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ABSTRACT: 

 

Task intensive electronic control units (ECUs) in automotive domain, equipped with multicore processors , 

real time operating systems (RTOSs) and various application software, should perform efficiently and time 

deterministically. The parallel computational capability offered by this multicore hardware can only be 

exploited and utilized if the ECU application software is parallelized. Having provided with such 

parallelized software, the real time operating system scheduler component should schedule the time critical 

tasks so that, all the computational cores are utilized to a greater extent and the safety critical deadlines 

are met. As original equipment manufacturers (OEMs) are always motivated towards adding more 

sophisticated features to the existing ECUs, a large number of task sets can be effectively scheduled for 

execution within the bounded time limits. In this paper, a hybrid scheduling algorithm has been proposed, 

that meticulously calculates the running slack of every task and estimates the probability of meeting 

deadline either being in the same partitioned queue or by migrating to another. This algorithm was run and 

tested using a scheduling simulator with different real time task models of periodic tasks . This algorithm 

was also compared with the existing static priority scheduler, which is suggested by Automotive Open 

Systems Architecture (AUTOSAR). The performance parameters considered here are, the % of core 

utilization, average response time and task deadline missing rate. It has been verified that, this proposed 

algorithm has considerable improvements over the existing partitioned static priority scheduler based on 

each performance parameter mentioned above. 
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1.INTRODUCTION 

 
Automotive electronic subsystems are the real time embedded systems expected to work 

efficiently at various operating environments adhering to the safety critical requirements and 

strict government regulations. Within short regular intervals, new advanced and complex features 

are getting added to the existing systems. Original Equipment Manufacturers (OEMs) are 

competing with each other to introduce more sophisticated applications to their automobiles [1]. 

Multicore processors are the driving architectures for these new evolutions in automotive domain 

[2]. In this context, Automotive Open System Architecture (AUTOSAR) supported OEMs to add 
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more functionality into the existing ECUs and shift out from one function per ECU paradigm. 

AUTOSAR suggested more centralized software architecture designs with appropriate protection 

mechanisms. Due to this, high computational capabilities were expected from the ECU processor. 

For several years there has been a steady rise in the amount of computational power required 

from an ECU with architectural changes in the hardware and by increases in clock rate. But 

increase in clock rate also increases power consumption and also creates complex 
electromagnetic compatibility (EMC) issues. High performance and low power consumption 

being the two classic, conflicting requirements of any embedded system design, further frequency 

scaling the processor for achieving high performance was not a viable option any more. In this 

consequence, multicore processors were introduced in ECUs as a cost effective solution to 

achieve greater performance at moderate clock speed and low power consumption [2]. Because of 

multicore implementation, the ECUs are computationally more capable of accommodating much 

functionality which is an opportunity for OEMs to reduce the number of ECUs, the complex 

network connections and communication buses. Multicore ECUs bring major improvements for 

some applications that require high performance such as high-end engine controllers, electric and 

hybrid powertrains and advanced driver assistance systems which sometimes involve realtime 

image processing [1]. The inherent parallelism offered by multicore platforms helps in 

segregating the safety critical functions and allocating to dedicated cores. The challenges lie in 

the software architecture design which is also required to be parallelized to exploit the maximum 

capability of parallelized hardware. Decomposition of the application tasks and interrupt handlers 

into independent threads is required to achieve parallel execution by multiple cores [3,4]. To 

optimize the performance of an application running on a multicore platform, real-time CPU 

scheduling algorithms play the pivotal role. There are many existing methods and algorithms of 

real time task scheduling which are required to be reanalyzed and modified to suit to the parallel 

hardware and software architecture [5]. AUTOSAR has suggested strictly partitioned and static 

priority scheduling for safety critical tasks in automotive domain but there are issues like 

partitioning the tasks and mapping to a fixed core [2]. During heavy load condition, the lower 

priority tasks always starve for a computing resource and are sometimes forced to miss their 

deadlines. With the motivation of deriving a suitable task scheduling method and algorithm for 

multicore ECUs, a hybrid scheduling model and an algorithm have been proposed in this work. A 

simulation process with different task models has also been explained. The simulation results 

with different performance parameters are demonstrated. The paper is organized as: section II, 

introduces the existing task scheduling scenario in multicore automotive ECUs. section III 

explains about the proposed scheduler model for a tricore ECU. In section IV the task model and 

schedulability conditions are derived., In section V the proposed algorithm is presented, Section 

VI provides an illustration on the results and discussions. Section VII presents the performance 

analysis and Section VIII gives the conclusion of the work.   

