Numerical Simulation of Snow Transport Above Alpine
Terrain

Author: Marc D. Ryser (*) marcdaniel.ryser@epfl.ch
Supervisor: Dr. M. Lehning (**) lehning@sif.ch

)

(**) SLF, Swiss Federal Institute for Snow and Avalanche Research, Davos (CH)

Autumn 2004

Abstract

Wind transport of snow has a major impact on the avalanche hazard as well as
on the ecology and hydrology in mountainous environments. An important feature of
future avalanche forecast models is therefore the numerical simulation of snow-transport
by turbulent wind fields above alpine terrain. One possible approach to this problem is
the modeling of the snow-air mixture as a real fluid and consequently the description
of its mass balance by means of an unsteady partial differential equation (PDE) of the
advection-diffusion type. The aim of this project was to find an apt numerical method
for solving the arising PDE. For certain reasons we have decided to concentrate on
the large class of finite element methods (FEM), more precisely on Galerkin methods.
The fact of the matter is that the problem to solve is highly advection-dominated
and consequently a standard Galerkin (or Bubnov-Galerkin) approach performs rather
unsatisfactorily as will be shown. Among the vast variety of stabilized versions of the
Galerkin method we finally selected the SUPG (Streamline-Upwind/Petrov-Galerkin)
scheme together with a second order Crank-Nicolson scheme for the time-discretization.
Initially, we wrote a test version of this method in MATLAB and obtained, for instance
in the case of a regular mesh, stable results even under advection-dominated conditions.
Encouraged by these tests we continued by implementing basically the same method in
C/C++. To accomplish this we had to modify and adapt it slightly because the code
was finally to be embedded in a large model that simulates among other things the
evolution of the snow cover. Besides the test simulations presented in this paper, we
haven’t obtained any conclusive results yet.

EPFL, Swiss Federal Institute of Technology, Lausanne (CH), Department of Physics

CONTENTS 2
Contents
1 Introduction 3
2 Standard Galerkin Method 4
2.1 Weak Formulation of the Steady Problem (1D) 4
2.2 Bubnov-Galerkin Method 5
2.3 Stability Issues Lo 7
3 Stabilization Methods 7
3.1 Artificial Diffusion and Petrov-Galerkin scheme 7
3.2 Numercial Approximation by SUPG 9
4 Time-Advancing 10
4.1 Time-Advancing by Finite Differences 10
4.2 Discontinous Galerkin Method, 12
5 Choosing SUPG and Crank-Nicolson 13
5.1 Comparison of the different methodsin 1D 13
5.2 The Complete Discretization by SUPG-CN 14
5.3 Finite Element Approximation and Shape Functions 15
5.4 Boundary Conditions 16
6 Implementational Issues 16
6.1 Numerical Integration 0o 18
6.2 Sparse Matrices e e 19
6.3 Solution of the Linear Algebraic Equations 19
6.4 Modeling and Calculation of Snow Deposition end Erosion 20
7 Tests and Discussions 21
8 Conclusion and Outlook 23

1 Introduction 3

1 Introduction

Wind transport of snow has a major impact on the avalanche hazard as well as on the ecol-
ogy and hydrology in mountainous environments. Topographic modification of the wind
field causes the increased accumulation of snow in leeward slopes, which may result in
spontaneous or human-caused avalanches. Basically, we distinguish two different kinds of
snow transport in high alpine regions: saltation (hopping of particles above the surface
following ballistic trajectories) and suspension (particles are picked up by turbulent eddies
and are transported over large distances without contact to the ground).

Since the snow transport above ground (Suspension) has a large impact on the redistribu-
tion of snow and thus the evolution of the snow cover, it is inalienable for future forecast
models to be able to simulate this transport process. A possible approach to a numerical
solution is the description of the snow-air mixture as a continous fluid and therefore its
mass transport as a fluid flow. These assumptions allow us to rewrite the mass balance
for snow in suspension in form of an unsteady partial differential equation (PDE) of the
advection-diffusion-type (together with appropriate boundary conditions):

)
a—i—l—b-Vc—V-(KVc):f, (1)

where c is the concentration, b is the mean wind velocity, K is the diffusion matrix and f
represents sink and source terms (note that all variables are functions of time and space).
The wind field above alpine terrain is actually very complicated and far from being free of
turbulence. Therefore we decompose it into the mean wind field b and into irregular swirls
of motion (eddies) that are superimposed on b. According to the mixing length theory [1]
we take account of these eddies in terms of the diagonal diffusion matrix K. The f term
may, for example, describe sublimation processes in the lower atmosphere due to the mete-
orological phenomenon called Fohn.

Neither the validity of the modeling of snow as a real fluid nor the quest for appropriate
boundary conditions are the main aspects of this paper. The goal of this present study,
focusing on the mathematical aspects of the problem, is to find an appropriate numercial
method to solve the PDE (1) with, for instance, inhomogenous Dirichlet Boundary condi-
tions on a well-chosen domain €2 above alpine terrain. The final problem (including the
initial conditions) reads therefore:

9% 1b-Ve—V-(KVe)=f inQ,
c(x,t) = x(x) on 99, (2)

c(x,0) = (x) in Q.

Facing the vast variety of numercial methods that are known and used these days, one has

2 Standard Galerkin Method 4

to make a restrictive selection from the very beginning on. Since the numercial model that
should finally arise from the following investigations and tests will be embedded in a large
program that supplies in a preceeding step the wind field b on a well-defined mesh, we
decided to use this very mesh as a finite element triangulation of the domain €.

