Characterization of the gas density fluctuations in the X-COP cluster sample

Simon Dupourqué (IRAP, Toulouse, France) N. Clerc, D. Eckert, E. Pointecouteau Athena scientific conference 2022

Current measurements of turbulence in the ICM Direct measurements

• Spectral lines centroid shift and broadening

Velocity dispersion, Perseus cluster center region (Hitomi Collaboration, 2018)

• Require X-ray IFUs for velocity fields (XRISM Resolve, Athena X-IFU...)

• Spectral lines centroid shift and broadening

Velocity dispersion, Perseus cluster center region (Hitomi Collaboration, 2018)

• Require X-ray IFUs for velocity fields (XRISM Resolve, Athena X-IFU...)

- Turbulence displaces gas and create fluctuations in ρ , P, T...
- Surface brightness fluctuations (SB) in X-rays (e.g. Churazov+2013, Zhuravleva+2015, Zhuravleva+2018) or Sunyaev-Zel'dovich (e.g. Khatri+2016)

X-ray surface brightness fluctuations and 3D density fluctuations power spectrum, Perseus cluster (Zhuravleva & al, 2015)

• Spectral lines centroid shift and broadening

Velocity dispersion, Perseus cluster center region (Hitomi Collaboration, 2018)

• Require X-ray IFUs for velocity fields (XRISM Resolve, Athena X-IFU...)

- Turbulence displaces gas and create fluctuations in ρ , P, T...
- Surface brightness fluctuations (SB) in X-rays (e.g. Churazov+2013, Zhuravleva+2015, Zhuravleva+2018) or Sunyaev-Zel'dovich (e.g. Khatri+2016)
- Strong link between density fluctuations and turbulent velocities (e.g. Zhuravleva+2014, Mohapatra+2019, Simonte+2022) $\sigma_\delta \propto \sigma_v = \mathcal{M}_{3D}$

X-ray surface brightness fluctuations and 3D density fluctuations power spectrum, Perseus cluster (Zhuravleva & al, 2015)

Application to the X-COP sample

~ 10 arcmin

X-COP (Eckert+, 2017) Redshift ≤ 0.07 Planck selected (S/N>12) Outskirt physics (N=12)

Adaptively smoothed X-ray surface brightness in [0.7-1.2] keV band (Ghirardini & al. 2018)

Application to the X-COP sample

A2029, z = 0.0473

X-COP (Eckert+, 2017) Redshift ≤ 0.07 Planck selected (S/N>12) Outskirt physics (N=12)

Adaptively smoothed X-ray surface brightness in [0.7-1.2] keV band (Ghirardini & al. 2018)

General methodology

Mean surface brightness (SB) profile

 $\begin{array}{c} \mbox{Meticulous modelling of surface brightness} \\ \Leftrightarrow \\ \mbox{Less arbitrary induced fluctuation} \end{array}$

Mean surface brightness (SB) profile

 $\begin{array}{c} \text{Meticulous modelling of surface brightness} \\ \Leftrightarrow \\ \text{Less arbitrary induced fluctuation} \end{array}$

Example: using elliptical model on simulations can reduce fluctuations by a factor 2 (Zhuravleva+ 2022)

Mean surface brightness (SB) profile

Best-fit fluctuations maps in the X-COP sample A1644 A1795 A2029 A2142 Meticulous modelling of surface brightness Less arbitrary induced fluctuation Example: using elliptical model on A2255 A3266 A2319 A3158 simulations can reduce fluctuations by a factor 2 (Zhuravleva+ 2022) **Non-Gaussian features** : sloshing, A644 RXC1825 ZW1215 A85 cool-cores, sub-mergers... Radius Region $0 < r < R_{500}/10$ (I) $R_{500}/10 < r < R_{500}/4$ (II)(III) $R_{500}/4 < r < R_{500}/2$ $R_{500}/2 < r < R_{500}$ (IV) 4_{10-5} 10^{-6} -10^{-7} -10^{-6} 10 - 7

Surface brightness fluctuations Δ [counts kpc⁻² s⁻¹]