 

2.EXISTING SCHEDULING SCENARIO IN AUTOMOTIVE ECUs 

 
AUTOSAR version 4.0 suggests preemptive static priority and partitioned scheduling for safety 

critical tasks on multicore implemented ECUs [2]. In a current implementation, there are three 

computational cores of a multicore processor used for the diesel gasoline engine control ECU. 

The peripheral core, the performance core and the main core. The peripheral core is mostly a DSP 

core, lock step mode is implemented in the main core to protect data consistency and the 

performance core which is mostly kept as a support system otherwise used for periodic tasks in 

high load conditions.  
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2.1 Task Partitioning 
 

There are different task distribution strategies used to partition the tasks to achieve deterministic 

behaviour of the system [6,7,8]. In one of the strategies, basic system software (BSW) and 

complex drivers are allocated to the peripheral core. Crank teeth angle synchronous tasks of 

application software (ASW) and monitoring relevant tasks are allocated to the main core [9]. 

Time triggered tasks of ASW are allocated to the performance core. The preemptive, non-

preemptive and cooperative tasks are segregated and allocated to different cores. Similarly in 

another implementation strategy, tasks and interrupt clusters are defined based on the hardware 

dependencies, data dependencies and imposed constraints [2,10]. All the tasks in any cluster are 

allocated to the same core to be executed together to avoid the communication costs. An example 

tasks/interrupts clusters are shown in the fig.1 below. Each task of a task cluster is mapped to an 

OS Application. The OS Application is then mapped to a core by OS configuration [11]. Within a 

task, there will be a chain of nunnables to be executed sequentially. Various runnable sequencing 

algorithms are there in the literature to generate a proper flow of execution, but the performance 

evaluation of such distribution is not satisfactory because it is difficult to partition between tasks, 

ISRs and BSW with high load conditions [10]. As a result, there is poor load balancing between 

the cores in heavy load conditions. Furthermore there cannot be a fixed task distribution strategy 

for all the systems as each system has its own software design. There is a need of trade-off 

between flexibility and effort in task distribution strategy. In this proposed algorithm, both global 

and partitioned queues are used and task migrations are allowed to explore the availability of 

computing cores. 

 

2.2 Static priority Scheduling 

 
AUTOSAR suggests static priority cyclic scheduling for the tasks in every partitioned queue [2]. 

The number of runnables grouped under a task is always large. The runnables under OS services 

or application tasks with same periodicity or ISRs of same category are grouped together. In the 

static priority scheduling, priorities are assigned to each task prior to run time. Each task is 

defined with four parameter values: initial offset, worst case execution time (WCET), its period 

and priority. At any releasing instant at the partitioned queue, the higher priority task get 

scheduled for execution. So at higher load conditions, low priority tasks do not get a CPU slot  

and because of strict partitioning, they are unable to migrate to other core even though the 

consequence is missing the deadlines [1,11]. CPU utilization is also not balanced with task 

partitioning. So there is a scope for dynamic task scheduling as well [12].  This research work is 

intended to address this issue and an effort has been made to develop an efficient hybrid task 

scheduling algorithm for a multicore ECU which is tested with various open source scheduling 

tools. 



International Journal of Embedded systems and

 

 

3.PROPOSED SCHEDULER MODEL 

  
The scheduler model is characterised by 

identical cores and an intermediate module called task distributer.

parameters table and based on each activation

tasks distributer is an interface

decision on which task from the gl

calculated slack and number of tasks

implemented as a scheduler function and runs at every time quantum which is 

model and runs on one of the cores

 

4. TASK MODEL DESCRIPTION

 
In this paper, we have consider

control ECU that consists of three identical cores. 

decomposed into tasks and many processes run within a task. A

whenever appropriate.  In an engine control unit 

asynchronous or time-triggered tasks, which are activated 

engine-triggered tasks, which are activated at a specific angular position of the engine crank shaft
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Fig.1 Task Clusters 

PROPOSED SCHEDULER MODEL  

is characterised by a global queue, three partitioned queues serving for three 

cores and an intermediate module called task distributer. The model refers to a task 

and based on each activation instant, the tasks get added to the global queue. 

stributer is an interface between the global and the partitioned queues that

from the global queue to move to which local queue based on

and number of tasks at the global queue. The hybrid scheduling 

implemented as a scheduler function and runs at every time quantum which is fixed

cores.  