After the investigation of general mathematical issues and the discussion of several possible
finite element methods in one space dimension (sections 2, 3, 4), we shall restrict ourselves
in section 5 to a more detailed analysis of the SUPG method in 3D, a method that seems
to be apt to cope with the instability problems due to advection-domination of equation
(2). In order to judge the chosen SUPG method upon its stability and convergence we had
initially implemented a 3D test-version in MATLAB and then rewritten a slightly modified
version of the method in C/C++ (section 6). Finally we shall discuss its performance on a
regularly triangulated domain in section 7.

2 Standard Galerkin Method

Nowadays the variety of different methods for approximating partial differential equations
(PDE) is enormous and first of all, we had to decide which class of methods could be ap-
propriate for solving the unsteady advection-diffusion problem (2). Motivated by several
authors like Quarteroni and Valli [4] and Johnson [3] we decided to focus our investigation
on a finite element approach, more precisely on a Galerkin method. Since the problem of
interest is clearly of an advection-dominated nature due to large wind velocities in alpine
regions and since the closure of §2 by alpine terrain on its bottom side causes a rather irreg-
ular triangulation of the domain, care needs to be taken in choosing an apt version of the
Galerkin method.

In order to simplify the mathematical development we will discuss the advantages and dis-
advantages of different Galerkin methods in one space dimension together with homogenous
Dirichlet boundary conditions and only switch to a 3D formalism in the discussion of the
SUPG method in section 3.2.

2.1 Weak Formulation of the Steady Problem (1D)

The classical or strong form (S) of a steady advection-diffusion equation in one space di-
mension with homogenous Dirichlet conditions reads as follows:

bie = q%e 1 f infab] =1
(3)

where c is the concentration, b is the advection coefficient, d is the diffusion coefficient and
f is a sink or source term. Let’s introduce now a space of test functions V, for instance a

2.2 Bubnov-Galerkin Method 5

space of linear functions on I:
V ={v|veC’I) and v’ is p.c. on I, v(a) = v(b) = 0}. (4)

If we multiply (3) by veV and integrate over the interval I we may rewrite the equation by
using the scalar product notation fab dxf(z)g(z) = (f,g) and 3—2 = as:

b(d,v) = —d(d, V") + (f,v) inl
(5)

Note that we have integrated the first term on the right hand side by parts and used the fact
that v(a)=v(b)=0. Obviously, every solution ¢ of (5) is also an element of V and therefore
we can reformulate the strong problem (S) in its weak or variational form (W):

Find ¢ € V such that b(c,v) +d(c',v") = (f,v), Vv e V. (6)

On the other hand, one can easily verify that a solution of (6) also solves (3) if ¢” is
sufficiently regular. As for the (identical) trial and test spaces V we shall from now on use
the Hilbert space

HY = {v | v, € Ly(I), v(a) = v(b) = 0}. (7)

Let us now derive the standard Galerkin method from the weak formulation (6).

2.2 Bubnov-Galerkin Method

Let’s choose a finite dimensional subspace Vj, C H} and introduce a basis {¢;(x)}"; of
V. The parameter h > 0 represents the mesh size of the finite elements and we assume
that Vv € V, inf,, ey, [|v — vn|| — 0, as h — 0. The corresponding finite dimensional weak
formulation of (6) is therefore (W},):

Find ¢;, € V}, such that b(c),,vp) + d(cy,,v;) = (f,vn) ¥V v, € V. (8)

Under certain regularity conditions the Laax-Milgram lemma (see for example [4]) ensures
existence of a unique solution for (8) and its convergence to the exact solution ¢ for h — 0.
Since the solution of (8) can be expanded on the chosen basis, i.e. ¢, =Y i vidi(x), we
may rewrite (8) as: find ~;, i =1,...,n such that:

b i),) +d D i), vh) = (f,vn), Vo € Vi (9)
i=1 =1

2.2 Bubnov-Galerkin Method 6

Figure 1: Triangular basis functions (hat functions) on [0,10]: ¢o, ¢5 and ¢10
and this is by basic linear algebra equivalent to: find ~;, ¢ =1,...,n such that:

n

b i), 65(x)) +d Y 7i(@i(x), (x)) = (f,¢(2)), Vi=1.....n. (10)
i=1

=1

The last equation (10) may be rewritten in matrix form as:

bBc+ dKc=T, (11)

where Bjj = (¢}, ¢i), Kij = Kji = (¢}, ¢}) and T'; = (f, ¢;). Reducing the original strong
problem to solving a linear system of equations like (11) is referred to as the Galerkin
method (Bubnov-Galerkin method). The matrix K is usually called the stiffness matrix.

So far, the finite dimensional subspace V} hasn’t been specified explicitely. In one space
dimension, one usually divides the interval I=[a,b] into k+1 subintervals K; with the nodes
a = xg, T1,..., Tp+1 = b and introduces the subspace

Vi, = { v is continous on I, v |g, islinear, Vi=1,...,n, v(a) =v(b) = 0}. (12)

As a basis one may choose the triangular hat functions (see figure 1).

