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Abstract—The challenge of minimizing mission response times
and the energy consumption of computationally-constrained
IoT devices, is becoming increasingly important in Industry
4.0 environments, where mission-critical tasks require real-time
and latency-sensitive processing. In this context, the computa-
tional offloading paradigm becomes an attractive alternative for
utilising remote, computationally capable resources placed at
the network Edge, to execute demanding applications. In this
paper, an analysis of the main options for task execution (on-
device, Edge and Cloud) is performed, under different sensing
and actuation scenarios. These results outline the need of an
intelligent decision making mechanism to dynamically alternate
between the available execution environments, as a response to
the varying networking conditions.

Index Terms—Industrial Internet of Things (IIoT), Industry
4.0, Edge Computing, Computational Offloading, Latency mini-
mization, Energy/Power consumption minimization.

I. INTRODUCTION

The revolution of Industry 4.0 has conceptualized a shift in
the operations related to the production line and the distribu-
tion of products. In this context, emerging technologies like
the Industrial Internet of Things (IIoT) and concepts pertaining
the fields of Data Analytics and Artificial Intelligence (Al), are
integrated with modern networking paradigms in the form of
Edge and Cloud Computing frameworks, in order to smartly
automate industrial processes [1]. Inevitably, this introduces
a plethora of low-energy and low-capability collaborating
devices to a smart factory ecosystem, which are regularly
orchestrated to perform computationally intensive and energy-
voracious tasks (e.g., Al-assisted sensing and actuation). Con-
sequently, this increased interconnectivity combined with the
frequent demand in real-time complex algorithm execution,
calls for advanced latency and energy consumption minimiza-
tion on the field [2].

This is where computational offloading, i.e., the act of
transferring resource-intensive computational tasks to separate
external devices in the network proximity, comes in handy.
In the 5G and beyond era, the increased availability of Edge
and Cloud networking enables the low-latency access to com-
putationally capable resources, paving the way to the wide
adoption and realization of computational offloading frame-
works [3]. In detail, Edge Computing establishes a hierarchy of
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intelligent processing elements between devices and gateways
throughout the Edge-Cloud continuum, to tackle the IIoT
shortcomings in a scalable, context-aware and interoperable
manner.

Although Edge Computing constitutes a particularly promi-
nent way of dealing with latency-sensitive and energy con-
suming industrial tasks, solely utilising remote computational
resources is not enough; potentially, various disturbing phe-
nomena can occur during the transmission and processing
of the tasks, including unexpected increases in propagation
and processing delay, as well as downtime [4]. Naturally,
this probability of service quality degradation increases as the
factory environment becomes more dynamic (i.e., mobile IIoT
devices/robots) and that is why IIoT devices are still involved
in the task processing loop; to account for periods where
network access is unavailable or unreliable. Consequently, a
major challenge from a network and resource optimization
point of view, is to combine the local and remote resources in
an efficient way and guarantee service availability at all times.

A. Related Work & Motivation

In this section, we provide a comprehensive study of some
prominent works focused on addressing the Computation
Offloading problem in similar settings. In [3], the authors
present a comprehensive study on the computational offloading
problem, emphasizing on the mathematical, Al and control
theory-related solutions in Edge and Cloud Computing en-
vironments. The open challenges and future directions list
the development of fault tolerant solutions which account for
network disturbances, among others.

Trying to improve the Edge-Cloud continuum processing
efficiency of the tasks from devices with limited computation
and communication capabilities, the authors in [5] propose
a hierarchical computing scheme with an offloading pipeline
strategy. This framework jointly decides on the offloading
platform and the power allocation, using successive convex
approximation to transform the emerging non-convex problem.
In a similar manner, Hao et al. [6] propose a scheme called
intelligent task offloading (iTaskOffloading) for an Edge-Cloud
collaborative system. Here, a cognitive engine determines the
personalized offloading strategy, based on the users’ various
requirements on the latency.