 
Fig.2 Scheduler model 

TASK MODEL DESCRIPTION 

considered a set of 10 periodic tasks of application software for engine 

control ECU that consists of three identical cores.  In practice, the application 

decomposed into tasks and many processes run within a task. A task is called from the OS kernel 

In an engine control unit two types of tasks are executed: t

triggered tasks, which are activated periodically and the synchronous or 

triggered tasks, which are activated at a specific angular position of the engine crank shaft
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a global queue, three partitioned queues serving for three 

refers to a task 

to the global queue. The 

l and the partitioned queues that takes the 

queue based on the 

scheduling algorithm is 

fixed for a task 

 

software for engine 

the application software is 

called from the OS kernel 

two types of tasks are executed: the 

periodically and the synchronous or 

triggered tasks, which are activated at a specific angular position of the engine crank shaft 
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[9]. As a consequence the frequency of engine-triggered task arrival varies with the speed of the 

engine. Additionally, the execution time of some of the time triggered tasks may also depend on 

the speed of the engine. In this paper the proposed hybrid scheduler is tested with three different 

task models considering the real time behavior of the engine. 

 

4.1 Task Characteristics 

 
The ith task is characterized by a three tuple Ti = (Ci, Ri, Pi). Quantities Ci, Ri, and   Pi 

correspond to the worst case execution time (WCET), the releasing instant and the period 

[13,14,15]. Subsequent instances of the tasks are released periodically. As shown in fig.3, the 

next activation instant of task Ti is Ri+Pi.  For all the periodic tasks, deadline is equal to the 

period. Slack of a task is the maximum amount of time it can wait in the queue before execution 

and still meets its deadline. Slack is calculated for each task and is denoted by Si.  Si= Pi – RET; 

where RET= remaining execution time of a task. In this paper, slack is the utilized parameter to 

find a feasible schedule. 

 

 
Fig. 3 Task Model 

4.1.1Assumptions 

 
In this paper, we have a set of assumptions while creating a task model, considering the 

automotive applications.  

 

• Each task is periodically executed strictly. The initial releasing instant of a task can be chosen 

freely within its period with the objective of balancing the central processing unit (CPU) load 

over a scheduling cycle. 

• Periods are chosen as 5ms, 10ms, 20 ms, 50 ms and 100ms for realistic automotive 

applications. 

• The WCET of tasks are randomly chosen to have a CPU utilization of 0.1 to 0.2 assuming 

that, maximum 5 to 10 tasks will be waiting in the queue for execution at the same instant.  

• Slack of a task should be integer multiple of its worst case execution time. 

• All cores are identical with regard to their processing speed and hardware features. There are 

no dependencies between tasks allocated on different cores.  

• Tasks are free to migrate across the cores. 

 

4.2 Schedulability Conditions 

 
In this paper, tasks are considered as software components within which a large number of 

processes can run in a definite sequential order once the task is scheduled. Intra-task parallelism 

is not considered here. Slack Si of a task is the difference between its period and remaining 

execution time, is the considered parameter to find out a feasible schedule at each core where all 

tasks can meet their deadlines.   
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The schedulability conditions are: 

 

•  the total CPU utilization µ by all the n tasks should be less than equal to the number of CPU 

cores denoted by m [17,18].   

µ  ≤ m  ; where m= number of CPU cores. 

                                      

� = ∑ ��/���
	
�  ,  where n= number of tasks 

                                                           

• Slack of any task Ti should be an integer multiple of  its WCETi. 

• Slack  Si = Pi – RET , where RET= remaining execution time. 

• Remaining slack of a task in a local queue should be greater than the sum of remaining 

execution time of tasks arranged before it. 