Before analysing some results obtained by the Bubnov-Galerkin method it is important to
explain how to cope with inhomogenous Dirichlet boundary conditions, i.e. we want the
function c(x) of equation (5) to satisfy the inhomogenous boundary conditions ¢(a) = v and
¢(b) = n. In this case our test-space is simply

H' = {v|v,v € L*(I)} (13)
and its finite dimensional subspace is
Vi = {vis continous on I, v |k, is linear, Vi=1,...,n, v(a) =v, v(b) =n}, (14)

where K; = [x;,2;+1]. We obtain a basis of V;* by simply adding the two basis vectors ¢
and ¢, to the basis {¢;}I"; of V}, (see figure 1). The problem reads now:

Find ¢;, € V} such that b(c},, vy) + d(ch, vy,) = (f,vn) ¥ vp € Vi (15)

2.3 Stability Issues 7

Figure 2: Stability problems with Bubnov-Galerkin for f=2, b=2 and d=0.4

Since we can write ¢, € V" as:

ch = (Z%éf?i) + (Voﬁbo +’Yn+1¢>n+1> = 2 + &, where 2, € Vi, & €V,
i=1

the inhomogenous problem (15) can finally be reformulated with respect to V}, instead of
Vi

Find z, € V}, such that b(zy,, vp)+d (2}, v5,) = (f,vn) —b(&,, vn) +d(&,, v5), VY vp € Vi (16)

2.3 Stability Issues

Unfortunately, the Bubnov-Galerkin method shows a behaviour of instability while solv-
ing problems that are advection-dominated. Let’s consider the steady advection-diffusion
equation in 1D:

g / _ :
dc’(x) + b (z) = f in [0,10] (17)
c(0) =0, 10) =

In the following numerical example we set shall d=0.4 and b=2, expressing the fact that
the problem is advection-dominated. In figure 2 we can observe that the numerical approx-
imation by Bubnov-Galerkin to this problem shows an oscillatory behaviour for h=1 and
h=0.5. A more detailed ananlysis (cf [4] and [3]) shows that these oscillations occur for
h > d and can be eliminated by choosing h < d, a result that is verified again in figure 2
for h=0.2. One possibility to avoid these tedious oscillations is obviously to decrease h in
function of the diffusion coefficient d. However, this is a unconvienent solution since often
the mesh size h can’t be decreased arbitrarily (as it is the case for a mesh generated in
advance). More successful strategies will be discussed in the following section.

3 Stabilization Methods

3.1 Artificial Diffusion and Petrov-Galerkin scheme

A well-known method that avoids instability due to advection-domination is the so-called
Petrov-Galerkin method. The main idea of the Petrov-Galerkin approach is to take a test
space that is different from the trial space, i.e. we may take the usual trial space for a
homogenous problem:

Vi, = {v is continous on I, v |g, is linear, Vi=1,...,n, v(a) =v(b) =0}, (18)

3.1 Artificial Diffusion and Petrov-Galerkin scheme 8

Figure 3: Stability of Petrov-Galerkin for f=2, b=2, d=0.4

but a modified version of the test space:

Wn - Span{¢17w27"'7wn}7 (19)

where
bj(@) = ¢j(x) +o(h™ e - j). (20)

The functions ¢;(z) are still the basis functions (hat functions) and o(z) is given by:

—3z(l14+z) , -1<2<0
ox)=¢ —3z(1l—=z) |, 0<z<1 (21)
0 o lel21

The corresponding finite dimensional problem reads then
Find ¢, € V}, such that b(c},,vp) + d(c),,v;) = (f,vn) ¥ vy € W (22)

Direct calculations prove true that the oscillations are indeed eliminated, i.e. even for rather
large spacings like h=1 we obtain a non-oscillatory solution (see figure 3). Although this
Petrov-Galerkin method is stable in comparison to the standard Galerkin method, we can
observe that the convergence is worse; later on in this section we shall see why.

A more intuitive comprehension of the scheme (22) can be achieved by considering the finite
difference scheme (where we suppose that b > 0):

ST S 0 1
o (23)
Cny1 =1

As a matter of fact, (23) is equivalent to the Petrov-Galerkin problem (22) (cf [4]). Due
to the positive coefficient b, the transport occurs from the left to the right and therefore
one is motivated to write an upwind finite difference scheme as (23) to solve the original
problem. However, this scheme is obviously only of O(h) which implies a loss in accuracy
and a diminished convergence as mentioned before. By noticing that the transport term of
(23) can be written as

Uj —Uj—1 Uil — Uj-1 Quj—i-l — QUj + uj-1

h N 2h 2 h2 ’ (24)

we may generalize the upwind scheme to higher dimensional problems by generally intro-
ducing an artificial diffusion term corresponding to the second term on the right hand side

3.2 Numercial Approximation by SUPG 9

of (24). But also here, we shall not forget that the artificial diffusion term leads to a first
order accurate scheme and therefore it is more convenient to introduce stabilizing terms
that don’t affect the accuracy imposed by the chosen finite element subspace. Two good
examples for strongly consistent methods are the Bubble functions (see [4]) and the SUPG
method that shall be discussed in (3.2).

3.2 Numercial Approximation by SUPG

Since, at the end of the day, we shall decide to implement a SUPG scheme we would like to
introduce this particular method directly in three space dimensions. The steady problem
in 3D reads :

{b-Vc—V-(KVc):f in Q (25)

c(x) = g(x) on 0N

The respective weak formulation of (25) is (with, for instance, g(x) = 0 and with (-, -) the
L? scalar product):

find ¢ € Hy(S2), such that (b- Ve, v) + (KVe, Vo) = (f,v), Vv e Hy, (26)

where the diffusion term has been integrated by parts according to the divergence theorem.
With the notation a(v,w) = (b- Vv, w) + (K'Vv, Vw), where a is obviously a bilinear form,
we may rewrite (26) as follows:

find ¢ € H}(Q), such that a(c,v) = (f,v), ¥ v € HL. (27)

Instead of simply choosing a finite element subspace V}, of H} and formulating the standard
Galerkin method, we first introduce a splitting of the differential operator L into L =
Ls + Lgg such that:

Lssc=b-Vc and Ls=—-V-(KVec). (28)
Define:
=) 5K(Lss + pLs)v)K and (29)
KET,
O (v) = 3 b (1. 54 (Lss + pLs)v) (30)

