
International Journal of Embedded systems and Applications(IJESA) Vol.5, No.2, June 2015

DOI : 10.5121/ijesa.2015.5201 1

AN EFFICIENT HYBRID SCHEDULER

USING DYNAMIC SLACK FOR REAL-TIME

CRITICAL TASK SCHEDULING IN

MULTICORE AUTOMOTIVE ECUs

Geetishree Mishra
1
, Maanasa RamPrasad

2
, Ashwin Itagi

3
 and K S Gurumurthy

4

1
BMS College of Engineering, Bangalore, India,

2
ABB India Limited, Bangalore, India
3
CISCO Systems, Bangalore, India

4
Reva Intitute of Technology, Bangalore, India

ABSTRACT:

Task intensive electronic control units (ECUs) in automotive domain, equipped with multicore processors ,

real time operating systems (RTOSs) and various application software, should perform efficiently and time

deterministically. The parallel computational capability offered by this multicore hardware can only be

exploited and utilized if the ECU application software is parallelized. Having provided with such

parallelized software, the real time operating system scheduler component should schedule the time critical

tasks so that, all the computational cores are utilized to a greater extent and the safety critical deadlines

are met. As original equipment manufacturers (OEMs) are always motivated towards adding more

sophisticated features to the existing ECUs, a large number of task sets can be effectively scheduled for

execution within the bounded time limits. In this paper, a hybrid scheduling algorithm has been proposed,

that meticulously calculates the running slack of every task and estimates the probability of meeting

deadline either being in the same partitioned queue or by migrating to another. This algorithm was run and

tested using a scheduling simulator with different real time task models of periodic tasks . This algorithm

was also compared with the existing static priority scheduler, which is suggested by Automotive Open

Systems Architecture (AUTOSAR). The performance parameters considered here are, the % of core

utilization, average response time and task deadline missing rate. It has been verified that, this proposed

algorithm has considerable improvements over the existing partitioned static priority scheduler based on

each performance parameter mentioned above.

KEY WORDS

ECU, Multicore, RTOS, Scheduling, OEM, AUTOSAR.

1.INTRODUCTION

Automotive electronic subsystems are the real time embedded systems expected to work

efficiently at various operating environments adhering to the safety critical requirements and

strict government regulations. Within short regular intervals, new advanced and complex features

are getting added to the existing systems. Original Equipment Manufacturers (OEMs) are

competing with each other to introduce more sophisticated applications to their automobiles [1].

Multicore processors are the driving architectures for these new evolutions in automotive domain

[2]. In this context, Automotive Open System Architecture (AUTOSAR) supported OEMs to add

International Journal of Embedded systems and Applications(IJESA) Vol.5, No.2, June 2015

2

more functionality into the existing ECUs and shift out from one function per ECU paradigm.

AUTOSAR suggested more centralized software architecture designs with appropriate protection

mechanisms. Due to this, high computational capabilities were expected from the ECU processor.

For several years there has been a steady rise in the amount of computational power required

from an ECU with architectural changes in the hardware and by increases in clock rate. But

increase in clock rate also increases power consumption and also creates complex
electromagnetic compatibility (EMC) issues. High performance and low power consumption

being the two classic, conflicting requirements of any embedded system design, further frequency

scaling the processor for achieving high performance was not a viable option any more. In this

consequence, multicore processors were introduced in ECUs as a cost effective solution to

achieve greater performance at moderate clock speed and low power consumption [2]. Because of

multicore implementation, the ECUs are computationally more capable of accommodating much

functionality which is an opportunity for OEMs to reduce the number of ECUs, the complex

network connections and communication buses. Multicore ECUs bring major improvements for

some applications that require high performance such as high-end engine controllers, electric and

hybrid powertrains and advanced driver assistance systems which sometimes involve realtime

image processing [1]. The inherent parallelism offered by multicore platforms helps in

segregating the safety critical functions and allocating to dedicated cores. The challenges lie in

the software architecture design which is also required to be parallelized to exploit the maximum

