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Abstract—In this article, the outlier production mechanism
of the conventional Multiple Signal Classification (MUSIC) and
the g-MUSIC Direction-of-Arrival (DoA) estimation technique is
investigated using tools from Random Matrix Theory (RMT). A
general Central Limit Theorem (CLT) is derived that allows to
analyze the asymptotic stochastic behavior of eigenvector-based
cost functions in the asymptotic regime where the number of
snapshots and the number of antennas increase without bound
at the same rate. Furthermore, this CLT is used to provide an
accurate prediction of the resolution capabilities of the MUSIC
and the g-MUSIC DoA estimation method. The finite dimensional
distribution of the MUSIC and the g-MUSIC cost function is
shown to be asymptotically jointly Gaussian distributed in this
asymptotic regime.

Index Terms—MUSIC, g-MUSIC, DoA estimation, central
limit theorem, random matrix theory, probability of resolution,
performance analysis.

I. INTRODUCTION

Due to the vast variety of use cases, DoA estimation belongs
to the most relevant research areas in signal processing. The
applications range from radar and sonar to electric surveil-
lance, seismology, astronomy and mobile communications
[1]–[4]. Multiple DoA estimation techniques have been pro-
posed in the literature. Among them, subspace-based DoA
estimation techniques which are known to provide a good
compromise between computational complexity and DoA
estimation accuracy. This is mainly because these methods
avoid multidimensional searches while providing relatively
good performance. One of the most popular examples of
subspace-based DoA estimation methods is MUSIC [5], which
exploits the orthogonality between signal and noise subspaces
by finding the DoAs that achieve the highest orthogonality
between the array signature and the noise subspace of the
sample covariance matrix. It was recently recognized [6] that
the noise space spanned by the sample covariance matrix is not
a consistent estimate of the true one when both the sample size
and the number of array elements become large but are still
comparable in magnitude. Therefore, it is possible to come
up with a refined MUSIC algorithm, usually referred to as
g-MUSIC [6], which replaces the noise sample eigenvectors
by a consistent estimate of the true noise subspace. This
provides a significant improvement in terms of both accuracy
and resolution in the low sample size scenario, whereby the
number of snapshots and the number of array elements have
the same order of magnitude. In any case, both MUSIC and
g-MUSIC are subspaced-based algorithms, and as such both
suffer from the so-called breakdown or threshold effect. This

Parts of this work were published at IEEE International Conference on
Acoustics, Speech, and Signal Processing (ICASSP 2021).

effect is characterized by a rapid loss of resolution capabilities
when either the sample size (in snapshots per antenna) or the
Signal-to-Noise Ratio (SNR) falls below a certain value. When
this occurs, the DoA of one of the sources is estimated as
an outlier, which leads to a complete breakdown in terms of
accuracy [7].

The objective of this paper is to analytically characterize
this breakdown effect in both DoA estimation algorithms.
More specifically, we investigate the probability that these
algorithms resolve two close sources in the asymptotic regime
where both the sample size and the number of array elements
tends to infinity at the same rate. Up to now, the literature
has mainly focused on the performance characterization of
the conventional MUSIC method in terms of both accuracy
and resolution probability [8]–[14]. Most of the performance
analyses rely on conventional large sample-size asymptotics,
where the number of array elements is assumed to be fixed
while the number of snapshots grows without bound. This
asymptotic regime is not very suitable for characterizing the
threshold performance, since loss of resolution occurs e.g.
when the number of snapshots is not much larger (or even
smaller) than the number of antennas. For this reason, we
propose here to analyze this outlier production mechanism
under the more realistic setting where these two quantities are
large but comparable in magnitude. This is indeed the setting
that was considered in [15] to investigate the consistency of
the DoA estimates obtained through MUSIC or g-MUSIC.

We extend the work in [15] and analyze the statistical
fluctuations of the MUSIC and g-MUSIC cost functions, which
are the key to understanding the outlier production mechanism
that leads to loss of resolution. The approach is similar to the
one followed in [16]–[18] to study the resolution capabilities
of the recently introduced Partially Relaxed Deterministic
Maximum Likelihood (PR-DML) algorithm. It also shares
some ideas with [19], [20], where the resolution probability of
the conventional Deterministic Maximum Likelihood (DML)
and the Stochastic Maximum Likelihood (SML) method are
derived through an asymptotic characterization of stochastic
fluctuations of the corresponding multidimensional cost func-
tions. In comparison to the PR-DML, DML and SML cost
functions, the MUSIC and g-MUSIC cost functions involve
eigenvectors of a random matrix and therefore require a funda-
mentally new asymptotic analysis. Furthermore, eigenvector-
based cost functions are shown to be asymptotically jointly
Gaussian distributed and a general CLT is provided that
allows to characterize the asymptotic fluctuations of such cost
functions. The asymptotic second order behavior is expressed
as a double contour integral which is solved for both MUSIC



2

and g-MUSIC. Finally, the derived asymptotic distribution
of both cost functions is used to predict the probability of
resolution of both subspace-based DoA estimation methods.
In comparison to [21], we do not only analyze the asymptotic
stochastic behavior of the g-MUSIC cost function but also
of the conventional MUSIC cost function. Additionally, the
detailed proofs for the second order asymptotic behavior of
both cost functions are provided.

The original contributions of this article can be summarized
as follows:
• We derive a CLT which states that eigenvector-based cost

functions are asymptotically jointly Gaussian distributed
for Gaussian distributed observations in the asymptotic
regime where both sample size and array dimension
go to infinity at the same rate. A general theorem is
provided that completely specifies the asymptotic behav-
ior of eigenvector-based cost functions in terms of (i)
asymptotic deterministic behavior and (ii) fluctuations
around this deterministic equivalent.

• We determine a set of conditions that guarantee that both
MUSIC and g-MUSIC cost functions fluctuate around
their asymptotic deterministic equivalents in this asymp-
totic regime.

• We particularize the above results to the MUSIC and g-
MUSIC cost functions and derive a closed-form expres-
sion for the asymptotic probability of resolution of both
DoA estimation methods. These expressions can be used
to determine the probability of resolving closely spaced
sources for a given array geometry, a sample volume per
antenna and a scenario configuration.

The rest of the paper is organized as follows. Section II
introduces the signal model that is assumed in the paper,
while some important RMT fundamentals are then intro-
duced in Section III. The conventional MUSIC and g-MUSIC
DoA estimation techniques are presented in Section IV. The
asymptotic stochastic analysis of these two cost functions and
the corresponding probability of resolution of the associated
methods are given in Section V. Section VI is devoted to the
derivation of the asymptotic deterministic behavior of these
two cost functions and the characterization of the correspond-
ing fluctuations around it. Finally, these theoretical derivations
are then validated by numerical experiments in Section VII and
Section VIII concludes the paper.

II. SIGNAL MODEL

Consider a sensor array that is equipped with M sensors and
K impinging narrowband signals with DoAs θ=[θ1,...,θK ]T

that lie within the field of view Θ of the array. The number
of sources K is assumed to be known and smaller than
the number of sensors K<M . The full-rank steering matrix
is given by A(θ)=[a(θ1),...,a(θK)]T∈CM×K where a(θi)∈CM

denotes the steering vector associated to the i-th source, which
is assumed to be located at θi. Without loss of generality, we
will assume that the array steering vector is normalized to
have unit norm, that is ‖a(θ)‖=1. The received baseband signal
y(n)=[y1(n),...,yM (n)]T∈CM at time instant n is modeled as:

y(n)=A(θ)s(n)+n(n) for n=1,...,N (1)

where s(n)=[s1(n),...,sK(n)]T∈CK denotes the transmitted
baseband source signal and n(n) represents the sensor noise.
Assuming that both signal and noise vectors are statistically
independent, zero-mean and circularly symmetric Gaussian
vectors, the observation y(n) in (1) can be modeled as a zero-
mean circularly symmetric Gaussian vector with covariance
matrix R∈CM×M given by

R=E
[
y(n)y(n)H

]
=ARsA

H+σ2IM (2)

whereRs=E[s(n)s(n)H]∈CK×K is the covariance matrix of the
transmitted source signal s(n) and σ2IM denotes the noise
covariance. Let us consider the eigendecomposition of this
covariance matrix, which can be expressed as

R=

M̄∑
m=1

γmEmE
H
m=E


γ1IK1

. . .
γM̄IKM̄

EH. (3)

Here, M̄≤M denotes the total number of distinct eigenvalues,
which are sorted in ascending order as γ1<γ2<···<γM̄ , and Km

denotes the multiplicity of γm, m=1,...,M̄ . The eigenvectors
associated to γm are grouped into an M×Km matrix Em of
orthogonal columns that span the corresponding subspace and
we let E=[E1,...,EM̄ ]∈CM×M .

We also consider here the sample covariance matrix

R̂=
1

N

N∑
n=1

y(n)y(n)H=
1

N
Y Y H (4)

which has eigendecomposition given by

R̂=

M∑
m=1

λ̂mêmê
H
m=Ê


λ̂1

. . .
λ̂M

ÊH
(5)

where now λ̂1≤λ̂2≤···≤λ̂M are the sample eigenvalues, êm
denotes the eigenvector associated to λ̂m, m=1,...,M and
Ê=[ê1,...,êM ]. These sample eigenvalues are almost surely
different, unless N<M , in which case we have a zero sam-
ple eigenvalue of multiplicity M−N . In this situation, êm
for m=1,...,M−N , span the subspace associated to the zero
sample eigenvalue. In the following section, we provide some
interesting properties of the asymptotic behavior of sample
eigenvalues and eigenvectors based on RMT results that will
be extensively used throughout the paper.

III. RANDOM MATRIX THEORY PRELIMINARIES

Under the above statistical assumptions, the sample covari-
ance matrix R̂ in (4) is a consistent estimator of the true one
R, provided that the number of antennas M is kept fixed
while the number of samples grows without bound, N→∞.
More formally, one can easily show that ‖R̂−R‖→0 with
probability one under these asymptotic assumptions, where
here ‖·‖ denotes spectral norm. As pointed out before, this
asymptotic regime is often unrealistic in the sense that both
M,N are typically comparable in magnitude. In this paper, we
will therefore consider an asymptotic regime where these two
quantities tend to infinity at the same rate.