 

5. PROPOSED HYBRID SCHEDULING ALGORITHM 

 
In automotive domain, it is currently the static priority partitioned scheduling used  for multicore 

ECUs. Tasks are strictly partitioned and listed in ready queues from where they are scheduled for 

execution based on their static priority. At any scheduling instant, the highest priority task in a 

ready queue runs in the corresponding CPU core. OEMs are following the AUTOSAR 

suggestions on this aspect looking into the safety criticality of the tasks [9]. The main drawback 

in this approach is, CPU cores are not utilized properly due to strict partitioning of the tasks. Also 

at heavy load conditions, low priority tasks are much delayed to get CPU slots for their execution. 

In this paper, a hybrid scheduling algorithm has been proposed and tested with three different task 

models using a JAVA based simulation tool for real time multiprocessor scheduling. This 

algorithm has the features of both global and partitioned scheduling and tasks are allowed to 

migrate from one core to other with a probability of meeting their deadlines [6,16,17,18]. Slack is 

the utilized parameter in this algorithm. The task with minimum slack has highest priority. 

 

Hybrid Scheduling Algorithm Pseudocode 

 

1 On activate(Evtcontext) 

2        {Get(task); 

3          Compute(slack);                              // Slack= Period-WCET 

4          Globalqueue.Add(task);} 

5          Sort(Globalqueue);                        //  Sort in ascending order of slack 

9 OnTick(){ 

10 Q=quantum; ntick=0; 

11 ntick=(ntick+1)%Q; 

12 If (ntick==0) 

13 {i=true; j=true;} 

14 Schedule() 

{                  if (i) { 

             slackCompute(Globalqueue); 

              laxityCompute(Localqueue);     // Laxity= Slack-Waiting time 

               i = false;} 

         if (j) {                                              

             Distribute(task); 
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             Localqueue.Add(task); 

             Globalqueue.remove(task); 

             Sort(Localqueue); 

                j = false;}} 

15 Allocate core(task at Lqueuehead); 

16 ET=SetET(T.running);                            // ET=Execution time 

17 For(all localqueues){ 

(for i=0;i<Lqsize();i++)   

{getET(Ti); 

        getWCET(Ti); 

  If(ET==WCET) 

             {Lqueue.remove(Ti); 

               Core.remove(Ti); 

               SetET(Ti=0);}} 

                                 } 

18 For(all localqueues){  

If(Trunning != Tqhead){ 

                            If(laxity(Tqhead)< RET(T.running)) 

            {Preempt(); 

              Sort(Lqueue);}} 

                                 } 

19 For(all queues){ 

If(Localqueue1.size () >1){ 

T=Task.Localqueue1(end); 

X=Compute.laxity (T);} 

If(Localqueue2.size()==0 | Localqueue3.size()==0) 

{Migrate(T);} 

If((Localqueue2.size() > 0) & (Localqueue3.size() > 0)){ 

T1 = Task.Localqueue2(head); 

T2 = Task.Localqueue3(head); 

Y=Compute.Laxity(T1); 

Z= Compute.Laxity(T2);}                                                    k-1 

If((X<Cum_RET.Localqueue1) & (X<Y)) // Cum_RET=  ∑ RET(Ti); ( k=qlength) 

{ Migrate(T);                                                                        i=1 

  Sort(Localqueue2);} 

Else If((X<Cum_RET.Localqueue1) & (X<Z)) 

{Migrate(T); 

Sort(Localqueue3);}} 
Fig.4 Hybrid Algorithm 

5.1 Task Distribution 

 

The inputs to the task distributor module are the tasks arranged in ascending order of 

their slack at a releasing instant. As slack is the maximum delay a task can withstand 

before meeting deadline, it is a constant value at task arrival. So based on the task model 

under test, the distribution threshold can be set. In this paper, three different automotive 

system representative task models are tested, for which distribution logics are suitably 

chosen to balance the load as well as to reduce the number of migration [13,19]. If n is no 
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of tasks arranged in ascending order of their slack at a scheduling instant and if n is an 

even number, first n/2 tasks to core1, (n-(n/2))/2 to core2 and remaining tasks distributed 

to core3 while if n is an odd number, (n+1)/2 to core1,( n-(n+1)/2)/2 to core 2 and 

remaining tasks distributed  to core 3. As the number of tasks released and their slacks 

are independent of each other, in this paper, only number of tasks is considered for task 

distributions. 