capability of parallelized hardware. Decomposition of the application tasks and interrupt handlers

into independent threads is required to achieve parallel execution by multiple cores [3,4]. To

optimize the performance of an application running on a multicore platform, real-time CPU

scheduling algorithms play the pivotal role. There are many existing methods and algorithms of

real time task scheduling which are required to be reanalyzed and modified to suit to the parallel

hardware and software architecture [5]. AUTOSAR has suggested strictly partitioned and static

priority scheduling for safety critical tasks in automotive domain but there are issues like

partitioning the tasks and mapping to a fixed core [2]. During heavy load condition, the lower

priority tasks always starve for a computing resource and are sometimes forced to miss their

deadlines. With the motivation of deriving a suitable task scheduling method and algorithm for

multicore ECUs, a hybrid scheduling model and an algorithm have been proposed in this work. A

simulation process with different task models has also been explained. The simulation results

with different performance parameters are demonstrated. The paper is organized as: section II,

introduces the existing task scheduling scenario in multicore automotive ECUs. section III

explains about the proposed scheduler model for a tricore ECU. In section IV the task model and

schedulability conditions are derived., In section V the proposed algorithm is presented, Section

VI provides an illustration on the results and discussions. Section VII presents the performance

analysis and Section VIII gives the conclusion of the work.

2.EXISTING SCHEDULING SCENARIO IN AUTOMOTIVE ECUs

AUTOSAR version 4.0 suggests preemptive static priority and partitioned scheduling for safety

critical tasks on multicore implemented ECUs [2]. In a current implementation, there are three

computational cores of a multicore processor used for the diesel gasoline engine control ECU.

The peripheral core, the performance core and the main core. The peripheral core is mostly a DSP

core, lock step mode is implemented in the main core to protect data consistency and the

performance core which is mostly kept as a support system otherwise used for periodic tasks in

high load conditions.

International Journal of Embedded systems and Applications(IJESA) Vol.5, No.2, June 2015

3

2.1 Task Partitioning

There are different task distribution strategies used to partition the tasks to achieve deterministic

behaviour of the system [6,7,8]. In one of the strategies, basic system software (BSW) and

complex drivers are allocated to the peripheral core. Crank teeth angle synchronous tasks of

application software (ASW) and monitoring relevant tasks are allocated to the main core [9].

Time triggered tasks of ASW are allocated to the performance core. The preemptive, non-

preemptive and cooperative tasks are segregated and allocated to different cores. Similarly in

another implementation strategy, tasks and interrupt clusters are defined based on the hardware

dependencies, data dependencies and imposed constraints [2,10]. All the tasks in any cluster are

allocated to the same core to be executed together to avoid the communication costs. An example

tasks/interrupts clusters are shown in the fig.1 below. Each task of a task cluster is mapped to an

OS Application. The OS Application is then mapped to a core by OS configuration [11]. Within a

task, there will be a chain of nunnables to be executed sequentially. Various runnable sequencing

algorithms are there in the literature to generate a proper flow of execution, but the performance

evaluation of such distribution is not satisfactory because it is difficult to partition between tasks,

ISRs and BSW with high load conditions [10]. As a result, there is poor load balancing between

the cores in heavy load conditions. Furthermore there cannot be a fixed task distribution strategy

for all the systems as each system has its own software design. There is a need of trade-off

between flexibility and effort in task distribution strategy. In this proposed algorithm, both global

and partitioned queues are used and task migrations are allowed to explore the availability of

computing cores.

2.2 Static priority Scheduling

AUTOSAR suggests static priority cyclic scheduling for the tasks in every partitioned queue [2].