Assumption 1. The number of samples N is a function of the
number of antennas M , that is N=N(M) and N(M)→∞ as
M→∞ in a way that M/N(M)→c for some constant 0<c<∞.
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It turns out that under Assumption 1 the sample covariance
matrix R̂ in (4) is not a consistent estimate of the true one in
(2), in the sense that ‖R−R̂‖90. In particular, this shows that
the eigenvalues and eigenvectors of R̂ do not really converge
to the eigenvalues and eigenvectors of R when the dimensions
of these matrices increase without bound. However, it is well
known that, under some additional assumptions, the empir-
ical eigenvalue distribution of the sample covariance matrix
R̂ in (4) still shows a deterministic behavior in the large-
dimensional regime. In order to formalize this observation,
we need to introduce some additional technical assumptions.

Assumption 2. The observations y(n) in (1), n=1,...,N form
a collection of independent circularly symmetric complex
Gaussian vectors with zero-mean and covariance matrix R,
bounded in spectral norm. In particular, the quantities M̄ ,
γ1,...,γM̄ and K1,...,KM̄ corresponding to the eigendecompo-
sition of R in (3) may vary with M , but supMγM̄<∞.

Under the above technical assumptions, the eigenvalues of
the sample covariance matrix R̂ in (4) are asymptotically
almost surely distributed as a non-random measure with den-
sity qM (x) [22]–[25]. Informally stated, the histogram of the
eigenvalues of the sample covariance matrix tends to be shaped
around qM (x) as M,N grow large, with probability one. This
deterministic density is therefore the key to understanding
the asymptotic behavior of the sample covariance matrix.
In particular, one can show that, when N>M , the density
qM (x) has compact support consisting of the union of S

closed intervals, namely S=[x−1 ,x
+
1 ]∪···∪[x−S ,x

+
S ] [24], [26],

[27]. When N≤M , the same description is valid but with the
addition of the zero eigenvalue, i.e. {0}. The procedure to
obtain S is as follows (see [25, Proposition 1] and also [26]).
Consider the following function of the true covariance matrix

Ψ(ω)=
1

N
tr
[
R2(R−ωIM )−2]. (6)

The polynomial equation Ψ(ω)=1 has 2S solutions counting
multiplicities, which can be denoted as {ω−1 ,ω

+
1 ,...,ω

−
S ,ω

+
S }. We

then define x±s =z(ω±s ), s=1,...,S, where z(ω) is the transfor-
mation

z(ω)=ω

(
1− 1

N
tr
[
R(R−ωIM )−1]). (7)

Each eigenvalue of R can be univocally associated to one
of the S intervals, in the sense that there exists a single
interval [ω−s ,ω

+
s ] that contains that particular eigenvalue. On

the other hand, given a certain covariance matrix R, the
number of intervals of the support S increases with increasing
N . Furthermore, there exists a minimum number of samples
per antenna that guarantees that a certain interval [x−s ,x

+
s ] is

associated to a single eigenvalue of R. In this paper, we will
strongly rely on the assumption that the lowest eigenvalue of
R is the only eigenvalue that belongs to the interval [ω−1 ,ω

+
1 ]

(see Assumption 3 below). This will allow us to analyze
the behavior of subspace DoA detection techniques in large
dimensional arrays.

Having reviewed some basic notions on the asymptotic
spectral behavior of the sample covariance matrix, we are
now in the position of introducing the MUSIC and g-MUSIC
subspace DoA estimators in the large antenna regime.

IV. MUSIC AND G-MUSIC DIRECTION-OF-ARRIVAL
ESTIMATION

The main idea behind the conventional MUSIC estimator
is to exploit the fact that the eigenvectors associated to the
noise subspace E1 of the true covariance matrix R in (3) are
orthogonal to the steering vectors evaluated at the true DoAs
of the received signals. Hence, we can consider a cost function

η̄g(θ)=a(θ)HE1E
H
1 a(θ). (8)

where we recall from (3) that E1 contains the M−K eigen-
vectors associated to the smallest eigenvalue of R. The DoAs
of the received signals can be determined as the K distinct
values of θ at which η̄g(θ)=0 [6]. Since the noise subspace E1

is unknown in practice, the conventional MUSIC cost function
is obtained by replacing the noise subspace E1 in (8) with the
noise eigenvectors of the sample covariance matrix, namely

η̂c(θ)=a(θ)H
M−K∑
m=1

êmê
H
ma(θ) (9)

and the DoAs are determined by the K distinct values in θ

where η̂c(θ) in (9) attains its K deepest local minima [5].
Now, as a consequence of the fact that under Assumption

2 ‖R−R̂‖90 one can generally expect that |η̂c(θ)−ηg(θ)|90.
With the help of RMT tools, one can however find a modifica-
tion of the MUSIC cost function in (9) that is indeed consistent
in this large dimensional regime. This is usually referred to
as M,N-consistency, as opposed to the more conventional
concept of N-consistency, which assumes a constant M . The
modified cost function is usually referred to as g-MUSIC [6]
and can be built from a proper combination of signal and noise
subspaces, that is

η̂g(θ)=

M∑
m=1

φ(m)a(θ)Hêmê
H
ma(θ) (10)

with real-valued weights

φ(m)=

1+
∑M
k=M−K+1

(
λ̂k

λ̂m−λ̂k
− µ̂k
λ̂m−µ̂k

)
, m≤M−K

−
∑M−K
k=1

(
λ̂k

λ̂m−λ̂k
− µ̂k
λ̂m−µ̂k

)
, m>M−K

where µ̂1≤µ̂2≤···≤µ̂M are the real-valued solutions (counting
multiplicities) to the following equation in µ̂

1

N

M∑
k=1

λ̂k

λ̂k−µ̂
=1.

The DoAs of the g-MUSIC estimator are determined by
searching for the K deepest local minima of the cost function
η̂g(θ) in (10). In order to justify the superiority of this DoA
estimation algorithm, we need to impose separation between
the signal and noise subspaces in the asymptotic covariance
R. This is more formally stated in the following assumption.

Assumption 3. We have 0<infMK1/M≤supMK1/M<1 and
infMγ1>0. The eigenvalue γ1 is the unique eigenvalue that is
associated to the cluster with support [x−1 ,x

+
1 ] for all M,N

sufficiently large. Furthermore, there exists a deterministic
% and some small ε>0, both independent of M , such that
supMx

+
1 +ε<%<infMx

−
2 −ε.

The first part of Assumption 3 guarantees that the noise
subspace E1 does not vanish in the large dimensional regime
when the number of antennas grows to infinity. Hence, the
number of sources K is allowed to increase with M but in
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a way that limsupMK/M<1. Furthermore, the noise power
(γ1=σ2) can also vary with the number of antennas, as long
as it does not vanish with M→∞. The second part of the
assumption ensures that the eigenvalue cluster associated with
the noise eigenvalue γ1, denoted by [x−1 ,x

+
1 ] is separated

from the clusters of adjacent eigenvalues in the asymptotic
eigenvalue distribution of the sample covariance matrix R̂.
With the aid of this separability assumption, we are now ready
to describe the asymptotic behavior of both subspace-based
cost functions.

Theorem 1. Under Assumptions1 1-3 and for each θ∈Θ

|η̂c(θ)−η̄c(θ)|→0 (11)
|η̂g(θ)−η̄g(θ)|→0 (12)

almost surely, where η̄c(θ) and η̄g(θ) are two deterministic
equivalent objective functions defined as follows. The deter-
ministic equivalent of the MUSIC cost function is defined as

η̄c(θ)=

M̄∑
m=1

ψ(m)a(θ)HEmE
H
ma(θ) (13)

with real-valued weights

ψ(m)=

1− 1
K1

∑M̄
r=2Kr

(
γ1

γr−γ1
− µ1
γr−µ1

)
, m=1

γ1
γm−γ1

− µ1
γm−µ1

, m6=1

where µ1<µ2<···<µM̄ are the real-valued solutions to the
following equation in µ

1

N

M̄∑
r=1

Krγr
γr−µ

=1. (14)

The deterministic equivalent η̄g(θ) of the g-MUSIC cost func-
tion η̂g(θ) in (10) is defined in (8).

Proof. See [24, Theorem 2]. A sketch of the proof is provided
in Section VI. �

Remark: The above theorem points out that only the g-
MUSIC cost function is an M,N-consistent estimator of the
originally intended cost function in (8). However, this does
not need to have a direct translation into the consistency
of the DoA estimates themselves. It was shown in [15]
that for widely spaced sources and a Uniform Linear Array
(ULA), both the conventional MUSIC and the g-MUSIC DoA
estimators provide M,N-consistent DoA estimates in spite of
the inherent inconsistency of the conventional MUSIC cost
function. Hence, under certain circumstances, the position of
the local minima of the conventional MUSIC cost function
converge to the true DoAs, although the global cost function
does not. Also, for closely spaced sources, both MUSIC
methods provide M,N-consistent DoA estimates. However the
g-MUSIC method provides M,N-consistent DoA estimates
under lower asymptotic conditions on N , which explains the
superiority in DoA estimation accuracy of g-MUSIC over
conventional MUSIC in scenarios with closely spaced sources
and limited sample size.

In order to analyze the probability of resolution of both
MUSIC methods, we next focus on the characterization of
the asymptotic fluctuations of both cost functions around the
asymptotic deterministic equivalents in Theorem 1.

1Gaussianity is not necessary for this result, and can be replaced by a milder
condition on the fourth order moments of the observations.