KeT),

4 Time-Advancing 10

where T}, is a triangulation of the domain (see section 5.3), p and dx are parameters and
(v,)k is the scalar product on the element K. Now, we introduce the stabilized approxima-
tion in terms of the finite element subspace Vj:

Find ¢}, € V}, such that a(cp, vg) + A;Lp) (ch,vn) = (f,vn) + @glp) (vp), Y vy € V. (31)

Since for all choices of p and dx the equation (31) is verified for the exact solution, this
method is said to be strongly consistent (in contrary to the artificial diffusion scheme which
decreases the global order of convergence). This is a very desirable property because the
stabilization does not decrease the order of convergence imposed by the finite element space.
From now on we will confine our attention to the special case p = 0, the so-called SUPG
(Streamline-Upwind/Petrov-Galerkin) method. The choice of dx will be discussed in section
5.2.

4 Time-Advancing

After having introduced several methods for a semi-discretization in space, we have to focus
now on the time-dependant problem, i.e. the unsteady advection-diffusion equation:

9+ Le=f, inQr:=]0,T[xQ
c=g(x), on X7 :=]0,T[x00 (32)

c = cp, on), t=0

where

Le:=b-Vc—V - (KVc)

and all variables are functions of time and space. The case of inhomogenous Dirichlet
boundary conditions is dealt similarly as in one dimension.

4.1 Time-Advancing by Finite Differences

There are several possibilities to solve the time-dependent problem (32), but a common
approach consists in a semi-discretization in space by means of a previously discussed finite
element method and a subsequent discretization of the arising scheme in time. In order to
achieve the discretization in time of e.g. a Bubnov-Galerkin scheme:

4.1 Time-Advancing by Finite Differences 11

(%M%) + a(cn, vn) = (f,vn), (33)

one may apply the following 6-scheme:

A (T = o) + a0t + (1= 0)ct,vp) = (O () + (1= 0)f(tn),vn), YV vp € Vi

C?L = Co,h-
(34)

The special case § = 0 corresponds to the Backward Euler (BE) scheme and is a first order
implicit scheme, whereas 6 = % corresponds to a Crank-Nicolson (CN) scheme that is of
O(Rh?). Another possibility is the semi-implicit scheme where we evaulate the principal part
of the differential operator L at time ¢,11 and the remaining parts at time ¢,:

A (T = vp) + (KVET, V) + (b VR, v) = (f(tng1),vn) ¥V o, € Vi,)
C?L = Co’h.

A third possibility is the so-called algebraic splitting: After the semi-discretization in space
by e.g. a Bubnov-Galerkin scheme and the reformulation of the arising scheme in terms of
matrices we obtain the following ODE (cf. 11):

Adep(t) + Pep(t) = F(t)

(36)
Ch(O) = CO,h-
We split the matrix P into P = P; + Ps:
(P1)ij = (KV¢;,V;), (P2)ij = (b-V¢j,¢) (37)

and solve the ODE in time according to the Peaceman-Rachford scheme with one interme-
diate step:

4.2 Discontinous Galerkin Method 12

7

A2 | pyentl/2 4 Pt = Ft,11)0)

A0n+1_cn+1/2 4 P20n+1/2 + Pt = F(tn+1/2) (38)
T = %7 CO = Co,n

4.2 Discontinous Galerkin Method

A more sophisticated approach to the time-dependant problem is the discontinous Galerkin
method which makes use of a finite element formulation in space and time. As we will see,
the computational cost of this method is fairly high and therefore it is, although pretty effi-
cient, not very attractive. However, we have implemented a discontinous Galerkin method
combined with a SUPG-discretization in time and shall discuss it briefly in section 5.1.

The basic idea of the discontinous Galerkin method is to introduce the space of trial func-
tions

Wi ={v: 1 — Vi | vy, € Po(Im), m=1,..., M}, (39)
where .
P,I,)={v:IL, = V,:0(t) = Zviti, with v; € Vi, },
i=0
and where I is the global time interval, I,;, = [t,,, tm+1] are the finite elements in time and

q is the degree of the polynomial that we shall set to 1. Therefore Wy is the space of
functions on I with values in V}, that on each time interval I,, vary as polynomials of degree
at most q and that may be discontinous in time at the points t,,. For a more detailed
investigation of the method we refer to [3] and [4], and we shall simply give the final scheme
for the time interval I,,,, with q=1 and k,, the corresponding length of the time interval:

(Uo,v) + kma(Uy,v) + (U1,v) + Lkma(Ur,v) = (U™ 1, v) + f[v)ds, Vv eV,

%kma(UO)) %(Ulv)+ kma U17 - k- f]m tim—1 (f(S),U)dS, Vwove Vha
(40)

where U™ ! is the left-side limit in time of U at tim—1-

The final solution on the time interval will be, according to (39):

t—tm—
U(t) = U0+T1, t eIy, U €V

5 Choosing SUPG and Crank-Nicolson 13

Figure 4: Time evolution by Petrov-Galerkin/Operator-Splitting with h=dt=0.1

Since we have to solve this system for Uy and Uj, the amount of work is doubled in com-
parison to a simple time-stepping, but higher accuracy is achieved.

5 Choosing SUPG and Crank-Nicolson

5.1 Comparison of the different methods in 1D

The actual aim of implementing the whole variety of different time and space discretizations
in 1D presented in sections 3 and 4 was to choose the best method for the problem of interest,
i.e. the three dimensional problem (2). For reasons we have already discussed in section
2.3 the standard Galerkin scheme is not a very fruitful method for advection-dominated
problems and we definitely had to find a stabilized version of the Galerkin scheme.