The number of runnables grouped under a task is always large. The runnables under OS services

or application tasks with same periodicity or ISRs of same category are grouped together. In the

static priority scheduling, priorities are assigned to each task prior to run time. Each task is

defined with four parameter values: initial offset, worst case execution time (WCET), its period

and priority. At any releasing instant at the partitioned queue, the higher priority task get

scheduled for execution. So at higher load conditions, low priority tasks do not get a CPU slot

and because of strict partitioning, they are unable to migrate to other core even though the

consequence is missing the deadlines [1,11]. CPU utilization is also not balanced with task

partitioning. So there is a scope for dynamic task scheduling as well [12]. This research work is

intended to address this issue and an effort has been made to develop an efficient hybrid task

scheduling algorithm for a multicore ECU which is tested with various open source scheduling

tools.

International Journal of Embedded systems and

3.PROPOSED SCHEDULER MODEL

The scheduler model is characterised by

identical cores and an intermediate module called task distributer.

parameters table and based on each activation

tasks distributer is an interface

decision on which task from the gl

calculated slack and number of tasks

implemented as a scheduler function and runs at every time quantum which is

model and runs on one of the cores

4. TASK MODEL DESCRIPTION

In this paper, we have consider

control ECU that consists of three identical cores.

decomposed into tasks and many processes run within a task. A

whenever appropriate. In an engine control unit

asynchronous or time-triggered tasks, which are activated

engine-triggered tasks, which are activated at a specific angular position of the engine crank shaft

International Journal of Embedded systems and Applications(IJESA) Vol.5, No.2, June

Fig.1 Task Clusters

PROPOSED SCHEDULER MODEL

is characterised by a global queue, three partitioned queues serving for three

cores and an intermediate module called task distributer. The model refers to a task

and based on each activation instant, the tasks get added to the global queue.

stributer is an interface between the global and the partitioned queues that

from the global queue to move to which local queue based on

and number of tasks at the global queue. The hybrid scheduling

implemented as a scheduler function and runs at every time quantum which is fixed

cores.

Fig.2 Scheduler model

TASK MODEL DESCRIPTION

considered a set of 10 periodic tasks of application software for engine

control ECU that consists of three identical cores. In practice, the application

decomposed into tasks and many processes run within a task. A task is called from the OS kernel

In an engine control unit two types of tasks are executed: t

triggered tasks, which are activated periodically and the synchronous or

triggered tasks, which are activated at a specific angular position of the engine crank shaft

Applications(IJESA) Vol.5, No.2, June 2015

4

a global queue, three partitioned queues serving for three

refers to a task

to the global queue. The

l and the partitioned queues that takes the

queue based on the

scheduling algorithm is

fixed for a task

software for engine

the application software is

called from the OS kernel

two types of tasks are executed: the

periodically and the synchronous or

triggered tasks, which are activated at a specific angular position of the engine crank shaft

International Journal of Embedded systems and Applications(IJESA) Vol.5, No.2, June 2015

5

[9]. As a consequence the frequency of engine-triggered task arrival varies with the speed of the

engine. Additionally, the execution time of some of the time triggered tasks may also depend on

the speed of the engine. In this paper the proposed hybrid scheduler is tested with three different

task models considering the real time behavior of the engine.

4.1 Task Characteristics

The ith task is characterized by a three tuple Ti = (Ci, Ri, Pi). Quantities Ci, Ri, and Pi

correspond to the worst case execution time (WCET), the releasing instant and the period

[13,14,15]. Subsequent instances of the tasks are released periodically. As shown in fig.3, the

next activation instant of task Ti is Ri+Pi. For all the periodic tasks, deadline is equal to the

period. Slack of a task is the maximum amount of time it can wait in the queue before execution

and still meets its deadline. Slack is calculated for each task and is denoted by Si. Si= Pi – RET;

where RET= remaining execution time of a task. In this paper, slack is the utilized parameter to

find a feasible schedule.

Fig. 3 Task Model

4.1.1Assumptions

In this paper, we have a set of assumptions while creating a task model, considering the

automotive applications.

• Each task is periodically executed strictly. The initial releasing instant of a task can be chosen

freely within its period with the objective of balancing the central processing unit (CPU) load

over a scheduling cycle.

• Periods are chosen as 5ms, 10ms, 20 ms, 50 ms and 100ms for realistic automotive

applications.