V. MAIN RESULT: ASYMPTOTIC FLUCTUATIONS OF THE
MUSIC AND G-MUSIC COST FUNCTION

The objective of this section is to characterize the asymp-
totic fluctuations of both conventional MUSIC and g-MUSIC
cost functions in (9) and (10) around their asymptotic deter-
ministic equivalents. To that effect, we will describe the finite-
dimensional asymptotic distribution of these cost functions
evaluated at a constant number of L points. Let us therefore
consider a fixed set of L directions given by θ̄=[θ̄1,...,θ̄L]T

within the field of view Θ of the sensor array and denote
η̂c(θ̄)=[η̂c(θ̄1),...,η̂c(θ̄L)]T (15)
η̂g(θ̄)=[η̂g(θ̄1),...,η̂g(θ̄L)]T, (16)

where η̂c(θ) and η̂g(θ) are given in (9) and (10), respectively.
In order to investigate the asymptotic behavior of the two
vectors η̂c(θ̄) and η̂g(θ̄) we will also consider the two L-
dimensional vectors η̄c(θ̄) and η̄g(θ̄) that contain the cor-
responding deterministic equivalents. These two vectors are
respectively defined as (15)-(16) by replacing η̂c(θ̄l) and η̂g(θ̄l)

with η̄c(θ̄l) in (13) and η̄g(θ̄l) in (8), where l=1,...,L.
In order to introduce the main result of this section, we need

to introduce the asymptotic covariance matrices of the vectors
in (15)-(16). Let ω(z) be defined by inverting the mapping in
(7) as follows. When z∈C+ .

={z∈C:Im[z]>0}, ω(z) is defined
as the unique solution to

z=ω(z)

(
1− 1

N

M̄∑
r=1

Krγr
γr−ω(z)

)
(17)

in C+. When z∗∈C+, we take ω(z)=ω∗(z∗). Finally, when z∈R,
we take ω(z) to be the unique solution to the above equation
such that 1

N

∑M̄
r=1

Krγ
2
r

|γr−ω(z)|2≤1. It can be shown that ω(z) is
well defined on all C and holomorphic on C\S, with derivative

ω′(z)=
∂ω(z)

∂z
=

(
1− 1

N

M̄∑
r=1

Krγ
2
r

(γr−ω(z))2

)−1

. (18)

Using tools from RMT it is shown in Section VI that both
the conventional MUSIC and the g-MUSIC cost functions fluc-
tuate around their asymptotic equivalents as Gaussian random
vectors. In order to formulate this result, we now define the
asymptotic covariance matrices of the corresponding random
vectors in (15)-(16) after proper centering and normalization.
Regarding the conventional MUSIC algorithm, we define[

Γc(θ̄)
]
p,q

=

M̄∑
r=1

M̄∑
k=1

(
ξc(r,k)a(θ̄p)

HErE
H
r a(θ̄q)

×a(θ̄q)
HEkE

H
k a(θ̄p)

) (19)

for p,q∈{1,...,L} where the real-valued weights

ξc(r,k)=

{
γrγk ξ̃c(r,k) M>N

γrγk ξ̄c(r,k) M≤N
(20)

differ depending on the number of snapshots N and the
number of sensors M . In the undersampled case (M>N)
the weights are given by ξ̃c(r,k) in (21) whereas in the
oversampled case (M≤N) the weights are given by ξ̄c(r,k)

in (22), both at the top of the next page. The real-valued
quantities µr for r=1,...,M̄ are defined as in (14).

Regarding the g-MUSIC cost function, we define[
Γg(θ̄)

]
p,q

=

M̄∑
r=1

M̄∑
k=1

(
ξg(r,k)a(θ̄p)

HErE
H
r a(θ̄q)

×a(θ̄q)
HEkE

H
k a(θ̄p)

) (23)
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ξ̃c(r,k)=− N

K1

1(
1
N
K1γ1

)2
(

1− 1

N

M̄∑
m=2

Kmγm
γm−γ1

)2

δr=k=1−
1(

1
N
K1γ1

)2
(

1− 1

N

M̄∑
m=2

Kmγ
2
m

(γm−γ1)2

)
δr=k=1 (21)

− N

K1

1

(γk−γ1)2 δr=16=k−
N

K1

1

(γr−γ1)2 δk=16=r+
2

π

∫ x+
1

x−1

1∣∣∣1− 1
N

∑M̄
m=1

Kmγm
γm−ω(x)

∣∣∣2
Im[ω(x)]

|γr−ω(x)|2|γk−ω(x)|2
dx

ξ̄c(r,k)=2
µ1

γ1

1(
1
N
K1γ1

)2
(

1− 1

N

M̄∑
m=2

Kmγ
2
m

(γm−γ1)(γm−µ1)

)
δr=k=1+2

µ1

γ1−µ1

1(
1
N
K1γ1

)2
(

1− 1

N

M̄∑
m=2

Kmγm
γm−γ1

)
δr=k=1 (22)

+2
N

K1

1

(γk−γ1)γ1

µ1

γk−µ1
δr=16=k+2

N

K1

1

(γr−γ1)γ1

µ1

γr−µ1
δk=16=r+

µ2
1

(γr−µ1)2(γk−µ1)2

1

1− 1
N

∑M̄
m=1

Kmγ2
m

(γm−µ1)2

+ξ̃c(r,k)

for p,q∈{1,...,L} where the real-valued weights ξg(r,k) are
given by

ξg(r,k)=− N

K1
δr=k=1+

2

π

∫ x+
1

x−1

γrγk|ω′(x)|2Im[ω(x)]

|γr−ω(x)|2|γk−ω(x)|2 dx. (24)

Having introduced these two asymptotic covariance matri-
ces, we next introduce an additional assumption that essen-
tially guarantees that the eigenvalues of the matrices Γc(θ̄) in
(19) and Γg(θ̄) in (23) are contained in a compact interval of
the positive real axis independent of M . This is necessary
in order to guarantee that the two random cost functions
asymptotically fluctuate around the corresponding determin-
istic equivalents.
Assumption 4. Let A(θ̄) denote the M×L matrix that con-
tains, stacked side by side, the steering vectors a(θ) evaluated
at the directions θ̄1,...,θ̄L. Then, if λmin(·) denotes the minimum
eigenvalue of a matrix, we have

inf
M

M̄∑
m=2

λ2
min

(
AH(θ̄)EmE

H
mA(θ̄)

)
>0.

This assumption is essentially pointing out that the matrix
A(θ̄) must be full-rank, and its projection onto the different
signal-subspaces E2,...,EM̄ of the true covariance matrix R
cannot vanish uniformly. Having introduced this last assump-
tion, we are now in the position to introduce the main result
of this paper.
Theorem 2. Under Assumptions 1-4, we have

√
NΓc(θ̄)−1/2(η̂c(θ̄)−η̄c(θ̄)

)D→N (0,IL) (25)
√
NΓg(θ̄)−1/2(η̂g(θ̄)−η̄g(θ̄)

)D→N (0,IL) (26)

where D→ denotes convergence in distribution and where
Γc(θ̄)∈RL×L is given in (19) and Γg(θ̄)∈RL×L is given in
(23), respectively.

Proof. The proof is given in Section VI. �

Remark: The order of convergence in (25) and (26) is
O(N−1/2). The real-valued integrals in (20) and (24) can be
computed using numerical integration techniques such as the
Riemann sum or the Simpson’s rule.

A. Probability of Resolution
The practical relevance of a DoA estimator highly depends

on its computational complexity as well as its estimation
accuracy. For the estimation accuracy of subspace-based DoA
estimators like MUSIC and g-MUSIC the so called threshold
effect is of major interest. The threshold effect describes an
abrupt increase in the Mean Square Error (MSE) below a
certain SNR threshold and can be characterized by analyzing
the resolution capabilities of the underlying DoA estimator [2],

[7], [28]. In the literature, several criteria to declare resolution
between two neighboring sources have been introduced [29]–
[32]. In case of a one-dimensional spectral search based DoA
estimator, one may declare that two sources located at DoAs
θ=[θ1,θ2]T are resolved if both DoA estimation errors, namely
|θ1−θ̂1| and |θ2−θ̂2| are smaller than |θ1−θ2|/2 [31]. A popular
alternative is to evaluate the cost function at both true DoAs
and to verify if the cost at the mid-angle (θ1+θ2)/2 is larger
than at the true DoAs [32]. Hence, under the latter criterion
resolution is declared if uTη̂(θ̄)<0 where

u=

1/2

1/2

−1

, θ̄=

 θ1

θ2
θ1+θ2

2

, η̂(θ̄)=

 η̂(θ1)

η̂(θ2)

η̂
(
θ1+θ2

2

)


and η̂(θ) denotes a generic cost function. Using the previously
derived asymptotic stochastic behavior of the cost function
vector η̂(θ̄) in Theorem 2, the probability of resolution can be
expressed as the cumulative distribution function [33]

Pres=Pr
(
uTη̂(θ̄)<0

)
=

∫ 0

−∞
fuTη̂(θ̄)(x)dx (27)

where fuTη̂(θ̄)(x) denotes the pdf of the test quantity uTη̂(θ̄)

that can be asymptotically approximated by a Gaussian dis-
tribution with law N (uTη̄(θ̄),N−1uTΓ(θ̄)u), where η̄(θ̄) and
Γ(θ̄) take the form in (13)-(19) or in (8)-(23) depending on
the subspace method under evaluation [34].

VI. PROOF OF THEOREM 2
We begin by reviewing some standard arguments that allow

to represent the MUSIC and g-MUSIC cost functions as
contour integrals of the resolvent of the sample covariance
matrix, which is a matrix-valued function of a complex vari-
able z∈C\R defined as Q̂(z)=(R̂−zIM )−1 [24], [25]. Observe
that, using the eigenvalue decomposition of R̂ in (5) we are
able to write

Q̂(z)=

M∑
m=1

1

λ̂m−z
êmê

H
m

and therefore a direct application of the Cauchy integral
theorem shows that

M∑
m=1

êmê
H
m=

1

2πj

∮
Cz
Q̂(z)dz (28)

where Cz is a clockwise oriented simple closed contour that
encloses only the K1=M−K smallest eigenvalues of the
sample covariance matrix R̂.