 

5.2 Task Migration 

 
Even though tasks are passed on to the partitioned queues, there are no strict characteristics of 

tasks and CPU cores to be mapped on one to one. So tasks migration is possible from one queue 

to other to meet deadlines [20,21].  Migration of tasks is allowed when tasks are going to miss 

their deadlines waiting in the corresponding queue and there is a probability of meeting deadlines 

at other queue. Probability of missing deadline in a queue is checked starting from the task at the 

tail of the queue. If the remaining slack called laxity of the task at the end of the queue is less than 

the sum of the remaining execution time (RET) of all the tasks waiting in the queue, the migration 

logic searches for a probability at other queues. As the task distribution logic is so chosen that, 

more number of tasks with less slacks get accumulated at local queue1, the tasks in this queue 

look for a migration to other two queues. If the remaining slack of the task at the end of queue1 is 

less than the same for task at queue head of either of the other queues, then a migration happens 

from queue1 to queue2 or queue3. In the consequence when queue2 or queue3 is empty, a 

migration occurs without any slack comparison from more populated queue to the empty queue. 

In brief these can be presented as:  

 

• When, �
 < ∑ RET(Ti)���
�
�  , where Sk= remaining slack of ‘k’th task at the tail of queue1, 

 

If Sk  < Sm  |  Sk < Sl , where Sm and Sl are remaining slacks at the head of 

queue2 and queue3 respectively, then task Tk migrates to queue2 or queue3. 

 

• Remaining slack (Ti) = Si - Wt 

• Wt (waiting time) = Pt-Ri-ET ;  where, Pt=present time (System_tic) Ri = release time of 

ith task  and ET= execution time  

  

6. RESULTS AND DISCUSSIONS 
 
In this paper, the proposed hybrid scheduling algorithm is run and tested on a tricore processor 

for three different task models, where each model has ten numbers of tasks (m=3 and n=10) 

denoted as T1 to T10 defined with the parameter attributes defined and explained in section 4.1. 

Then the currently used partitioned static priority scheduling algorithm was run for the same task 

models to compare the performances based on core utilization, average response time and missed 

deadline. The task models used in this paper are the representative task models of automotive 

applications. To run and validate the algorithms, the JAVA based STORM tool is used which is a 

scheduling simulator that gives a Gantt chart for each core as the result. The simulator kernel uses 

an XML file as input, where all the task parameters, the CPU cores, the scheduler class name, the 

scheduling quantum and also the simulation duration are defined. For clear visibility of results, in 

this work, simulation duration is taken as 50 ms of CPU time and quantum as 1ms.  
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 6.1 Partition Static Priority Scheduler 

 

 
Fig.5 Result Gantt Chart for partition static priority algorithm  

 
The result Gantt charts for a periodic task model for the schedule using partition static priority 

algorithm are shown in Fig.5. The task model used for simulation has tasks with 5ms, 10ms and 

20ms periods. Due to strict partitioning of the tasks, those are with 5ms and 10ms periods 

allocated to core1 and tasks with 20 ms period are allocated to core2. So from the used task 

model, seven numbers of tasks are intended for execution in core1 and three numbers of tasks in 

core2. It can be clearly observed from core1 Gantt chart that, only higher priority tasks T3 and T7 

are getting scheduled at the beginning and after a threshold number of times, medium priority 

tasks T1 and T5 are scheduled with high response time. The low priority tasks T2, T4 and T8 are 

not getting a schedule slot for execution and are missing deadlines. As only three tasks are 

allocated to core2, all are meeting their deadlines and core utilization is also very less. Since no 

partition for core3, it is completely idle and utilization of the core is zero. 