Many works have also tackled the lack of end device capa-
bilities in industrial environments through the use of compu-
tational offloading. The authors in [1] propose a computation
offloading mechanism for robotic applications. In particular,
they realize an IoT-enabled localization and path planning
framework and verify the expected gains of computation
offloading by utilizing a real edge computing setting. Bebortta
et al. [7] develop a computation offloading mechanism for
time-critical IIoT tasks. Their framework efficiently handles
industrial workloads by modeling them as stochastic processes
to observe the number of data packets denied service, due to
the finite number of busy MEC server, and act accordingly.
Finally, in [8], Peng et al. formulate the joint computation
offloading and resource allocation problem as a multi-objective
optimization problem and develop an Edge-Cloud collabora-
tive intelligent optimization method. They mainly focus on
minimizing energy and time consumption.

B. Contributions & Outline

In order to enable the implementation of effective, intelli-
gent, computational offloading decision making mechanisms,
as the aforementioned ones, a comprehensive study and anal-
ysis on the specific problem at hand has to be performed.
In a smart factory environment, this translates to i) defining
the Key Performance Indicators (KPIs) that the computational
offloading framework needs to achieve (e.g., specific Quality
of Service - QoS measurements and device energy consump-
tion), ii) designing a use case that accurately reflects the real-
world industrial environment that the framework will have to
operate in, iii) assembling an architecture from hardware and
software components that are already present or can easily be
implemented in a smart factory setting and iv) stressing the
framework under various dynamic scenarios in order to detect
the bottlenecks in its operation. In this work, our aim is to
exactly conduct such a structured analysis, which eventually
outlines the need of an intelligent industrial computational
offloading mechanism. The key contribution of this paper is
threefold:

o An Edge-Cloud infrastructure is considered where the
IIoT and Edge Computing devices are placed on site (i.e.
in the smart factory premises) and the Cloud datacenter
is placed in a remote location. To perform a realistic
computational offloading analysis, a hardware/software
architecture is assembled, consisting of mobile IIoT de-
vices, sensors and generic compute nodes easily found in
an industrial setting.

o A use case is designed to accurately capture the range
of conditions under which a computational offloading
framework will have to operate in. First, two generic
industrial services-applications are developed for the sole
purpose of this use case: i) one based on data-analytics
and ii) a machine learning image recognition one. Then,
the KPIs of their execution are decided, i.e., total service
execution time and device energy consumption.

o Finally, the setting is implemented in the premises of
the ETS university and a thorough real-world evaluation

is performed. To this purpose, three characteristic sce-
narios are examined, which cover the possible execution
platforms: i) on-device local execution, ii) offloading at
the Edge devices in close proximity and iii) offloading
at the remote Cloud through the public internet. The
results pinpoint the benefits as well as the shortcomings
of each execution mode and indicate the need for a smart
offloading decision making mechanism, able to respond
to the dynamic conditions of a factory floor setting.

The rest of the paper is organized as follows. In Section II
the architecture overview and the individual components are
presented, together with the developed applications’ specifi-
cations. Section III discusses the use case design. Section IV
presents the performance evaluation under the three distinct
execution scenarios and Section V concludes the paper.

II. ARCHITECTURE OVERVIEW

The main scenario addressed in this work involves a mobile
IIoT device (i.e., a robot) traversing the factory floor, sensing
the environment (i.e., monitoring the operating conditions,
using temperature, humidity, gas and optical stimulation) and
actuating accordingly (i.e., raising alerts). This functionality
is a key component to realizing autonomous monitoring in
Industry 4.0 use cases which automate part of the industrial
workplace safety protocols enforcement. However, a common
problem in such a scenario is that the dynamic nature of
the device’s mobility and the uncertainty in the network,
computational and energy resources conditions, can potentially
hamper the timely completion of such a critical mission.
Thus, the importance of having multiple alternative platforms
for executing the individual parts of this process is evident.
Following, we provide a comprehensive description of the
hardware as well as the software components that comprise
the proposed architecture.

A. Hardware Components

1) SunFounder PiCar-X': The PiCar-X is a development
kit for smart robots on which a Raspberry Pi works as the
control center. The PiCar-X is energy efficient, easy to control
and assemble, as well as can accommodate multiple sensors
that can also be expanded manually. It is also equipped with
a camera that is a requirement for this project and wheels so
the robot is able to move around the factory floor.