• The WCET of tasks are randomly chosen to have a CPU utilization of 0.1 to 0.2 assuming

that, maximum 5 to 10 tasks will be waiting in the queue for execution at the same instant.

• Slack of a task should be integer multiple of its worst case execution time.

• All cores are identical with regard to their processing speed and hardware features. There are

no dependencies between tasks allocated on different cores.

• Tasks are free to migrate across the cores.

4.2 Schedulability Conditions

In this paper, tasks are considered as software components within which a large number of

processes can run in a definite sequential order once the task is scheduled. Intra-task parallelism

is not considered here. Slack Si of a task is the difference between its period and remaining

execution time, is the considered parameter to find out a feasible schedule at each core where all

tasks can meet their deadlines.

International Journal of Embedded systems and Applications(IJESA) Vol.5, No.2, June 2015

6

The schedulability conditions are:

• the total CPU utilization µ by all the n tasks should be less than equal to the number of CPU

cores denoted by m [17,18].

µ ≤ m ; where m= number of CPU cores.

� = ∑ ��/���
	
� , where n= number of tasks

• Slack of any task Ti should be an integer multiple of its WCETi.

• Slack Si = Pi – RET , where RET= remaining execution time.

• Remaining slack of a task in a local queue should be greater than the sum of remaining

execution time of tasks arranged before it.

5. PROPOSED HYBRID SCHEDULING ALGORITHM

In automotive domain, it is currently the static priority partitioned scheduling used for multicore

ECUs. Tasks are strictly partitioned and listed in ready queues from where they are scheduled for

execution based on their static priority. At any scheduling instant, the highest priority task in a

ready queue runs in the corresponding CPU core. OEMs are following the AUTOSAR

suggestions on this aspect looking into the safety criticality of the tasks [9]. The main drawback

in this approach is, CPU cores are not utilized properly due to strict partitioning of the tasks. Also

at heavy load conditions, low priority tasks are much delayed to get CPU slots for their execution.

In this paper, a hybrid scheduling algorithm has been proposed and tested with three different task

models using a JAVA based simulation tool for real time multiprocessor scheduling. This

algorithm has the features of both global and partitioned scheduling and tasks are allowed to

migrate from one core to other with a probability of meeting their deadlines [6,16,17,18]. Slack is

the utilized parameter in this algorithm. The task with minimum slack has highest priority.

Hybrid Scheduling Algorithm Pseudocode

1 On activate(Evtcontext)

2 {Get(task);

3 Compute(slack); // Slack= Period-WCET

4 Globalqueue.Add(task);}

5 Sort(Globalqueue); // Sort in ascending order of slack

9 OnTick(){

10 Q=quantum; ntick=0;

11 ntick=(ntick+1)%Q;

12 If (ntick==0)

13 {i=true; j=true;}

14 Schedule()

{ if (i) {

 slackCompute(Globalqueue);

 laxityCompute(Localqueue); // Laxity= Slack-Waiting time

 i = false;}

 if (j) {

 Distribute(task);

International Journal of Embedded systems and Applications(IJESA) Vol.5, No.2, June 2015

7

 Localqueue.Add(task);

 Globalqueue.remove(task);

 Sort(Localqueue);

 j = false;}}

15 Allocate core(task at Lqueuehead);

16 ET=SetET(T.running); // ET=Execution time

17 For(all localqueues){

(for i=0;i<Lqsize();i++)

{getET(Ti);

 getWCET(Ti);

 If(ET==WCET)

 {Lqueue.remove(Ti);

 Core.remove(Ti);

 SetET(Ti=0);}}

 }

18 For(all localqueues){

If(Trunning != Tqhead){

 If(laxity(Tqhead)< RET(T.running))

 {Preempt();

 Sort(Lqueue);}}

 }

19 For(all queues){

If(Localqueue1.size () >1){

T=Task.Localqueue1(end);

X=Compute.laxity (T);}

If(Localqueue2.size()==0 | Localqueue3.size()==0)