Let’s focus now on the three different time stepping approaoches presented in section 4.1,
i.e. the 0—scheme (34), the semi-implicit method (35) and the algebraic splitting (38). The
two 6—schemes of interest, i.e. the Backward Euler scheme (# = 0) and the Crank-Nicolson
scheme (6 = %) are both unconditionally stable (a very desirable property), but since the
CN method is of order O(h?) we shall prefer it to the BE scheme, only of O(h). For solely
diffusion-dominated problems all three methods perform well, as we can see for example in
figure 4 which presents the solution to (3) by a Petrov-Galerkin/Operator-Splitting method
after 0.6, 6 and 60 seconds respectively. However, applied to advection-dominated problems,
the performance of the semi-implicit scheme and the operator-splitting method are very
poor as we can see in figures 5 and 6. These approximations are unstable and show huge
oscillations whereas the approximations obtained by Petrov-Galerkin in space and Crank-
Nicolson in time are stable and converge to the exact solution with decreasing mesh-size
h as we can observe in figure 7. Note that if we modify the semi-implicit scheme (35) by
evaluating the transport term instead of the diffusion term at time ¢,.1, we obtain very
unstable results already for low advection-domination.

Finally the Petrov-Galerkin scheme (22) is only first order accurate and therefore we decided
to focus on the SUPG approach. The last decision was to be taken between a time-stepping
by the Crank-Nicolson scheme and the discontinous Galerkin method. A direct comparison
between those two methods (i.e. SUPG-CN and SUPG-DG) in figure 8 reveals a somewhat
strange behaviour of the SUPG-DG method: we actually loose accuracy by decreasing
the time-step dt from 0.5s to 0.1s, and with dt=0.1s SUPG-CN is still more precise than
SUPG-DG (note that all graphs represent the concentration after 500s and can therefore
be considered to be in the steady state. Motivated by these results and the substantial
computational cost arising in the SUPG-DG method, we finally decided to work with SUPG-
CN.

5.2 The Complete Discretization by SUPG-CN 14

Figure 5: Instability of Petrov-Galerkin/Operator-Splitting for advection-dominated case after 60 seconds
with d=0.4, b=8, h=dt=0.1

Figure 6: Instability of Petrov-Galerkin/Semi-Implicit scheme after 60 seconds with d=0.4, b=8, h=dt=0.1

5.2 The Complete Discretization by SUPG-CN

After having introduced the strongly consistent SUPG method for the steady advection-
diffusion problem in section 3.2 we will now work out the numerical scheme that enables us
to find an approximation to the unsteady problem (32).

Starting off the strong form of the unsteady problem, we obtain, after having multiplied
both sides by a test function v € V} and having integrated over the domain €2, the following
finite dimensional weak formulation:

d
find ¢, € V},, such that a(ch(t),vh) + alep(t),vn) = (f(t),vn), YV v eV, (41)

where ¢;,(0) = cp. According to section 3 we write the stabilized semi-discrete scheme:

e en(t). vn) + alen(t), vn) + Cicen, 0rc (% (1) + Len(t). B (Lssn))

= (F(),v) + L cer, Orc (£, 1 (Lssvn)) ¥ v € Vi, (42)

cn(0) = o n,

for t € (0,7). And finally, using notation (29) and (30), we can write the full discretization
with a Crank-Nicolson scheme in time:

Ar(eh ™ = chvon) + da (6 + ci).)

+ Ve, On (Be(eh ™ —) + 36V = V- (KO =), 5 (Lsson)) "
43

= (F(),vn) + e, Or (£(0) 1 (Lsswn)) . Vv € Vi,

cn(0) = co,n-

Figure 7: Petrov-Galerkin with Crank-Nicolson: Convergence with increasing mesh-size h

5.3 Finite Element Approximation and Shape Functions 15

Figure 8: Good performance of SUPG-CN; SUPG-DG shows a weird behaviour for decreasing dt. Results
obtained after 500s and with b=8, d=0.4

Note that we have split the time interval [0,7] into M+1 subintervals [t;,ti+1], V i =
0,...,M.

The value di is another important parameter of the SUPG method and in what concerns its
choice, we would like to refer to a statement by Brezzi, Franca, Hughes and Russo (1997):
"The general strategy to find it may be described as follows: first you guess the form of
it, then you perform an error analysis to confirm that the order of the parameter yields
optimal or quasi-optimal estimates. If this is not the case, guess again, until you get the
best possible estimate. Then perform numerical experiments for your choices and try to
cover a wide range of problems of interest. If all works then you have a method.’ Inspired
by several authors we decided to take for instance the following choice of dg:

h2 .
O = 15c, if Pe <1,

(44)
Sk = % if Pe > 1,

and Pe is the local Peclet number % and € = Tr(K).

5.3 Finite Element Approximation and Shape Functions

We suppose that our domain of interest, Q € R?, can be decomposed in the following way:

o= J K, (45)

KETh

where each K is a polyhedron and T}, is called a triangulation of 2. Admissible triangulations
are such that no vertex of an element touches the edges of its adjacent elements, i.e. each
element shares the position of its vertices with its adjacent elements. In 3D, one often
uses either tetrahedrons or hexahedrons for the triangulation; we shall confine myself to a
hexahedral triangulation, i.e. a triangulation by (irregular) cubes. We assume furthermore
that for each element K there exists an invertible map F' such that K = F(K), where K
is a reference hexahedron. Omnce the triangulation is determined, we can choose a finite
dimensional subspace Vj, C H{, in general a space of piecewise polynomials, i.e. VK €
Th, Pk = {vpk|vn € Vi} consists of algebraic polynomials. Basically we will choose V},
in such a way that its basis can be expressed in (p,q,r) space (the space of the reference
element) by the following 8 trilinear functions defined on the reference element:

5.4 Boundary Conditions 16

¢1(p,q,7) = pgr,

¢3(p¢,m) = p(1 = q)r,

¢a(p¢,r) = (1 = pgr,

¢5(p,q,r) = (1 =p)(1 =g, (46)
¢6(p,¢;7) = (1 = p)g(1 =),

¢7(p,¢,m) = p(1 = q)(1 =),

¢s(p.q,r) = (1 =p)(1 = q)(1 —1).