Now, it is well known that for all M,N sufficiently large,
the M−K smallest eigenvalues of R̂ are located inside [x1,x

+
1 ]

plus {0} if M>N [26], [35]. Thanks to this fact, we can always
deform the contour in (28) and make it independent of M . This
deterministic contour may cross the real axis at the points %
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(defined in Assumption 3) and any other point in the negative
real axis. Consequently, one can investigate the asymptotic
behavior of the eigenvectors of the sample covariance matrix
by equivalently characterizing the asymptotic behavior of the
resolvent Q̂(z).

A. Asymptotic Equivalent of MUSIC and Derivation of g-
MUSIC

Under Assumptions 1-2 and for fixed θ and z∈C\R we have∣∣∣∣aH(θ)Q̂(z)a(θ)−ω(z)

z
aH(θ)(R−ω(z)IM )−1a(θ)

∣∣∣∣→0 (29)

almost surely [22], [23], where ω(z) is defined as in (17).
A direct application of the dominated convergence theorem
therefore shows that, since

η̂c(θ)=
1

2πj

∮
Cz
aH(θ)Q̂(z)a(θ)dz

we can write∣∣∣∣η̂c(θ)−
1

2πj

∮
Cz

ω(z)

z
aH(θ)(R−ω(z)IM )−1a(θ)dz

∣∣∣∣→0.

The right hand side of the above difference can be shown
to coincide with the expression in (13) after applying the
change of variables z=z(ω) as given in (7) and solving the
corresponding integral via Cauchy integration [24].

A very similar idea can be used to derive the g-MUSIC
cost function. We begin by expressing the cost function that
we want to estimate using again the Cauchy integral, that is

η̄g(θ)=
1

2πj

∮
Cω
aH(θ)(R−ωIM )−1a(θ)dω

where now Cω is a clockwise oriented simple closed contour
that encloses γ1 and no other eigenvalue. In particular, it can be
shown that [6] z 7→ω(z) in (17) can be used as parametrization
of such a contour, in the sense that we can choose Cω=ω(Cz)
with Cz as defined above. It can be seen that the generated
contour has the properties that we are looking for [6], and
consequently we can express

η̄g(θ)=
1

2πj

∮
Cz
aH(θ)(R−ω(z)IM )−1a(θ)ω′(z)dz (30)

with ω′(z) as in (18). Now, observe that the above contour
does not depend on M , so that invoking again the dominated
convergence theorem we can find an M,N-consistent estimator
of η̄g(θ) by simply replacing the integrand above with a
corresponding M,N-consistent estimate. Using (29) we readily
see that we only need to find an M,N-consistent estimator of
ω(z) and ω′(z). An M,N-consistent estimator of ω(z) can be
obtained by using the well-known fact that [22], [23], under
Assumptions 1-2 we have∣∣∣∣ 1

M
tr
[
Q̂(z)

]
−ω(z)

z

1

M
tr
[
(R−ω(z)IM )−1]∣∣∣∣→0

almost surely for fixed z∈C\R. Using the fact that ω(z) is a
solution to the equation in (17), this can be reformulated as∣∣∣∣∣ω(z)−z

(
1− 1

N
tr
[
R̂(R̂−zIM )−1

])−1
∣∣∣∣∣→0

(see [19, Lemma 8]). Therefore, the right hand side of the
above difference, which will be denoted as ω̂(z), is an M,N-
consistent estimator of ω(z). Furthermore, the M,N-consistent
estimator of ω′(z) can be obtained by using the fact that
convergence of holomorphic functions imply the convergence
of their derivatives, so that

ω̂′(z)=
∂ω̂(z)

∂z
=
ω̂(z)

z
+
ω̂(z)2

z

1

N
tr

[
R̂
(
R̂−zIM

)−2
]

is an M,N-consistent estimator of ω′(z). We can therefore
obtain the M,N-consistent estimator of the g-MUSIC cost
function by inserting these estimators into the Cauchy integral
in (30), that is

η̂g(θ)=
1

2πj

∮
Cz
aH(θ)Q̂(z)a(θ)

z

ω̂(z)
ω̂′(z)dz. (31)

The contour integral in (31) is solved in closed-form in [6,
Theorem 2] (also see [25, Theorem 3]) using conventional
residue calculus, which yields the expression in (10).

B. Asymptotic Fluctuations
Let us now consider again the fluctuations of these two cost

functions at a set of L fixed distinct angles, θ̄1,...,θ̄L. Using
the previously derived asymptotic equivalents of the MUSIC
cost function we can express
√
N
(
η̂c(θ̄l)−η̄c(θ̄l)

)
=

1

2πj

∮
Cz

√
NaH(θ̄l)

(
Q̂(z)−Q̄(z)

)
a(θ̄l)dz

where we have introduced Q̄(z)=ω(z)
z

(R−ω(z)IM )−1. Simi-
larly, for the g-MUSIC cost function we have√

N
(
η̂g(θ̄l)−η̄g(θ̄l)

)
=

1

2πj

∮
Cz

√
NaH(θ̄l)

(
zω̂′(z)

ω̂(z)
Q̂(z)−zω

′(z)

ω(z)
Q̄(z)

)
a(θ̄l)dz.

It can be seen that both expressions take the form√
N
(
η̂(θ̄l)−η̄(θ̄l)

)
=

1

2πj

∮
Cz

√
NaH(θ̄l)

(
ĥ(z)Q̂(z)−h̄(z)Q̄(z)

)
a(θ̄l)dz

(32)

where η̂(θ) is a generic cost function with deterministic equiv-
alent η̄(θ). In case of the conventional MUSIC cost function
we have ĥ(z)=1 and h̄(z)=1 whereas in case of the g-MUSIC
cost function ĥ(z)= zω̂′(z)

ω̂(z)
and h̄(z)= zω′(z)

ω(z)
. It is well known

[36], [37] that the statistic in (32) asymptotically fluctuates
as a Gaussian random variable with zero-mean and positive
variance. However, we are interested in the more general case
of the asymptotic joint distribution of a collection of random
variables, namely

√
N
(
η̂(θ̄)−η̄(θ̄)

)
=


√
N(η̂(θ̄1)−η̄(θ̄1))

...√
N(η̂(θ̄L)−η̄(θ̄L))

 (33)

where
√
N(η̂(θ̄l)−η̄(θ̄l) for l=1,...,L is defined in (32). The

second order asymptotic behavior in Theorem 2 is derived
by establishing pointwise convergence of the characteristic
function of the statistic

√
N
(
η̂(θ̄)−η̄(θ̄)

)
in (33) to the char-

acteristic function of a Gaussian distributed random variable.
Moreover, by the Cramér-Wold device [38] it is sufficient to
establish that the one-dimensional projection of the statistic in
(33), namely

L∑
l=1

√
Nwl

(
η̂(θ̄l)−η̄(θ̄l)

)
=
√
NwT(η̂(θ̄)−η̄(θ̄)

)
(34)

is asymptotically Gaussian distributed for any collection of
real-valued bounded quantities w=[w1,...,wL]T∈RL to show
that (33) is asymptotically jointly Gaussian distributed. Ad-
ditionally, by Lévy’s continuity Theorem convergence in dis-
tribution of a set of random variables can be proven by estab-
lishing pointwise convergence of the characteristic functions.
Let χ(r) be defined as χ(r)=exp

(
jr
√
NwT

(
η̂(θ̄)−η̄(θ̄)

))
and

let E[χ(r)] be the corresponding characteristic function of the
one-dimensional projection in (34). The target is to study the
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asymptotic behavior of the characteristic function E[χ(r)] in
the asymptotic regime where M,N→∞ at the same rate by
establishing convergence towards the characteristic function
of a Gaussian random variable with zero-mean and covariance
wTΓ(θ̄)w, that is E[χ(r)]−χ̄(r)→0 where

χ̄(r)=exp

(
−r2w

TΓ(θ̄)w

2

)
. (35)

In (35), Γ(θ̄)∈RL×L characterizes the second order asymptotic
behavior of the statistic

√
N(η̂(θ̄)−η̄(θ̄)) in (33), which is

the quantity of interest. In the asymptotic analysis of the
characteristic function E[χ(r)] of the one-dimensional projec-
tion

√
NwT(η̂(θ̄)−η̄(θ̄)) we rely on the integration by parts

formula [39]–[41] and the Nash-Poincaré inequality [40]–[42].
It can be shown that the second order asymptotic behavior of
the statistic in (34) is computed as follows.

Theorem 3. Consider an L×L matrix Γ(θ̄) the elements of
which are given by[

Γ(θ̄)
]
p,q

=
1

2πj

1

2πj

∮
Cω1

∮
Cω2

h̄(z(ω1))h̄(z(ω2))
∂z(ω1)

∂ω1

∂z(ω2)

∂ω2

× ω1

z(ω1)

ω2

z(ω2)

Υp,q(ω1,ω2)

1−Ω(ω1,ω2)
dω2dω1

(36)
for p,q∈{1,...,L}, where Cω1 , Cω2 are two clockwise oriented
simple closed contours enclosing only the smallest eigenvalue
γ1 of R,

Υp,q(ω1,ω2)=a(θ̄p)
H(R−ω1IM )−1R(R−ω2IM )−1a(θ̄q)

×a(θ̄q)
H(R−ω2IM )−1R(R−ω1IM )−1a(θ̄p)

(37)

and where
Ω(ω1,ω2)=

1

N
tr
[
R(R−ω1IM )−1R(R−ω2IM )−1]. (38)

Function z(ω) is defined in (7) and its first order derivative
can be computed as

∂z(ω)

∂ω
=1− 1

N

M̄∑
r=1

Krγ
2
r

(γr−ω)2
. (39)

Let Assumptions 1-3 hold true and assume additionally that
the eigenvalues of Γ(θ̄) are all located in a compact in-
terval of the positive real axis independent of M . Then,√
NΓ(θ̄)−1/2(η̂(θ̄)−η̄(θ̄)) in (33) converges in law to a stan-

dardized multivariate Gaussian distribution.