{Migrate(T);}

If((Localqueue2.size() > 0) & (Localqueue3.size() > 0)){

T1 = Task.Localqueue2(head);

T2 = Task.Localqueue3(head);

Y=Compute.Laxity(T1);

Z= Compute.Laxity(T2);} k-1

If((X<Cum_RET.Localqueue1) & (X<Y)) // Cum_RET= ∑ RET(Ti); (k=qlength)

{ Migrate(T); i=1

 Sort(Localqueue2);}

Else If((X<Cum_RET.Localqueue1) & (X<Z))

{Migrate(T);

Sort(Localqueue3);}}
Fig.4 Hybrid Algorithm

5.1 Task Distribution

The inputs to the task distributor module are the tasks arranged in ascending order of

their slack at a releasing instant. As slack is the maximum delay a task can withstand

before meeting deadline, it is a constant value at task arrival. So based on the task model

under test, the distribution threshold can be set. In this paper, three different automotive

system representative task models are tested, for which distribution logics are suitably

chosen to balance the load as well as to reduce the number of migration [13,19]. If n is no

International Journal of Embedded systems and Applications(IJESA) Vol.5, No.2, June 2015

8

of tasks arranged in ascending order of their slack at a scheduling instant and if n is an

even number, first n/2 tasks to core1, (n-(n/2))/2 to core2 and remaining tasks distributed

to core3 while if n is an odd number, (n+1)/2 to core1,(n-(n+1)/2)/2 to core 2 and

remaining tasks distributed to core 3. As the number of tasks released and their slacks

are independent of each other, in this paper, only number of tasks is considered for task

distributions.

5.2 Task Migration

Even though tasks are passed on to the partitioned queues, there are no strict characteristics of

tasks and CPU cores to be mapped on one to one. So tasks migration is possible from one queue

to other to meet deadlines [20,21]. Migration of tasks is allowed when tasks are going to miss

their deadlines waiting in the corresponding queue and there is a probability of meeting deadlines

at other queue. Probability of missing deadline in a queue is checked starting from the task at the

tail of the queue. If the remaining slack called laxity of the task at the end of the queue is less than

the sum of the remaining execution time (RET) of all the tasks waiting in the queue, the migration

logic searches for a probability at other queues. As the task distribution logic is so chosen that,

more number of tasks with less slacks get accumulated at local queue1, the tasks in this queue

look for a migration to other two queues. If the remaining slack of the task at the end of queue1 is

less than the same for task at queue head of either of the other queues, then a migration happens

from queue1 to queue2 or queue3. In the consequence when queue2 or queue3 is empty, a

migration occurs without any slack comparison from more populated queue to the empty queue.

In brief these can be presented as:

• When, �
 < ∑ RET(Ti)���
�
� , where Sk= remaining slack of ‘k’th task at the tail of queue1,

If Sk < Sm | Sk < Sl , where Sm and Sl are remaining slacks at the head of

queue2 and queue3 respectively, then task Tk migrates to queue2 or queue3.

• Remaining slack (Ti) = Si - Wt

• Wt (waiting time) = Pt-Ri-ET ; where, Pt=present time (System_tic) Ri = release time of

ith task and ET= execution time

6. RESULTS AND DISCUSSIONS

In this paper, the proposed hybrid scheduling algorithm is run and tested on a tricore processor

for three different task models, where each model has ten numbers of tasks (m=3 and n=10)

denoted as T1 to T10 defined with the parameter attributes defined and explained in section 4.1.

Then the currently used partitioned static priority scheduling algorithm was run for the same task

models to compare the performances based on core utilization, average response time and missed

deadline. The task models used in this paper are the representative task models of automotive

applications. To run and validate the algorithms, the JAVA based STORM tool is used which is a

scheduling simulator that gives a Gantt chart for each core as the result. The simulator kernel uses

an XML file as input, where all the task parameters, the CPU cores, the scheduler class name, the

scheduling quantum and also the simulation duration are defined. For clear visibility of results, in

this work, simulation duration is taken as 50 ms of CPU time and quantum as 1ms.