Note that the term shape function refers to the restricition of a basis function to a specified
element; the functions (46) are therefore called shape functions.

5.4 Boundary Conditions

The appropriate choice of boundary conditions is an essential part of the whole modeling
process and special care needs to be taken. For the following discussion it is important to
note that we will work with a wind field which is supposed to be constant throughout the
interval of integration [0,T] and that we will stop the iteration as soon as the fluid flow
becomes quasi-steady.

The bottom side of 2: Since there is a thin layer of snow transport by saltation just above
the terrain (hopping of the particles), the snow concentration on the lower boundary of € is
mainly influenced by this saltation concentration. Therefore we take inhomogenous Dirichlet
boundary conditions that are determined by the saltation concentration at the beginning
of the time interval. On the lateral and the upper boundary of €2 we apply an infinity-
limit, i.e. we assume that the precipitation inflow and outflow on these boundaries are not
influenced by the perturbation caused by steep topography and turbulent wind fields within
the domain. Thus the apt boundary conditions seem to be of an inhomogenous Dirichlet
type and are determined by the precipitation concentration in the air at the beginning of
the time-advancing. A more detailed discussion of the process taking place on the lower
boundary of the domain can be found in section 6.4.

6 Implementational Issues

First of all we have to specify several features of our discretization model: we suppose that
our domain 2 can be decomposed into an union of hexahedrals according to (45) and that
we enumerate the nodes of the space discretization from 1 to N and the nodes of each
element from 1 to 8. We assume that there are in total E elements and that we enumerate
with a well-chosen enumeration scheme. Furthermore we split the time interval [0, 7] into
M-+1 uniform intervals of length At. Now we express ¢’ in terms of the finite dimensional

6 Implementational Issues 17

basis on V},:
N
o= Wei(x). (47)
i=1

Then we plug this sum into the fully descretized scheme (43) and we immediately obtain
the system of equations:

(&B+3C+341+ 2 A) G = Bf + Asf + (B - 30 - J41 + & 40)e,

(48)
C?L = C0,h;
where
Cz] - a(¢j7 ¢1)7
(Ar)ij = %ZKETK 0K (b Vo, %(b ' v¢i)>K7 (49)

(42)ij = } Ywcen, O (65 156 V6)))

(A3)ij = %ZKETK 0K (f’ }ILT}T(b ’ vqbi))}{

Thus we have reduced the finite dimensional weak formulation of the unsteady PDE to
solving a system of linear equations (48) for each time step. At this point we are able to
reveal a major advantage of the finite element formulation with basis functions of compact
support: in point of fact, for all matrices of (49), the matrix elements M;; are zero except
for the case that the nodes i and j are nearest neighbours. This implies that the matrices
(49) are sparse matrices. In order to calculate these matrix elements we refer to the concept
of element matrices. Since every element has 8 nodes, the element matrices have a size of
8 x 8 and adopt the following generic form (here for the element matrix of B in the element
K):

(1,901)K (P2,01)K
(¢1,2) K | (50)

(¢8; ;b.S)K

6.1 Numerical Integration 18

where the numbers refer to the enumeration of the nodes within the element and (-,-)x is
the scalar product on the element K. After having calculated the element matrices for every
single element we have to assemble these element matrices into the final matrices that occur
in (48). For this purpose we introduce the two assembling matrices Z and T: Z is a 3 x M
matrix which contains the x, y, and z coordinates of every single node in the domain and T
is a matrix of size 8 x E and stores for all 8 nodes of each element the global node number.

6.1 Numerical Integration

In order to be able to start the time-stepping we need to calculate the matrices (49) and
thus the element matrices. As mentioned above we proceed element by element, calculate
the corresponding element matrices and assemble them into the final matrices. As indicated
by the generic form of these matrices (50), this involves the calculation of integrals over
the respective element K in 2, which we will refer to as the (x,y,z) space. Since our
domain is composed by irregular hexahedrons we need to switch by means of an invertible
transformation to a reference element which has its 8 vertices at (1,—-1,—1), (1,1,-1),
(-1,1,-1), (-1,-1,-1), (1,—1,1), (1,1,1), (=1,1,1), (=1,-1,1) in (p,q,r) space. We
have chosen a so called isoparametric transformation, i.e. a transformation

~

Tk : K — K, (pa%r) = (.%',y,Z),
R R R (51)
F(pa q, T) = (Z?:l xqul(pv q, T)? 21'8:1 yld)z(p? q, T)’ Z?:l Zid)i(pa q, 7")),

where éﬁ\i(p, q,r) are the basis functions and (z;,y;,2;) are the coordinates of the ith node
of K in (x,y,z) space. The relation between ¢(z,y, z) and ¢(p, q,r) is due to linearity of the
coordinate transformation:

~

O,y 2) = O(Fi ' (0,9.2). F5 ' (2,9,2). By N (2.9,2)) = 9(p.0,1). (52)

The name isoparametric point transformation is induced by the fact that the coordinates
transform in the same manner as the interpolated function c¢p:

8
che = Y Yidi(p, g, 7). (53)

i=1

According to the theorem of multiple integration, we can therefore evaluate the following
integral on the reference element:

~ ~ o(x,y, z
/ dzdydz ¢j(z,y,z) :/ dzdydz ¢;(p,q,r) = /A dpdqdr ¢;(p,q,r) ‘M’ (54)
K K K d(p,q,r)

6.2 Sparse Matrices 19

Together with the equality

N ~ 1 ~
Vo; = (T HIVe; = @JOW)]-, (55)

where Jy is the transpose of the adjoint of J, we can finally rewrite the three types of
integrals that we will need to calculate in order to obtain the element matrices:

Jic dwdydz NVé;V s = [dpdgdr (JoVé;)(JoV i)z
Jic dedydz Viéi = [dpdadr (JoVé;)éi i (56)

[dedydz ¢;¢; = [z dpdadr ¢;;|det.])|.

Note that the Jacobian of the transformation is easily calculated by equation (51), e.g.

0r <~ O
= Z; y4,T)-
p E op (p,q,7)

i=1

Once we are left with integrals over the reference element (56), we can easily calculate these
numerically by first order Gaussian quadrature for triple integrals (cf [5]).

6.2 Sparse Matrices

The size of the matrices in (49) depends obviously on the total number of nodes N in the
domain and is precisely (N x N). For instance, already for a very rough triangulation of
say 63 x 63 x 12 nodes we will end up with handling matrices of size (47628 x 47628). If we
assume a storage use of 8 byte per entry of the datatype double we need roughly 18 GB to
store one single matrix. Here it is crucial that our matrices are sparse, i.e. the major part of
the entries is actually zero. Inspired by a sparse matrix formulation of [6] we have written
an algorithm that places the entries of the element matrices into vectors which represent
the sparse formulation of the final matrices (49). The multiplication of a vector by a matrix
or its transpose have been implemented according to an algorithm of [6].

6.3 Solution of the Linear Algebraic Equations

The system of linear equations that remains to be solved at each time step is another crucial
point in what concerns the computational costs of the problem. Since the matrices (49)
are generally not symmetric we decided to use the Bi-ConjugateGradient method, a special
derivative of the standard Conjugate Gradient method (which is good for symmetric and

6.4 Modeling and Calculation of Snow Deposition end Erosion 20

positive definite matrices). This method is an iterative method which could be accelerated
by introcucing a preconditioner. For further informations, we refer to [4].

6.4 Modeling and Calculation of Snow Deposition end Erosion

Basically, we modelise the process of snow accumulation and erosion on the snow cover
as follows: if a snow particle in suspension (i.e. at a pos & €) is moved by wind or
diffusion towards the lower boundary (i.e. the snow surface) it enters the saltation layer,
the zone of particles which are hopping along ballistic trajectories on the surface instead
of being in suspension. We assume that for each particule entering the saltation layer,
another particle (or the particle itself) is capted by the bulk of the snow cover. The capted
particule is for instance bounded by the bulk and is therefore a contribution to the growing
snow layer. However, if there is a windfield whose projection on the normal vector of the
surface is positive it can erode snow from the bulk, adopted that the wind speed is above a
certain threshold value. The assumption that the number of particles in the saltation layer
is constant is a good justification for the (constant) inhomogenous Dirichlet condition (see
section 5.4).

Obviously, there are two contributions to the snow accumulation: one contribution due to
the wind field and the other one due to the diffusion matrix K. Since we have Dirichlet
conditions on the lower boundary it is pointless to calculate the inflow due to the windfield
on the very bottom of the domain. In order to cope with this problem we have introduced an
artificial layer situated inbetween the snow surface nodes and the first layer of nodes in the
interior of the domain. The height of this artificial layer can be adjusted, but it should not
be set too low since the resulting flat elements on the bottom may cause stability problems.
Optimal position is roughly the height of the saltation layer since such a choice is coherent
with the modeling described above.

Next we need the windfield at the artificial nodes. This is a very delicate point since the
accumulation is mainly determined by this wind field. According to the theory of real fluid
flow, one would suppose the wind flow to become parallel to the topography with decreasing
distance to the surface. However, this is pointless since the inflow/outflow would be zero.
On the other hand, the wind field component parallel to the surface decays logarithmically
(cf [1]) and the wind speed at a height h between the height h and the ground reads:

v(h) = : (57)

where Z0 is the roughness length. For instance, we apply a compromise, i.e. the wind vector
at an artificial node points in the same direction as the wind vector at the point above and
its norm is reduced by the factor of equation (57):

7 Tests and Discussions 21

o~
3
—~
S
N—r

| o

(58)

o~

S
—~
=
S—

<

Using this wind field we calculate the accumulation of snow at every step of the time
integration procedure as follows:

geo(t + At) = ¢§°°(t) — b-n c(t)At, (59)

where n is the normal vector of the surface at the respective node and the minus sign is
due to the fact that n points upwards. A similar approach can be applied to the diffusion
contribution, that is to say:

cE(t+ At) = c5°(t) + (KVe) - n At. (60)

7 Tests and Discussions

First we implemented the SUPG-CN method in MATLAB in order to survey the stability
issues on regular meshes. Throughout the whole implementation the manyfold of subrou-
tines (e.g. numerical integration, linerar system solver) have been tested consecutively to
their accurate performance and won’t be discussed in this section at all.