Proof. A detailed proof is provided in [43]. �

With the help of Theorem 3 above, the proof of Theorem
2 follows directly once we have been able to (i) compute
the integral that defines the asymptotic covariance matrix for
these two cost functions and (ii) prove that the maximum
(resp. minimum) eigenvalue of these two covariance matrices
is bounded (resp. bounded away from zero).

Let us first consider the computation of the two asymp-
totic covariance matrices, which follows from solving the
integral in (36) for h̄(z(ω))=1 (conventional MUSIC) and for
h̄(z(ω))= z(ω)

ω
∂ω(z)
∂z

(g-MUSIC). To simplify the computation
of the asymptotic covariance, we express Γ(θ̄) in (36) as

Γ(θ̄)=

M̄∑
r=1

M̄∑
k=1

ξ(r,k)AH(θ̄)ErE
H
rA(θ̄)�

(
AH(θ̄)EkE

H
kA(θ̄)

)T

(40)

where � denotes element-wise product and where the coeffi-
cients ξ(r,k) are defined as

ξ(r,k)=
1

2πj

∮
Cω1

h̄(z(ω1))
ω1

z(ω1)

∂z(ω1)

∂ω1

γrγkIr,k(ω1)

(γr−ω1)(γk−ω1)
dω1,

(41)with

Ir,k(ω1)=
1

2πj

∮
Cω2

h̄(z(ω2))
ω2

z(ω2)

∂z(ω2)

∂ω2

1
(γr−ω2)(γk−ω2)

1−Ω(ω1,ω2)
dω2.

(42)
These two integrals are solved in Appendices A and B for the
conventional MUSIC and the g-MUSIC cost functions, leading
to the expressions in (19) and (23) respectively.

To obtain an upper bound on the spectral norm of Γ(θ̄),
we consider the expression in (40) and observe that the
coefficients ξ(r,k) are all real-valued and positive. The fact that
they are real-valued follows from the property z(ω∗)=z∗(ω) in
(7) as well as the fact that h̄(z∗)=h̄∗(z) for both definitions of
this function. The fact that the coefficients ξ(r,k) in (41) are
non-negative can be shown by using the following results.
Lemma 1. Let Ω(ω1,ω2) be defined as in (38). Then,

sup
M

sup
(z1,z2)∈Cz×Cz

|Ω(ω(z1),ω(z2))|<1. (43)

Proof. By the Cauchy-Schwarz inequality, we have
|Ω(ω(z1),ω(z2))|2≤Ψ̃(ω(z1))Ψ̃(ω(z1)) with

Ψ̃(ω)=
1

N

M̄∑
m=1

Km
γ2
m

|γm−ω|2
. (44)

Hence, it is sufficient to prove that supM supz∈Cz |Ψ̃(ω(z))|<1.
Let us first consider z∈C+. Taking imaginary parts on both
sides of (17) we see that

Ψ̃(ω(z))=1− Im[z]

Im[ω(z)]
where we recall that Im[ω(z)]>0 when Im[z]>0. This implies
that supM Ψ̃(ω(z))≤1 and infM Im[ω(z)]>0. In order to see that
the inequality supM Ψ̃(ω(z))≤1 must be strict, we reason by
contradiction. Assume that the equality holds, and consider a
subsequence M ′ such that Ψ̃(ω(z))→1, implying Im[ω(z)]→∞,
as M ′→∞. Now, using the fact that |γm−ω(z)|2≥Im[w(z)]2

we see from the definition of Ψ̃(ω(z)) in (44) that Ψ̃(ω(z))≤
Im[ω(z)]−2 1

N

∑M̄
m=1Kmγ

2
m→0 along that subsequence, leading

to contradiction.
Consider now z∈Cz∩R and observe that this means that

either z<0 or z=% in Assumption 3, which are the two crossing
points of the contour on the real axis. Assume first that z=%
and consider ω+

1 as right hand side of the first cluster of
the support S and ω−2 as the left hand side of the second
cluster such that γ1<ω

+
1 <ω(%)<ω−2 <γ2 (the case z<0 follows

by similar arguments). It can be observed that Ψ̃(ω) in (44) is
a strongly convex function since the second order derivative
w.r.t. ω

Ψ̃′′(ω)=
6

N

M̄∑
r=1

Krγ
2
r

(γr−ω)4
(45)

is lower bounded by a positive quantity q, namely

q=inf
M

inf
ω∈(ω+

1 ,ω
−
2 )

Ψ̃′′(ω)>
3

4

1

N

M̄∑
r=1

Krγ
2
r

γ4
r+γ4

2

>0.

By strong convexity it follows that
Ψ̃(ω−2 )−Ψ̃(ω(%))≥Ψ̃′(ω(%))(ω−2 −ω(%))+

q

2
(ω−2 −ω(%))2

Ψ̃(ω+
1 )−Ψ̃(ω(%))≥−Ψ̃′(ω(%))(ω(%)−ω+

1 )+
q

2
(ω+

1 −ω(%))2.
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Using the fact that Ψ̃(ω−2 )=1 and Ψ̃(ω+
1 )=1 we obtain

1−Ψ̃(ω(%))≥

{
Ψ̃′(ω(%))(ω−2 −ω(%))+ q

2
(ω−2 −ω(%))2

−Ψ̃′(ω(%))(ω(%)−ω+
1 )+ q

2
(ω+

1 −ω(%))2.

Hence, infM1−Ψ̃(ω(%))> q
2
min

[
(ω−2 −ω(%))2,(ω+

1 −ω(%))2
]
>0

and therefore supM Ψ̃(ω(%))<1. The boundedness of Ψ̃(ω(z))

at the second crossing point with the real axis z<0 follows
by similar reasoning. �

The fact that Ω(ω1,ω2) is uniformly bounded on Cω×Cω
implies that we can take a power series expansion of the term
(1−Ω(ω1,ω2))−1 and write

ξ(r,k)=γrγk
∑
n≥0

1

Nn

∑
r1+...+rM̄=n

(
n

r1,...,rM̄

)
M̄∏
m=1

Krm
m γ2rm

m

×

(
1

2πj

∮
Cz

ω(z)

z

h̄(z)

(γr−ω(z))(γk−ω(z))

M̄∏
m=1

1

(γm−ω(z))rm
dz

)2

(46)
where we employed the multinomial theorem to factor out the
different powers Ωn(ω1,ω2), n≥0. An immediate consequence
of the above decomposition is the fact that the coefficients
ξ(r,k) are non-negative. This will be useful in order to de-
termine the appropriate lower bound on the corresponding
covariance matrix.
Lemma 2. Under Assumptions 1-3, we have supM‖Γc(θ̄)‖<
+∞ and supM‖Γg(θ̄)‖<+∞.

Proof. Consider the general expression in (40) and assume
that we are able to find a positive constant κ such that
supM supr,kξ(r,k)<κ. It will immediately follow that

‖Γ(θ̄)‖≤κ

∥∥∥∥∥∥
M̄∑
r=1

M̄∑
k=1

AH(θ̄)ErE
H
rA(θ̄)�

(
AH(θ̄)EkE

H
kA(θ̄)

)T

∥∥∥∥∥∥
=κ

∥∥∥∥AH(θ̄)A(θ̄)�
(
AH(θ̄)A(θ̄)

)T
∥∥∥∥≤Lκ

where in the last inequality we have used the fact that the
steering vectors have unit norm and the spectral norm of a
matrix is upper bounded by its trace. Hence, we only need
to find an upper bound on the coefficients. Following the
definition of these coefficients in (46) we can readily see that

ξ(r,k)≤γrγk
1−Ω̄

(
1

2πj

∮
Cz
|h̄(z)| |ω(z)|

|z|
1

|γr−ω(z)||γk−ω(z)| |dz|
)2

(47)
where Ω̄=supM,(ω1,ω2)∈Cω×CωΩ(ω1,ω2)<1. Now, from the
proof of Lemma 1 it directly follows that infM,ω∈Cω |ω(z)−γk|>
0 for k=1,...,M̄ . On the other hand, taking real and imaginary
part on both sides of (17) it can be shown by contradiction
that for bounded |z|<∞ we have supM |ω(z)/z|<∞.

This directly shows that the coefficients ξ(r,k) are bounded
for the MUSIC cost function, which has h̄(z)=1. In order
to prove boundedness of the g-MUSIC covariance Γg(θ̄) we
only need to show that supM |ω′(z)|<∞ since h̄(z)= z

ω(z)
ω′(z)

and z
ω(z)

cancels out with ω(z)
z

in (47). The upper bound
supM |ω′(z)|<∞ follows from the fact that, by the triangular
inequality, supM |ω′(z)|≤supM (1−|Ψ̃(ω(z))|)−1<1. This com-
pletes the proof of Lemma 2. �

We finally conclude the proof of Theorem 2 by showing
that the smallest eigenvalue of the two asymptotic covariance
matrices is bounded away from zero.

Lemma 3. Under Assumptions 1-4, we have
infMλmin(Γc(θ̄))>0 and infMλmin(Γg(θ̄))>0, where λmin(·)
denotes the minimum eigenvalue of a matrix.

Proof. In order to proof this lemma, we consider again the
general expression of any of these two matrices that is given in
(40). By inserting the series expansion of ξ(r,k)≥0 in (46) into
(40) we obtain an expression of Γ(θ̄) as a linear combination of
positive semidefinite matrices with non-negative coefficients.
Hence, the original covariance can be lower bounded (in the
ordering of positive semidefinite matrices) by selecting any of
the terms of this expansion. In the case of MUSIC we can
select the term n=0 in (46) along the sum k=r≥2 in (40),
leading to the lower bound

Γc(θ̄)≥
M̄∑
k=2

υc(k)AH(θ̄)EkE
H
kA(θ̄)�

(
AH(θ̄)EkE

H
kA(θ̄)

)T

where

υc(k)=

(
1

2πj

∮
C−z

ω(z)

z

γk
(γk−ω(z))2

dz

)2

. (48)

Likewise, for the g-MUSIC cost function we can select the
term n=1 in (46) along the sum k=r≥2 in (40), so that

Γg(θ̄)≥
M̄∑
k=2

υg(k)AH(θ̄)EkE
H
kA(θ̄)�

(
AH(θ̄)EkE

H
kA(θ̄)

)T

where now

υg(k)=
1

N

M̄∑
j=1

Kjγ
2
j

(
1

2πj

∮
C−ω

ω

z(ω)

γk
(γk−ω)2(γj−ω)

dω

)2

. (49)

Using the fact that, for any two positive semidefinite matrices
A,B, we have λmin(A�B)≥λmin(A)λmin(B) [44], we see that
the lemma will follow from Assumption 4 if we are able to
show that infM,k≥2υc(k)>0 and infM,k≥2υg(k)>0.