2) Raspberry Pi 4 Model B?: This credit card-sized single
board computer is a fully programmable PC that runs the
open-source Robot Operating System (ROS). Its board consists
of Video Core IV graphics processing unit (GPU), ARM
v8-compatible quad-core cortex-A72, 4GB of RAM, which
allow the adequate execution of machine learning-based image
recognition and simple data analysis tasks. One powerful
feature of the Raspberry Pi is the row of General Purpose
Input/Output (GPIO) pins along the edge of the board. The
Raspberry Pi standard 40-pin GPIO header is leveraged to
install the required sensors.

Uhttps://www.sunfounder.com/products/picar-x
Zhttps://www.raspberrypi.com/products/raspberry-pi-4-model-b/



3) Sensors:

o Raspberry Pi Camera: The Raspberry Pi Camera Rev
1.3 Board plugs directly into the CSI connector on the
Raspberry Pi and is used to collect still shots and videos
of the devices surroundings for further processing.

e DHTI11 sensor: The DHT11 is a basic, ultra low-cost
digital temperature and humidity sensor. It consists of
a humidity sensor and a thermistor to measure the sur-
rounding air and convert them to digital signals on the
data pin.

e MQ-X sensor: The MQ-X series sensors are used in
gas leakage detecting equipment in the industry. They
are suitable for rapidly detecting liquefied petroleum gas
(LPG), iso-butane and propane particles.

4) Generic Edge Compute Node: To emulate the Edge
Computing infrastructure of a smart factory, a generic compute
node with a 4-core Intel Core i5 processor, Intel Integrated
Graphics GPU and 8GB of RAM is connected to a generic
802.11ac access point.

5) AWS-based Cloud Compute Node: Acting as the Cloud
Compute Node, a c4.2xlarge instance is reserved on Amazon
Elastic Cloud Compute (EC2)3. This instance comes equipped
with 8 vCPUs and 16GB of RAM and it is reachable through
the public Internet.

B. Software Components

1) Image Recognition Service (IRS): An image recognition
component was implemented from scratch for the purposes of
this work. This service receives optical stimulation from the
Raspberry Pi Camera (i.e., still shots and/or video streams)
and processes it in order to detect anomalies in the robot’s
environment. In an offline phase, an image recognition model
is trained accordingly, by using the OpenCV library and the
MobileNetSSD object detection model on a large series of
data. In its online phase, this service i) processes the frames
received from the camera, ii) decides on the potential severity
of an incident and iii) raises alerts. The combination of these
processes is a source of highly compute-intensive tasks.

2) Data Analysis Service (DAS): Another software com-
ponent implemented from scratch for the purposes of this
work. This data analysis-based service receives environmental
measurements from the temperature, humidity and gas sensors
in order to assist in the detection of anomalies in the factory.
Here, in the offline phase, a forecasting model that can detect
the onset of disastrous incidents (e.g., fire outbreaks) is trained,
using the Pandas and the NeuralProphet libraries and a large
series of data. In its online phase, this service again processes
the measurements and raises alerts based on the outcome of
the model. This component produces mildly intensive compu-
tational tasks. A basic decision making procedure follows the
execution of the IRS and DAS components to decide on the
severity of the situation.

3https://aws.amazon.com/ec2/
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III. USE CASE

The designed use case aims to employ varying numbers
of IloT-enabled mobile robots throughout a smart factory
floor, with the mission to monitor the environment and detect
potential emergencies as early as possible. Subsequently, the
robots raise alerts, supporting the initiation of a series of
actions towards the handling of the risk, in an effort to
limit the engagement of human resources. In this approach,
the following KPIs are considered: rapid identification of
an emergency situation (i.e., total mission execution time)
and prolonged mission duration (i.e., device energy/power
consumption).

The goal of this work is to conduct a performance anal-
ysis and reveal the offloading opportunities during similar
industrial critical missions, based on the proposed KPIs. To
this purpose, three scenarios are described and examined,



capturing the main strategies that can be employed regarding
the platform level of the computational tasks execution:

A. On-device Execution

In this first task execution scenario, the computation is
performed locally, on the robot. As illustrated in Fig. 1,
real-time measurements of environmental temperature and
humidity values, as well as values indicating the presence of
smoke and flammable gases, are streamed to the Raspberry
Pi from the on-boarded sensors. Additionally, video captured
from the camera is streamed to the Pi and the local processing
of both streams by their respective services is used to decide
whether an emergency situation is detected in the factory floor.