 

6.2 Hybrid Scheduler 
 

 
Fig.6 Result Gantt Chart for hybrid scheduling algorithm 

 

The result Gantt charts for the same periodic task model for the schedule using the proposed 

hybrid scheduling algorithm are shown in Fig.6. As the result widows show, core 1 is fully 

occupied with task T3 and T7 which have least slack and so highest priorities. At every task 

releasing instant, after sorting of the tasks in ascending order of their slack at the global queue, 

the task distribution logic passes atleast 50% of the tasks to local queue1 and as a result, it gets 
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more populated. With the help of its migration logic, the scheduler gets the tasks at the tail of the 

queue, moved to other queues with the probability of meeting deadlines. The task model used 

here has total utilization equal to 2.2 which is less than m= 3, the number of CPU cores. As per 

the schedulability conditions of the algorithm, it can give a feasible schedule if total utilization of 

the tasks, µ  ≤ m. Since the considered task model is relaxed in this respect, the hybrid scheduler 

gives a feasible schedule for all the tasks and also some idle time slots appear on core2 and core3 

Gantt chart. Where partition static priority scheduler does not give a feasible schedule for the task 

model even with less utilization factor, the proposed hybrid scheduler is able to schedule 

efficiently with no deadline missing.    

 

7. PERFORMANCE ANALYSIS  

 
In this paper, the parameters considered for comparing the performance of proposed hybrid 

scheduler with the existing partition static priority scheduler are: the percentage of CPU core 

utilization, average response time for the scheduled tasks, number of missing deadlines, migration 

and preemption overheads. The performance of the proposed algorithm based on each parameter 

for each task model is discussed here in the subsections.  

 

7.1 CPU utilization 

 
CPU Utilization 

 Partition Static Priority Scheduler Hybrid Scheduler 

Task Model Core1 Core2 Core3 Core1 Core2 Core3 

M1 82% 80% 0 44% 84% 48% 

M2 86% 90% 0 82% 56% 54% 

M3 100% 28% 0 100% 62% 64% 
Table.1 CPU Utilization 

  
The total CPU utilization required by a task model is:                                                                                

                                  

� = ∑ ��/���
	
� , where n=10 

 

For task model 1, utilization µ  is 1.6, for task model 2, µ  is 1.75 and for task model 3, it is 2.2. As 

each task model has run with both the partition and hybrid scheduling algorithms, each has 

different utilization of CPU cores based on their scheduling strategies.  Table 1 gives the 

utilization percentage of each core for each task model tested on both the algorithms. Utilization 

of each core is calculated for the simulation duration which is taken as 50ms. As the WCET of 

each task is taken as an integer value, fractional utilization is not considered. Utilization of each 

core is the sum of execution time divided by the simulation time. As it is clearly shown in the 

table 1, for partition static priority scheduling, there is load imbalance across the three cores and 

no utilization of core3. It happens because of partitioning criteria based on periodicity and 

interdependency of tasks due to which, in each task model, no task is scheduled for core3. In 

contrast, in hybrid scheduler, all the three cores are utilized as migration of tasks is allowed 

across cores and work load is distributed among the cores which can be seen in the result Gantt 

charts in Fig.6. The comparison of percentage of core utilization on three CPU cores for three 

task models is shown in Fig.7. 
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Fig.7 Comparison of percentage of core utilization on three models

 

7.2 Average response time 

 

Task Models Partition Static Priority Scheduler

M1 

M2 

M3 3ms

 

The response time for each scheduled task within the 

task from its release till completion that is:

 

        Response time (Rt) = ET+WT, where ET= execution time and WT= waiting time

 

Average response time is the sum of response times of all scheduled tasks divided 

number of tasks scheduled that is:

 

Average	response	time

It can be observed from table 2 that, 

tasks scheduled by hybrid algorithm

For task model 1, the improvement 

3, higher priorities are assigned to high frequency 5ms tasks. So 

not schedule for five low priority tasks 

scheduled tasks. For this task model also there is an improvement in response t

hybrid scheduler. The comparison

with both the algorithms is shown in Fig.8.