In the case of υg(k) in (49), we have

υg(k)=
K1

N

γ2
1γ

2
k

(γ1−γk)4
δk≥2+

1

N

M̄∑
j=2

Kj
γ2
j γ

2
k

(γ1−γj)4
δk=1

≥K1

N

γ4
1

(2‖R‖)4
δk≥2+

M−K1

N

γ4
1

(2‖R‖)4
δk=1

and the lower bound follows from the fact that infMγ1>0,
supM‖R‖<∞ and 0<infMK1/M≤supMK1/M<1.

Regarding υc(k) in (48) we have to differentiate between the
over- and undersampled case. Using some algebra we obtain
a closed-form expression for the oversampled case (M≤N)

υc(k)=γ2
k(Φk(µ1)−Φk(γ1))2δk≥2

+

(
γ1

M̄∑
m=2

(Φ1(µm)−Φ1(γm))

)2

δk=1

(50)

and for the undersampled case (M>N)

υc(k)=(γkΦk(γ1))2δk≥2+γ2
1

(
M̄∑
m=1

Φ1(µm)−
M̄∑
m=2

Φ1(γm)

)2

δk=1

(51)
where we have introduced Φk(x)= x

(γk−x)2
. Consider first the

oversampled case in (50) for k≥2. Since Φk(x) is a convex
function on the region 0<x<γk, we can upper bound Φk(γ1)>

Φk(µ1)+Φ′k(µ1)(γ1−µ1) where Φ′k(x) is the derivative of Φk(x)

w.r.t. x. This shows that

(Φk(γ1)−Φk(µ1))2≥(Φ′k(µ1))2(γ1−µ1)2≥ (γ1−µ1)2

γ4
k

≥ (γ1−µ1)2

‖R‖4
where we have used the fact that Φ′k(µ1)≥Φ′k(0)=1/γ2

k. On the
other hand, to see that infM |γ1−µ1|>0 we simply recall from
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the definition of µ1 in (14) that we can write

γ1−µ1=

(
1− 1

N

M̄∑
j=2

Kj
γj

γj−µ1

)−1
K1γ1

N
>
K1γ1

N

where in the last equation we used the fact that µ1<γ1<γj for
j=2,...,M̄ and therefore the second term in the denominator
is always positive. The fact that infM |µ1−γ1|>0 follows the
boundedness of the spectral norm of R and Assumption 1.
This proves that vc(k) in (50) for k≥2 is lower bounded by a
constant independent of M .

Let us now consider the expression for vc(k) in (51) in the
undersampled case for k≥2. The first term in (51) is clearly
bounded below by a constant independent of M because we
have Φk(γ1)=γ1/(γk−γ1)2>γ1/(4‖R‖2). This concludes the
proof of Lemma 3. �

VII. SIMULATION RESULTS

In this Section the predicted probability of resolution in
(27) is compared to the simulated one. Consider a scenario
with K=2 sources that are located at θ=[45◦,50◦]T and a
ULA that is equipped with M=15 sensors. The transmitted
signals are zero-mean with unit power and the SNR is given
by SNR=1/σ2. The simulations are carried out for correlated
signals with correlation coefficient ρ=0.95 as well as uncor-
related signals. The separation boundary is defined as the
lowest SNR or the smallest angular separation between both
sources that provides separation between the eigenvalue cluster
that is associated to the noise eigenvalue γ1 and remaining
eigenvalue clusters. Hence, the separation boundary is given by
the smallest SNR or the smallest angular separation between
both sources that allows to differentiate between noise and
signal subspace and therefore satisfies Assumption 3. All
simulations are conducted for 10000 Monte-Carlo trials.

In Figure 1 and 2 the probability of resolution is depicted
for different SNRs and for N=15 and N=100 snapshots,
respectively. In both scenarios our prediction of the probability
of resolution in (27) is very accurate since it is very close to the
simulated one. Even in case of correlated sources and limited
number of snapshots the proposed forecast of the probability of
resolution in (27) provides a remarkably accurate description
of the threshold effect. In both scenarios the g-MUSIC DoA
estimation method shows superior resolution capabilities than
the conventional MUSIC technique.

In Figure 3 the probability of resolution is depicted for
different angular separation ∆ϑ between two sources. The
SNR is fixed to SNR=2dB and a total of N=15 snapshots
are considered. The transmitted signals are uncorrelated and
the two sources are located at θ=[45◦,45◦+∆ϑ]T with ∆ϑ∈
[0.2◦,10◦]. Furthermore, a ULA with M=15 antennas is used. It
can be observed that the proposed prediction of the probability
of resolution is almost identical to the actual one. Especially
in difficult scenarios with low SNR and closely spaced sources
g-MUSIC is superior to conventional MUSIC.

VIII. CONCLUSION

In this article the asymptotic stochastic behavior of the
conventional MUSIC and the g-MUSIC cost function is in-
vestigated in the asymptotic regime where the number of
snapshots and the number of sensors go to infinity at the
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same rate. Using tools from RMT the finite dimensional
distribution of the random MUSIC and g-MUSIC cost function
is derived and shown to be asymptotically jointly Gaussian
distributed. Furthermore, the resolution capabilities of both
MUSIC DoA estimation methods is analyzed based on the
asymptotic stochastic behavior of their cost functions. An
analytic expression for the probability of resolution is provided
that allows to predict the probability of resolution in the
threshold region.

APPENDIX A
DETERMINATION OF THE ASYMPTOTIC COVARIANCE OF

THE MUSIC COST FUNCTION

In case of the conventional MUSIC cost function h̄(z(ω2))=

1. Hence, the complex contour integral in (42) yields

Ir,k(ω1)=
1

2πj

∮
Cω2

ω2

z(ω2)

∂z(ω2)

∂ω2

1
(γr−ω2)(γk−ω2)

1−Ω(ω1,ω2)
dω2 (52)

and can be solved in closed-form by applying conventional
residue calculus [45]. A closed-form expression for Ir,k(ω1)

is obtained by summing the residues of the integrand in
(52) evaluated at all singularities that lie within the complex
contour Cω2 . To begin with, we consider the oversampled case
where M≤N . It can be seen, that the integrand of Ir,k(ω1)

in (52) exhibits three different types of singularities that lie
inside the complex contour Cω2 . The first type of singularities
corresponds to the poles of ω2

z(ω2)
, which are denoted by

µ1<µ2<···<µM̄ in (14). The corresponding residue w.r.t. ω2

evaluated at µt yields

Res

[
ω2

z(ω2)

∂z(ω2)

∂ω2

1
(γr−ω2)(γk−ω2)

1−Ω(ω1,ω2)
, µt

]
=

µt
(γr−µt)(γk−µt)

1−Ω(ω1,µt)
(53)

where we have used Ω(ω1,ω2) in (38), and ∂z(ω)
∂ω

in (39).
However, only µ1 lies within the contour Cω2 which is why
only the residue evaluated at µ1 contributes to the solution of
Ir,k(ω1) in (52).

The second type of singularities corresponds to the roots of
1−Ω(ω1,ω2) where Ω(ω1,ω2) is given in (38). The complex-
valued roots are denoted by ϕr(ω1) for r=1,...,M̄ and sorted
according to their real-part in ascending order Re[ϕ1(ω1)]<

···<Re[ϕM̄ (ω1)] and given by the solutions of the polynomial
equation in ϕ(ω1)

1

N

M̄∑
l=1

Klγ
2
l

(γl−ω1)(γl−ϕ(ω1))
=1. (54)

The corresponding residue evaluated at ϕt(ω1) is given by

Res

[
ω2

z(ω2)

∂z(ω2)

∂ω2

1
(γr−ω2)(γk−ω2)

1−Ω(ω1,ω2)
, ϕt(ω1)

]
=

ϕt(ω1)−ω1

(γr−ϕt(ω1))(γk−ϕt(ω1))

1

1− 1
N

∑M̄
m=1

Kmγm
γm−ϕt(ω1)

.

(55)

Lemma 4. Assuming that ω1 is located outside the contour
generated by the parameterization x 7→ω1(x) in [25, Remark
3], there exists exactly one solution of the equation in (54)
that is enclosed by the contour Cω2 , namely ϕ1(ω1).

Proof. Since ω1 is located outside the contour Ψ̃(ω1)<1 where
Ψ̃(ω) is given in (44). It can be observed that for a fixed ω1 the
ϕr(ω1) values are the zeros of the function f(ϕ)=1−Ω(ω1,ϕ)

where Ω(ω1,ω2) is given in (38). By Cauchy-Schwarz inequal-
ity it follows that, if ϕ∈Cω2 , we have |1−f(ϕ)|2≤Ψ̃(ω1)Ψ̃(ϕ)<1

(see Lemma 1). It can also be seen that f(ϕ) has no sin-
gularities or zeros lying directly on the contour Cω2 , so that
by Rauchés’s theorem f(ϕ) has the same number of zeros
and poles inside Cω2 . The poles of f(ϕ) are located at the
true eigenvalues γr for r=1,...,M̄ . However, only the smallest
eigenvalue γ1 is enclosed by Cω2 . Hence, it follows that only
one zero of 1−f(ϕ) is enclosed by the contour Cω2 , namely
ϕ1(ω1). �

Consequently, only the residue evaluated at ϕ1(ω1) con-
tributes to the solution of Ir,k(ω1) in (52).