B. Offloading Execution at the Edge

For the second task execution scenario, the two services
are modified accordingly and deployed at the Edge compute
node; their modifications concern the way the services acquire
data: a REST API is attached to the IRS and an MQTT-based
solution is used for the DAS. In detail, as shown in Fig. 2,
the measurements and the video frames are offloaded from
the Raspberry Pi to the Edge computing node through a LAN
802.11ac connection.

C. Offloading Execution at the Cloud

In the final execution scenario (Fig. 3), the two services
are placed on the AWS Cloud compute node, using the same
REST API and MQTT communication methods respectively.
The only difference is that the measurements and the video
frames are now offloaded from the Raspberry Pi to the Cloud
computing node, through the public Internet.

IV. NUMERICAL RESULTS

In this final section, the setup of the experiments and the
findings of the experiment execution are presented, along
with the respective evaluation and comparison of the obtained
results. As already mentioned, this evaluation acts as a valu-
able performance analysis which will pinpoint the offloading
opportunities and discuss the trade-offs between the available
computational execution platforms for an industrial setting.

A. Experimental Setup

The basic hardware setup used in all three experiment
scenarios introduced in Section III, consists of the IIoT robot,
a wireless access point, one Edge compute node and one Cloud
compute node, as described in Section II. The Edge node
is placed in the ETS University’s premises, while AWS at
US-East (Ohio), is selected to host the Cloud compute node
in order to achieve an unbiased simulation of the real-world
Cloud communication conditions. To precisely monitor and
evaluate the real-time energy consumption of the robot, the
MakerHawk UM25C USB Tester* is utilized, which provides
voltage (V), current (A) and power consumption (W) measure-
ments. Regarding the simulation configuration, each experi-
ment scenario spans for 1 minute. Printed images of indoor

“https://www.makerhawk.com

fires where used to trigger the IRS, while a small handheld
lighter was used to trigger the DAS. For raising the alerts after
processing the video streams and data measurements, a simple
e-mailing SMTP-based solution was developed in Python.

The results depicted in Fig. 4, 5, 6 and 7 are used to evaluate
the efficiency of the three scenarios. Specifically, Fig. 4 depicts
the mean power consumption on the robot for the different
computational execution mode. For comparison purposes, the
idle consumption of the robot is illustrated as well. Fig. 5
contains the resource utilization in terms of CPU and RAM,
for each platform and scenario, while Fig. 6 and 7 show the
total mission execution time achieved (until the alert is raised),
in each situation and the impact that the mobility of the robot
has on the offloading procedure (in frame rate achieved). It is
noted here that the measurements presented are averaged over
10 executions for each experiment.

B. Robot Power Consumption

Measuring the power consumption is only meaningful for
the battery-powered mobile robot, as we assume that the Edge
and Cloud compute nodes have constant DC power supply.
The optimization of the robot’s energy and power consumption
has an immediate effect on prolonging the mission duration,
a critical KPI for industrial processes.

In Fig. 4, the average power consumption is presented for
the three different execution modes: idle (as a reference point),
offloading and executing locally on the device. Two things
should be noted here; first, that only the IRS was examined in
this family of experiments, as it is the most compute-intensive
of the two services. Second, that power consumption-wise, we
assumed no distinction between offloading to the Edge and the
Cloud, as both procedures initiate from the same Access Point.
For obtaining the power consumption, we constantly acquired
voltage and current measurements from the robot’s power
supply and applied them on Ohm’s formula. As expected,
executing the IRS locally is proven to be a strenuous task for
the robot, as we observe up to 75% greater power consumption
than the idle state. This potentially leads to rapid battery
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Fig. 4. Average Robot Power Consumption.



depletion. On the other hand, offloading to either the Edge
or the Cloud, increases the power consumption only by 25%
when compared to the idle state, prolonging in this way the
monitoring mission for up to 2 hours more, compared to the
on-device execution (when the robot operates on a 5000mAh
battery).