Although the analytic solution to the PDE (2) is in general far from being trivial (and
in the case of non-uniform meshes even unknown), there are several situations where we
can reduce the equation (2) to a simpler one. For example, if we choose the domain to
be a cube of side length L, if we let the wind blow into the domain only in x-direction
(i.e. b= (b,0,0)), if we allow diffusion only in x-direction (i.e. K = diag(d,0,0)) and if
we impose a constant concentration 3 on the whole boundary, the solution c;* on a line
of nodes in x-direction should converge to the analytic solution of the following ODE for
h — 0, At — 0 and m sufficiently large:

I g
{ bc’ — dc , xz €0, L] (61)

2(0) = z(L) = ¢

Note that the line of nodes in x-direction should be taken in the middle of the domain, since
close to the boundary the concentration has to approach the imposed boundary conditions.
At this point we would like to present some of the most important test situations: For
instance, the time evolution is not a problematic aspect since we know from simple error
analysis that the Crank-Nicolson scheme is of O(h?). Therefore we confined ourselves to

7 Tests and Discussions 22

Figure 9: Time evolution at time t=0.5s, 1s, 2.5s, 5s, 10s, 50s of the SUPG-CN method and the exact
solution

Figure 10: Performance of SUPG-CN under advection-dominated conditions (b=10, d=1)

verifying that the numerical approximation converges in time to the steady state solution
of the problem. In figure 9 we can see that this convergence is indeed verified for the
case of f=1, b = (1,0,0) and K = diag(1,0,0). Another important case is the solution
under advection-dominated conditions in figure 10: the solution is still stable for a wind
velocity of b = (10,0,0) and a diffusion matrix K = diag(1,0,0). This is a very impor-
tant result since stability for advection-dominated cases is the main issue of this study. A
second advection-dominated test run for more complicated advection and diffusion values,
ie. b=(7.4,4.23,5.3), diag(K)=(0.7,1.6,0.6), produced satisfactory results as well (see
figure 11).

Finally, we would like to stress the importance of boundary conditions and wind fields
that are physically meaningful. As soon as we try to solve the equation for non-physical
conditions, the method may produce unstable results: in figure 12 we can see that a
negative diffusion coefficient leads to a complete failure of the method (b = (1,1,1) and
K = diag(1,1,-1)).

After the test implementation in MATLAB we rewrote and adapted the code to the final
mesh and wind fields in the programming language C/C++. On the test mesh described
above the code performs in the exactly same way as the MATLAB code and for instance
we were unable to obtain conclusive results on the final mesh above steep topography: the
tests we ran so far on highly turbulent wind fields converged at each time step but did not
reach a steady state with increasing time. However, this behaviour may also be caused by
wind fields and K matrices that are physically not meaningful enough and thereby let the
method fail.

Figure 11: SUPG-CN for advection-dominated conditions; the concentration c (in z-direction) for a layer
of nodes in the middle of the domain

8 Conclusion and Outlook 23

Figure 12: SUPG-CN: Impact of a negative diffusion coefficient

8 Conclusion and Outlook

The tests performed on a regular mesh in section 7 are rather satisfactory; the main goal,
the stability under advection-dominated conditions is clearly achieved.

But at this point it must be emphasized that these results are not at all representative for
the mesh above alpine terrain with complicated wind fields: the elements of the final mesh
above steep topography will be far from regular and in contrary rather flat. Thus it may
be fruitful to look for differently shaped reference elements and more adequate parame-
trizations. Another important point is the modeling of the wind field, because it is a priori
not divergence free in contradiction to our assumption in equation (1). Furthermore the
treatment of turbulent eddies by means of a diffusion matrix is delicate too.

Another critical aspect is the choice of boundary conditions and it is overwhelmingly prob-
able that the infinity-argument for the inhomogenous Dirichlet condition may not be suffi-
ciently satisfied. Therefore it may be better to fix the inflow boundary but let the outflow
boundary evolve freely. Additionally, future efforts may be focused on the amelioration of
the calculation of snow accumulation and erosion.

Finally, the choice of the linear system solver has a high impact on computational costs be-
cause, once the matrices (49) are calculated, we are left with the time-stepping and thereby
with the solution of the linear system (48).

In the meantime we ran first tests on the mesh with steep topography and on real wind data
(data obtained experimentally in a series of measurements in the Swiss Alps). Depending
on the wind field the solution of the PDE does not reach a steady state, but since this
could be caused by wind data that may be physically incoherent, we cannot yet draw a
final conclusion on the general performance of the SUPG-CN method. After all, there are
two possibilities to continue with: either one may try to improve the method decribed in
this paper or one may adopt a completely different approach to the initial problem. Such
a different solution may consist in a Monte-Carlo simulation describing the trajectories of
a representatative number of particles within the domain 2. A major advantage would be
that we could simulate the transport of snow in the saltation and the suspension layer in one
process instead of applying two coupled simulations. Furthermore, such a method wouldn’t
reduce the ensemble of snow particles to a fluid and it is less susceptible to non-physical
conditions that may arise in insufficient modeling of boundary conditions and wind fields.

REFERENCES 24

References

[1] Stull R. B.: 1988, An Introduction to Boundary Layer Meteorology, Kluwer Academic
Publishers, Dordrecht

[2] Doorschot J.: 2002, Mass Transport of Drifting Snow in High Alpine Environments,
SLF, Davos

[3] Johnson C.: 1987, Numercial solutions of partial differential equations by the finite
element method, Cambridge University Press, Cambridge

[4] Quarteroni A., Valli A.: 1997, Numercial Approximation of Partial Differential Equa-
tions, Springer

[5] Burden, Faires: 1998, Numercial Analysis, Tth edition
[6] Numerical Recipes in C (online version): http://www.library.cornerll.edu/nr/bookcpdf .html

[7] Wait R., Mitchell A.R.: 1985, Finite Element Analysis and Applications, John Wiley
and Sons