The third type of singularities corresponds to the poles at
the true eigenvalues γt for t=1,...,M̄ . However, we have to
distinguish between poles of order one and order two. The
residue with respect to ω2 evaluated at γt yields

Res

[
ω2

z(ω2)

∂z(ω2)

∂ω2

1
(γr−ω2)(γk−ω2)

1−Ω(ω1,ω2)
, γt

]

=


N

Ktγt

γt−ω1
γk−γt

, for t=r 6=k
N

Ktγt

γt−ω1
γr−γt , for t=k 6=r

αt(ω1), for r=k=t

(56)

where

αt(ω1)=
(γt−ω1)(
1
N
Ktγt

)2
(

1− 1

N

M̄∑
m=1
m 6=t

Kmγm
γm−γt

)

+
(γt−ω1)2

γt
(

1
N
Ktγt

)2
(

1− 1

N

M̄∑
m=1
m6=t

Kmγ
2
m

(γm−ω1)(γm−γt)

)
.

(57)

It can be observed that only the noise eigenvalue γ1 is enclosed
by the contour Cω2 . Correspondingly, the closed-form solution
for the complex contour integral Ir,k(ω1) in (52) is obtained
by taking the negative sum (negative sum because of the
negatively orientated contour Cω2 ) of the residues in (53),
(55) and (56) evaluated at all singularities that lie inside the
complex contour Cω2 and yields

Ir,k(ω1)=− µ1

(γr−µ1)(γk−µ1)

1

1−Ω(ω1,µ1)
−α1(ω1)δr=k=1

− ϕ1(ω1)−ω1

(γr−ϕ1(ω1))(γk−ϕ1(ω1))

1

1− 1
N

∑M̄
m=1

Kmγm
γm−ϕ1(ω1)

− N

K1γ1

γ1−ω1

γk−γ1
δr=16=k−

N

K1γ1

γ1−ω1

γr−γ1
δk=16=r. (58)

In the following we substitute the closed-form expression for
Ir,k(ω1) in (58) into the general expression for the real-valued
weights ξ(r,k) in (41)

ξ̄c(r,k)=
−1

2πj

∮
Cω1

ω1

z(ω1)

∂z(ω1)

∂ω1

γrγk
(γr−ω1)(γk−ω1)

×

(
α1(ω1)δr=k=1+

µ1

(γr−µ1)(γk−µ1)

1

1−Ω(ω1,µ1)

+
N

K1γ1

γ1−ω1

γk−γ1
δr=16=k+

N

K1γ1

γ1−ω1

γr−γ1
δk=16=r

+
ϕ1(ω1)−ω1

(γr−ϕ1(ω1))(γk−ϕ1(ω1))

1

1− 1
N

∑M̄
m=1

Kmγm
γm−ϕ1(ω1)

)
dω1

(59)

where we have used h̄(z(ω1))=1, Ω(ω1,ω2) in (38) and αt(ω1)

in (57). The integrand in (59) exhibits three different types
of singularities. The first group of singularities corresponds to
the poles that are located at the true eigenvalues γt. Hence,
the residue of the first part of the integrand in (59) evaluated
at γt is given by
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Res

[
ω1

z(ω1)

∂z(ω1)

∂ω1

αt(ω1)

(γr−ω1)(γk−ω1)
δr=k=t, γt

]
=− N

Kt

1(
1
N
Ktγt

)2
(

1− 1

N

M̄∑
m=1
m6=t

Kmγm
γm−γt

)2

δr=k=t

− 1(
1
N
Ktγt

)2
(

1− 1

N

M̄∑
m=1
m 6=t

Kmγ
2
m

(γm−γt)2

)
δr=k=t

(60)

whereas the residue of the second part of the integrand in (59)
yields

Res

[
µt

(γr−µt)(γk−µt)

1−Ω(ω1,µt)

ω1
z(ω1)

∂z(ω1)
∂ω1

(γr−ω1)(γk−ω1)
, γt

]

=


1

1
N
Ktγt

µt
γk−µt

1
γk−γt

, for t=r 6=k
1

1
N
Ktγt

µt
γr−µt

1
γr−γt , for t=k 6=r

βt, for t=k=r

(61)

where
βt=

1(
1
N
Ktγt

)2 µt
γt−µt

(
1− 1

N

M̄∑
m=1
m6=t

Kmγm
γm−γt

)

+
µt

γt
(

1
N
Ktγt

)2
(

1− 1

N

M̄∑
m=1
m6=t

Kmγ
2
m

(γm−γt)(γm−µt)

)
.

The residue of the third part of the integrand in (59) evaluated
at γt is computed as follows

Res

[
N

Ktγt

ω1

z(ω1)

∂z(ω1)

∂ω1

γt−ω1
γk−γt

δr=t6=k+ γt−ω1
γr−γt δk=t 6=r

(γr−ω1)(γk−ω1)
, γt

]
=− N

Kt

1

(γk−γt)2
δr=t6=k−

N

Kt

1

(γr−γt)2
δk=t6=r.

(62)

Since only the noise eigenvalue γ1 is enclosed by the contour
Cω1 , only the residues in (60), (61) and (62) evaluated at γ1

contribute to the result of ξ̄c(r,k) in (59).
The second type of singularities belongs to the poles of
ω1
z(ω1)

, which are located at the µ-values that are defined in (14).
The corresponding residue of the first part of the integrand in
(59) evaluated at µt is given by

Res

[
ω1

z(ω1)

∂z(ω1)

∂ω1

αt(ω1)

(γr−ω1)(γk−ω1)
δr=k=t, µt

]
=

µt
γt−µt

1(
1
N
Ktγt

)2
(

1− 1

N

M̄∑
m=1
m 6=t

Kmγm
γm−γt

)
δr=k=t

+
µt

γt
(

1
N
Ktγt

)2
(

1− 1

N

M̄∑
m=1
m6=t

Kmγ
2
m

(γm−µt)(γm−γt)

)
δr=k=t.

(63)

Furthermore, the residues of the second and third part of the
integrand in (59) evaluated at µt are given by

Res

[
µt

(γr−µt)(γk−µt)

1−Ω(ω1,µt)

ω1
z(ω1)

∂z(ω1)
∂ω1

(γr−ω1)(γk−ω1)
, µt

]
=

µ2
t

(γr−µt)2(γk−µt)2

1(
1− 1

N

∑M̄
m=1

Kmγ2
m

(γm−µt)2

) (64)

and

Res

[
N

Ktγt

ω1

z(ω1)

∂z(ω1)

∂ω1

γt−ω1
γk−γt

δr=t6=k+ γt−ω1
γr−γt δk=t 6=r

(γr−ω1)(γk−ω1)
, µt

]
=
N

Kt

1

(γk−γt)γt
µt

γk−µt
δr=t6=k+

N

Kt

1

(γr−γt)γt
µt

γr−µt
δk=t6=r.

(65)
However, only µ1 is enclosed by the contour Cω1 which is
why only the residues in (63), (64) and (65) evaluated at µ1

contribute to the final result of ξ̄c(r,k) in (59).

The third type of singularities of the integrand in (59) is
given by the solutions to the polynomial equation 1=Ω(ω1,µt)

in ω1 where Ω(ω1,ω2) is defined in (38). However, using
Cauchy’s argument principle it can be shown that the solu-
tions to 1=Ω(ω1,µt) are located outside the contour Cω1 and
therefore do not contribute to the solution of ξ̄c(r,k) in (59).
The following lemma is in line.

Lemma 5. Function f(ω1)=1−Ω(ω1,µt) with Ω(ω1,ω2) in (38)
does not exhibit any zeros inside the contour Cω1 .

Proof. Let P denote the number of poles and Z the number
of zeros of f(ω1) that are located inside the contour Cω1 , then
according to Cauchy’s argument principle

− 1

2πj

∮
Cω1

f ′(ω1)

f(ω1)
dω1=Z−P, (66)

where the first order derivative of f(ω1) w.r.t. ω1 is given by

f ′(ω1)=
∂f(ω1)

∂ω1
=− 1

N

M̄∑
m=1

Kmγ
2
m

(γm−ω1)2(γm−µt)
. (67)

Substituting f(ω1)=1−Ω(ω1,µt) and its first oder derivative in
(67) into the argument principle in (66) yields

1

2πj

∮
Cω1

1
N

∑M̄
m=1

Kmγ
2
m+γm−γm

(γm−ω1)2(γm−µt)

1− 1
N

∑M̄
m=1

Kmγ2
m

(γm−ω1)(γm−µt)

µt−ω1

µt−ω1
dω1

=
1

2πj

∮
Cω1

1

µt−ω1

1
N

∑M̄
m=1

Kmγ
2
m(µt−γm)

(γm−ω1)2(γm−µt)

1− 1
N

∑M̄
m=1

Kmγ2
m

(γm−ω1)(γm−µt)

dω1

+
1

2πj

∮
Cω1

1

µt−ω1

1
N

∑M̄
m=1

Kmγ
2
m(γm−ω1)

(γm−ω1)2(γm−µt)

1− 1
N

∑M̄
m=1

Kmγ2
m

(γm−ω1)(γm−µt)

dω1

where we have added and subtracted γm and multiplied and
divided by µt−ω1. Next, we add and subtract 1 to obtain

1

2πj

∮
Cω1

1

µt−ω1

1− 1
N

∑M̄
m=1

Kmγ
2
m

(γm−ω1)2

1− 1
N

∑M̄
m=1

Kmγ2
m

(γm−ω1)(γm−µt)

dω1

+
1

2πj

∮
Cω1

1

µt−ω1

1
N

∑M̄
m=1

Kmγ
2
m

(γm−ω1)(γm−µt)−1

1− 1
N

∑M̄
m=1

Kmγ2
m

(γm−ω1)(γm−µt)

dω1

=
1

2πj

∮
Cω1

 1

z1

1− 1

N

M̄∑
m=1

Kmγ
2
m

(γm−ω1)2

− 1

µt−ω1

dω1

(68)

where we have used

z1=(ω1−µt)