C. Platform Resource Utilization

Regarding the resource utilization, the IRS and the DAS
components where simultaneously executed in each platform.
Once again, as expected, the robot struggles at the execution
of such compute-intensive tasks and the results come as a
confirmation; as shown in Fig. 5, the Edge and the Cloud
are both way more efficient, with the Edge performing up to
58% better CPU-wise and 87% better memory-wise. Executing
the services on the Cloud yields an even smaller resource
footprint, with 80% less CPU and 93% less memory resources
utilized on average, respectively.

These results highlight the need for a hierarchical offloading
framework, which will allow the vital software components
for the robot’s mission (e.g., navigation and motor operation)
to be unobstructively executed on-device, while the service
components are selectively placed on the Edge and Cloud
nodes. Another benefit from executing the industrial services
remotely, is that multiple IIoT agents that are required to
execute the same services can share the Edge and Cloud de-
ployments, leading to increased resource utilization throughout
the smart factory.

D. Mission Execution Time & Accuracy

To measure the execution time for the whole mission, both
the IRS and the DAS components where deployed to each
platform and triggered at the same time. Fig. 6 depicts the
results of the first part of this family of experiments; the
total execution time is broken down to two procedures: i)
the streaming analysis procedure, where both the video and
the data streams are analysed for outlier events and ii) the
decision making procedure, where the results of the analysis
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Fig. 5. Average Platform CPU and RAM Utilization per Execution Scenario.
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are fed to the Decision Making component and an alert is e-
mailed if an emergency is detected. Offloading the executions
excels in this area as well, with the Edge and the Cloud nodes
responding 45% and 87% faster, respectively, to the emergency
than the robot. This decrease in emergency response times
is of paramount importance, especially when considering the
amount of damage a fire can make to an indoor environment
in just a few seconds.

In the second part of this family of experiments, the mobility
effect on the mission accuracy is studied. To this purpose,
the IRS component was examined, as video streaming has a
direct way of measuring service degradation through frame
rate drop. Fig. 7 shows that, in our setting, moving beyond
a 14m radius from the Access Point, has devastating results
on the number of frames that are actually offloaded to the
Edge/Cloud (< 4fps) and subsequently on the emergency de-
tection accuracy, making the on-device execution a preferable
alternative. This comes to validate that exclusively utilising
remote computational resources is not a panacea.

Overall, offloading the compute-intensive tasks at the Edge
or the Cloud, balances the resource utilization in the infras-



tructure, prolongs mission duration and decreases the mission
response times while increasing the accuracy, under normal
network conditions. Quantity-wise, the Cloud seems to over-
power the Edge; however, some of the Edge’s benefits could
not be easily plotted in figures and assessed. The average
propagation delay in the Cloud was measured 4 to 5 times
bigger compared to the Edge, making the Edge a preferable
option for missions that require ultra low latency commu-
nication. Additionally, the issue of data privacy is a critical
and difficult to visualise one and this is an area where an
Edge computing infrastructure excels. Contrary to the Cloud,
sensitive data like images of private premises travel solely
in “in-house” networks and nodes without the risk of being
exposed. Furthermore, Edge infrastructures could be owned by
and deployed at the factory, making them a much more cost
efficient solution compared to third-party Clouds.

V. CONCLUSION

This paper presented a comprehensive study and perfor-
mance analysis on the smart factory-based computational
offloading problem. The goal of this analysis is to provide
useful insight and motivate the development and wide adoption
of intelligent computational offloading frameworks. To this
end, first an industrial framework’s objectives where defined,
then a representative use case was designed and finally a Edge-
Cloud architecture was implemented. The evaluation showed
that when the network conditions are suitable, offloading
the computational tasks to either the Edge or the Cloud is
preferable than on-device execution. However, the importance
of a framework that orchestrates the offloading of the tasks is
evident, when network disturbances, mobility, privacy and cost
minimization are considered. Future plans include the devel-
opment of such a framework that will be able to dynamically
distribute the computational execution between the device, the
Edge and the Cloud infrastructure.
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