 

0%
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Comparison of percentage of core utilization on three models 

Average Response Time 

Partition Static Priority Scheduler Hybrid Scheduler

5.1ms 3.2ms 

5.7ms 2.7ms 

ms with 5 tasks scheduled 3.1ms 
Table.2 Average Response Time  

The response time for each scheduled task within the simulation duration is the time spent by a 

task from its release till completion that is: 

= ET+WT, where ET= execution time and WT= waiting time

Average response time is the sum of response times of all scheduled tasks divided 

number of tasks scheduled that is:  

time � �∑ %&�
	
� �/', Where n= no of scheduled tasks [15]

 

It can be observed from table 2 that, there is a considerable improvement in response time 

tasks scheduled by hybrid algorithm over the partitioned algorithm for the task models 1 and 2. 

For task model 1, the improvement is of 1.9ms and for task model 2, it is of 3 ms. In

higher priorities are assigned to high frequency 5ms tasks. So partitioned static scheduler cou

low priority tasks due to which, response time is calculated only for five 

scheduled tasks. For this task model also there is an improvement in response t

The comparison of average response time of tasks for the three task models 

is shown in Fig.8.   

Core1 Core2 Core3 Core1 Core2 Core3

Partition Static 

Priority Scheduler

Hybrid Scheduler

M1

M2

M3
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Hybrid Scheduler 

simulation duration is the time spent by a 

= ET+WT, where ET= execution time and WT= waiting time 

Average response time is the sum of response times of all scheduled tasks divided by the   

[15]. 

there is a considerable improvement in response time of 

for the task models 1 and 2. 

In task model 

partitioned static scheduler could 

which, response time is calculated only for five 

scheduled tasks. For this task model also there is an improvement in response time with the 

ks for the three task models 



International Journal of Embedded systems and

 

 
Fig.8

 

7.3 Task deadline missing rate

 
Deadline of a task is not assigned as a parameter in the task model. Since all the tasks considered 

are periodic, deadline of a task is 

algorithms, the number of tasks missing their deadlines

duration was observed. It was observed that, as the total utilization of the CPU core exceeds 60% 

for a task model, for partitioned st

deadlines or do not get scheduled. As the task model 3 has the utilization of 2.2, five of the tasks

miss their deadlines, as a remedial measure

be restricted to the range of 0.1≤

and ‘i’ varies from 1 to n. The number of tasks partitioned for a core should be 

maximum 60 % work load. Experiments show that

feasible schedule for the task model

deadline missing rate is 20-40% of the waiting task as the utilization goes beyond 80%.

 

7.4. Migration and Preemption Overheads

 
As task migration is allowed in hybrid scheduling algorithm 

utilize a comparatively less loaded core, it depends on the number of tasks get added to a local 

ready queue by the distribution logic and the slack of the task at the end of a queue

ascending order. Since these parameters are 

migrations cannot be derived. In this work, based on the task models, maximum number of task 

released at any instant is four. So maximum 

be total three tasks waiting in the

of the queue and looking at the load at

Since these task migrations happen prior to execution time, preemption of tasks is reduced 

compared to the partitioned scheduling approach. As preemption incurs context switch overhead, 

cost of preemption overhead is always more than migration overhead

algorithm implementing task migration logic has 

scheduling. 
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8.CONCLUSION 

 
In this paper, a hybrid scheduling algorithm is proposed along with a scheduler model for 

multicore automotive ECUs. The existing algorithm used in this domain is the partition static 

priority scheduling wherein one core is utilized upto 60% of its capabilities and others remain idle 

in normal working condition of the vehicle. When load increases, it gets transferred to other 

cores. So two cores are underutilized in normal running conditions. In this paper, both the 

algorithms have been tested for three task models, each comprising of ten numbers of tasks 

representatives of Engine Control ECU functionalities. It has been verified that, this proposed 

algorithm has considerable improvements over the existing partitioned static priority scheduler 

based on the performance parameters such as: CPU core utilization, average response time of 

tasks and deadline missing rate. Each of these parameters is calculated based on theoretical 

knowledge. The main motive behind developing this hybrid scheduling algorithm was to 

distribute the tasks among the available cores instead of strict partitioning according to the task 

periods and executing at one core all through in normal working conditions of the vehicle. In the 

proposed algorithm, tasks were allowed to migrate from one queue to another, hence able to 

reduce the response time and meet the deadlines. As all the cores share the workload, higher 

utilization of the cores has been achieved when the work load increases. The algorithm is yet to 

be tested in different contingency conditions, could be considered as the future work. 
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