From SB fluctuations to density fluctuations

Hypothesis:

- SB fluctuations exclusively come from density fluctuations
- Gaussian Kolmogorov density fluctuations

From SB fluctuations to density fluctuations

<u>Hypothesis:</u>

- SB fluctuations exclusively come from density fluctuations
- Gaussian Kolmogorov density fluctuations

Density fluctuation power spectrum

SB fluctuation power spectrum (exceeding the Poisson noise)

From SB fluctuations to density fluctuations

<u>Hypothesis:</u>

- SB fluctuations exclusively come from density fluctuations
- Gaussian Kolmogorov density fluctuations

Constraining the 3D power spectrum

Free parameters :

- <u>normalization</u>,
- <u>injection</u>
- <u>spectral index</u>
- dissipation

- <u>normalization</u>,
- <u>injection</u>
- <u>spectral index</u>
- dissipation

Constraining the 3D power spectrum

Results : correlation with the dynamical state

- Morphological indicators relate to the dynamical state of a cluster
- Correlation with various indicators (c, w, Pi/P0, Cz...)

Results : correlation with the dynamical state

- Morphological indicators relate to the dynamical state of a cluster
- Correlation with various indicators (c, w, Pi/P0, Cz...)
- \rightarrow Correlation between Zernike moment (~asymmetry of the cluster) and the normalization of density fluctuations in central region

Results : correlation with the dynamical state

- Morphological indicators relate to the dynamical state of a cluster
- Correlation with various indicators (c, w, Pi/P0, Cz...)
- \rightarrow Correlation between Zernike moment (~asymmetry of the cluster) and the normalization of density fluctuations in central region

Results : interpretation as turbulent motion

$$\sigma_\delta \propto \sigma_v = \mathcal{M}_{3D}$$

Results : interpretation as turbulent motion

 1σ compatible when the studied scales are comparable

Results : interpretation as turbulent motion

Topic : Statistics of SB (density) fluctuations, applied to the 12 massive and nearby clusters of the X-COP sample, novel approach considering the stochastic nature of fluctuations \rightarrow complete error budget

Perspective : Similar work on the CHEX-MATE sample with x10 more clusters

Thank you for your attention!

Backup slides

Backup : sample variance of fluctuations

Backup : Define the fluctuations

Backup : Extract the 2D observable

- 2D spatial power spectrum \rightarrow Convolution with Mexican Hats
- Handle gaps and exposure maps (Arévalo & al, 2012)

Backup: Neural Network

$$p(x) = \prod_{i} p(x_i | x_{1:i-1})$$

- sbi package (Python+Torch)
- Papamakarios+ 2018, 2019

(Masked) Autoregressive flow used as density estimators for the likelihood distribution

(a) Target density

Backup : What about Athena ?

Roncarelli+ 2018)

Don't forget sample variance!

See : Toncarelli +2018 Clerc+ 2019, Cucchetti + 2019 Talk by S. Beaumont

WFI (Adapted from Bulbul+ 2019) 38

Backup : Zernike Moment

$$C_z = \sum_{n,m \neq 0} \sqrt{|c_{nm}|}$$

 \rightarrow Sum of the development of the cluster image on a basis of polynomials, without any symmetric term

Backup : Perspectives

Extension to the CHEX-MATE sample

Intermediate redshift clusters (0.1 < z < 0.5)Smaller mosaics Detected up to R500 Cluster angular size closer to PSF x 10 in terms of cluster number

SZ fluctuations

Residual fluctuation map from MILCA map of the Coma cluster (Khatri & Gaspari 2016)

δy/y

40

Characteristic amplitude of the pressure fluctuations, from SZ and X-SB (Kathri & Gaspari 2016)

 $\Delta \rho^2$

Poisson

 $A_{p} = [k^{3}P_{p}(k)/(2\pi^{2})]^{1/2}$ -NGC48 0.1 5×10^{-4} 10^{-3} 10^{-2} $k/(2\pi)=1/\lambda$ (kpc⁻¹) ΔP Correlated noise noise PSF and transfer function (NIKA2)