation contains the files

DataAssimilation.h
DataAssimilation.ph
DataAssimilation.cc
PackDataAssimilation.cc

8.2 Description

The assimilation module (often abbreviated by “DA” or “da” in the code) is responsible
for any data assimilation specific computations. Presently, it basically hosts memory
for the assimilation data which could have been included also in some of the other
modules since only direct insertion like assimilation without any computation is im-
plemented. It has been decided to add an additional module though for the sake of
generality since for more sophisticated assimilation schemes (like a Kalman Filter)
extensive numerics might be required (i.e. for the computation of the Kalman gain
matrix).

The module can be enabled by the switch —enable—-da in the command line op-
tions of Alpine3d limilar to the other modules. Additionally, a path to the assimilation
data has to be provided by adding the switch

—dadir=<path to da-data, without terminating slash>

Having enabled the data assimilation the basic working steps of Alpine3d which
involve the assimilation are given below:

1. At each time step the Compute () method of the DataAssimlation class is

invoked in AlpineControl: :Run in AlpineControl.cc which forces
its input member to try to read assimilation data from the specified directory

26



dadir. In that directory, the program expects data in files with names <YYYYMMDDHH> . sca
which must contain integer data and should be formatted according to the usual
Ascii Arclnfo grid format.

2. If data is available in that directory with the correct timestamp it is read into the
memory of the assimilation class and send to snowpack, which itself distributes
the data to its workers (if run in parallel). If no DA-data is available at that
timestep an exception is thrown and everything continues regularly.

3. Within snowpack, Snowpack: :Assimlate () is invoked and the DA data
is used to control actions in Snowpack. For the present example in the case of
SCA data cf Snowpack: :Assimilate () in SnowInterface. cc for the
details of the actions.

8.3 Modifications in other modules

The modification in other files which were necessary to build in a new class (parclass)
are listed below:

e add ./assimlation directory

e modify all Makefiles (for obvious reasons)

e in ./main (creating the DA module in AlpineControl)
e in ./common (add new exceptions, etc)

e in ./snowpack: add pointer to assimilation module, add assimilation routines,
add distribution of DA data to workers

e in ./inout: add a method for reading DA-data and a method for getting the grid
dimensions (GetGridSize(...))
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