1− 1

N

M̄∑
m=1

Kmγ
2
m

(γm−ω1)(γm−µt)


which follows by subtracting 0=µt

(
1− 1

N

∑M̄
m=1

Kmγm
γm−µt

)
from

the definition of z1 in (17). Applying the change of variables
dω1= ∂ω(z1)

∂z1
dz1 in (68) one obtains

1

2πj

∮
Cz1

1

z1
dz1−

1

2πj

∮
Cω1

1

µt−ω1
dω1=Res

[
1

µt−ω1
, µt

]
=−1

for (66). Furthermore, it can be observed that f(ω1) exhibits a
single pole that is located inside the contour Cω1 such that P=

1. Consequently, Z=0 and no zero of f(ω1) is located inside
the contour Cω1 . �

It remains to compute the complex contour integral that
belongs to the last part in (59). By applying the change
of variables dω1= ∂ω(z1)

∂z1
dz1 and parameterizing the complex

contour as proposed in [25, Section IV] it can be shown
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that the complex contour integral simplifies to a real-valued
integral
−1

2πj

∮
Cω1

(ϕ1(ω1)−ω1) ω1
z(ω1)

∂z(ω1)
∂ω1

1
(γr−ω1)(γk−ω1)

(γr−ϕ1(ω1))(γk−ϕ1(ω1))
(

1− 1
N

∑M̄
m=1

Kmγm
γm−ϕ1(ω1)

)dω1

=
2

π

∫ x+
1

x−1

1∣∣∣1− 1
N

∑M̄
m=1

Kmγm
γm−ω(x)

∣∣∣2
Im[ω(x)]

|γr−ω(x)|2|γk−ω(x)|2
dx

(69)
which can be solved numerically. The following lemma was
used to simplify the real-valued integral.
Lemma 6. By parameterizing the contour Cω1 as proposed in
[25, Section IV]

1

N

M̄∑
r=1

Krγ
2
r

|γr−ω(x)|2 =1 (70)

for x∈S and it can be shown that
lim

ω1→ω(x)
ϕt(ω1)=ω(x)∗, for x∈[x−t ,x

+
t ]. (71)

Proof. Let u(x) and v(x) denote the real and imaginary parts
of ω(x) in (17), i.e., ω(x)=u(x)+jv(x). It is shown in [24,
Proposition 2] that v(x)>0 for x∈

◦
S≡(x−1 ,x

+
1 )∪···∪(x−S ,x

+
S ).

Taking imaginary parts on both sides of (17) one obtains

0=v(x)

(
1− 1

N

M̄∑
r=1

Krγ
2
r

(γr−u(x))2+v(x)2

)
which implies that

1=
1

N

M̄∑
r=1

Krγ
2
r

(γr−u(x))2+v(x)2
=

1

N

M̄∑
r=1

Krγ
2
r

|γr−ω(x)|2 (72)

for x∈
◦
S. From [25, Proposition 1] it follows that (72) also

holds for the boundaries of the clusters x∈{x−1 ,x
+
1 ,...,x

−
S ,x

+
S }.

Furthermore, the convergence result in (71) follows as a direct
consequence of (70) and the definition of ϕt(ω1) in (54). �

The final expression for the weights ξ̄c(r,k) in (22) in the
oversampled case where M≤N is obtained by taking the sum
of the residues in (60), (61), (62), (63), (64), (65) evaluated
at all singularities that lie inside the contour Cω1 and adding
(69), which can be evaluated numerically.

In the undersampled case where M>N it can be observed
that the poles of ω

z(ω)
are not enclosed by any of the two

contours Cω1 and Cω2 . Hence, the weights ξ̄c(r,k) in (21) are
obtained by discarding all residues evaluated at µ1.

APPENDIX B
DETERMINATION OF THE ASYMPTOTIC COVARIANCE OF

THE G-MUSIC COST FUNCTION
In case of the g-MUSIC cost function h̄(z(ω2))= z(ω2)

ω2

∂ω(z2)
∂z2

.
Hence the complex contour integral in (42) simplifies as
follows
Ir,k(ω1)=

1

2πj

∮
Cω2

1

(γr−ω2)(γk−ω2)

1

1−Ω(ω1,ω2)
dω2 (73)

which can be solved in closed-form using conventional residue
calculus [45]. It can be observed that the integrand in (73)
exhibits two different types of singularities. The first type
of singularities belongs to the roots of 1−Ω(ω1,ω2) where
Ω(ω1,ω2) is given in (38). The complex-valued roots are
denoted by ϕt(ω1) for t=1,...,M̄ and defined in (54). The
residue w.r.t. ω2 evaluated at ϕt(ω1) is given by

Res

[
1

(γr−ω2)(γk−ω2)

1−Ω(ω1,ω2)
, ϕt(ω1)

]
=

−1
(γr−ϕt(ω1))(γk−ϕt(ω1))

1
N

∑M̄
r=1

Krγ2
r

(γr−ω1)(γr−ϕt(ω1))2

.

(74)

However, it can be seen that only the residue evaluated at
ϕ1(ω1) contributes to the solution of Ir,k(ω1) in (73) as it is
the only singularity of the roots of 1−Ω(ω1,ω2) that is enclosed
by the contour Cω2 .

The second type of singularities belongs to the poles of
the integrand in (73) at γt for t=1,...,M̄ . The corresponding
residue w.r.t. ω2 evaluated at γt is given by

Res

[
1

(γr−ω2)(γk−ω2)

1−Ω(ω1,ω2)
, γt

]
=


γt−ω1
1
N
Ktγ

2
t

for r=k=t

0 for r 6=k.
(75)

It can be observed that only the first eigenvalue γ1 is enclosed
by the contour Cω2 . Hence, only the residue evaluated at γ1

contributes to the closed-form expression of Ir,k(ω1) in (73)
which is obtained by taking the negative sum (negative due
to the negatively orientated contour) of the residue in (74)
evaluated at ϕ1(ω1) and the residue in (75) evaluated at γ1

Ir,k(ω1)=

1
(γr−ϕ1(ω1))(γk−ϕ1(ω1))

1
N

∑M̄
r=1

Krγ2
r

(γr−ω1)(γr−ϕ1(ω1))2

− γ1−ω1

1
N
K1γ2

1

. (76)

Substituting the closed-form expression for Ir,k(ω1) in (76)
into the general expression of ξg(r,k) in (41) and using
h̄(z(ω1))= z(ω1)

ω1

∂ω(z1)
∂z1

yields

ξg(r,k)=
1

2πj

∮
Cω1

γrγk
(γr−ω1)(γk−ω1)(γr−ϕ1(ω1))(γk−ϕ1(ω1))

1
N

∑M̄
m=1

Kmγ2
m

(γm−ω1)(γm−ϕ1(ω1))2

dω1

− 1

2πj

∮
Cω1

1

(γr−ω1)(γk−ω1)

γ1−ω1

1
N
K1γ2

1

dω1. (77)

It can be observed that the integrand of the second contour
integral in (77) exhibits a single singularity at γ1 that lies
within the contour Cω1 . The corresponding residue w.r.t. ω1

evaluated at γ1 is given by

Res

 (γt−ω1) 1
1
N
Ktγ

2
t

(γr−ω1)(γk−ω1)
, γt

=


−1

1
N
Ktγ

2
t
, for r=k=t

0, r 6=k.
(78)

Hence the closed-form solution for the second integral in (77)
is given by the residue in (78) evaluated at γ1 for r=k=1 or
zero otherwise. The first contour integral in (77) can be solved
numerically by applying the change of variables dω= ∂ω(x)

∂x
dx

and parameterizing the contour Cω1 by concatenation of ω(x)

and ω(x)∗ as proposed in [25, Section IV] such that
1

2πj

∮
Cω1

1
(γr−ω1)(γk−ω1)(γr−ϕ1(ω1))(γk−ϕ1(ω1))

1
N

∑M̄
m=1

Kmγ2
m

(γm−ω1)(γm−ϕ1(ω1))2

dω1

=
1

π

∫ x+
1

x−1

Im

 1
|γr−ω(x)|2|γk−ω(x)|2

1
N

∑M̄
r=1

Krγ2
r

|γr−ω(x)|2(γr−ω(x)∗)

∂ω(x)

∂x

dx

(79)

where we have used Lemma 6 to simplify the expression. The
following Lemma allows to further simplify the real-valued
integral in (79).
Lemma 7. By parameterizing the contour Cω through concate-
nation of ω(x) in (17) and ω(x)∗ as proposed in [25, Section
IV] the following equality holds

1

N

M̄∑
r=1

Krγ
2
r

|γr−ω(x)|2(γr−ω(x))∗
=

1

2jIm[ω(x)]ω′(x)∗
(80)

where ω′(x) is defined in (18).
Proof. Let u(x) and v(x) denote the real and imaginary parts
of ω(x) in (17), i.e., ω(x)=u(x)+jv(x). Using the expression
in (70) we can express the inverse of the first order derivative
of ω(x) with respect to x in (18) as
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1

ω′(x)
=

1

N

M̄∑
r=1

Krγ
2
r [(γr−ω(x))2−|γr−ω(x)|2]

(γr−ω(x))2|γr−ω(x)|2 (81)

=
1

N

M̄∑
r=1

−Krγ
2
r [2jv(x)(γr−u(x))+2v(x)2]

|γr−ω(x)|2[(γr−u(x))2−v(x)2−2jv(x)(γr−u(x))]
.

Taking the complex conjugate of 1
ω′(x)

in (81) and multiplying
by 1

2jv(x)
one obtains the following expression for 1

2jv(x)ω′(x)∗

1

N

M̄∑
r=1

Krγ
2
r [(γr−u(x))+jv(x)]

|γr−ω(x)|2[(γr−u(x))2+2jv(x)(γr−u(x))−v(x)2]

which is identical to the one in (80). �
Using the equalities established in (80) the real-valued

integral in (79) can equivalently be expressed as
2

π

∫ x+
1

x−1

|ω′(x)|2Im[ω(x)]

|γr−ω(x)|2|γk−ω(x)|2 dx. (82)

Finally, the solution for ξg(r,k) in (24) is obtained by summing
the residue in (78) for t=1 and (82).
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