International Journal of Embedded systems and Applications(IJESA) Vol.5, No.2, June 2015

9

 6.1 Partition Static Priority Scheduler

Fig.5 Result Gantt Chart for partition static priority algorithm

The result Gantt charts for a periodic task model for the schedule using partition static priority

algorithm are shown in Fig.5. The task model used for simulation has tasks with 5ms, 10ms and

20ms periods. Due to strict partitioning of the tasks, those are with 5ms and 10ms periods

allocated to core1 and tasks with 20 ms period are allocated to core2. So from the used task

model, seven numbers of tasks are intended for execution in core1 and three numbers of tasks in

core2. It can be clearly observed from core1 Gantt chart that, only higher priority tasks T3 and T7

are getting scheduled at the beginning and after a threshold number of times, medium priority

tasks T1 and T5 are scheduled with high response time. The low priority tasks T2, T4 and T8 are

not getting a schedule slot for execution and are missing deadlines. As only three tasks are

allocated to core2, all are meeting their deadlines and core utilization is also very less. Since no

partition for core3, it is completely idle and utilization of the core is zero.

6.2 Hybrid Scheduler

Fig.6 Result Gantt Chart for hybrid scheduling algorithm

The result Gantt charts for the same periodic task model for the schedule using the proposed

hybrid scheduling algorithm are shown in Fig.6. As the result widows show, core 1 is fully

occupied with task T3 and T7 which have least slack and so highest priorities. At every task

releasing instant, after sorting of the tasks in ascending order of their slack at the global queue,

the task distribution logic passes atleast 50% of the tasks to local queue1 and as a result, it gets

International Journal of Embedded systems and Applications(IJESA) Vol.5, No.2, June 2015

10

more populated. With the help of its migration logic, the scheduler gets the tasks at the tail of the

queue, moved to other queues with the probability of meeting deadlines. The task model used

here has total utilization equal to 2.2 which is less than m= 3, the number of CPU cores. As per

the schedulability conditions of the algorithm, it can give a feasible schedule if total utilization of

the tasks, µ ≤ m. Since the considered task model is relaxed in this respect, the hybrid scheduler

gives a feasible schedule for all the tasks and also some idle time slots appear on core2 and core3

Gantt chart. Where partition static priority scheduler does not give a feasible schedule for the task

model even with less utilization factor, the proposed hybrid scheduler is able to schedule

efficiently with no deadline missing.

7. PERFORMANCE ANALYSIS

In this paper, the parameters considered for comparing the performance of proposed hybrid

scheduler with the existing partition static priority scheduler are: the percentage of CPU core

utilization, average response time for the scheduled tasks, number of missing deadlines, migration

and preemption overheads. The performance of the proposed algorithm based on each parameter

for each task model is discussed here in the subsections.

7.1 CPU utilization

CPU Utilization

 Partition Static Priority Scheduler Hybrid Scheduler

Task Model Core1 Core2 Core3 Core1 Core2 Core3

M1 82% 80% 0 44% 84% 48%

M2 86% 90% 0 82% 56% 54%

M3 100% 28% 0 100% 62% 64%
Table.1 CPU Utilization

The total CPU utilization required by a task model is:

� = ∑ ��/���
	
� , where n=10

For task model 1, utilization µ is 1.6, for task model 2, µ is 1.75 and for task model 3, it is 2.2. As

each task model has run with both the partition and hybrid scheduling algorithms, each has

different utilization of CPU cores based on their scheduling strategies. Table 1 gives the

utilization percentage of each core for each task model tested on both the algorithms. Utilization

of each core is calculated for the simulation duration which is taken as 50ms. As the WCET of

each task is taken as an integer value, fractional utilization is not considered. Utilization of each

core is the sum of execution time divided by the simulation time. As it is clearly shown in the

table 1, for partition static priority scheduling, there is load imbalance across the three cores and

no utilization of core3. It happens because of partitioning criteria based on periodicity and

interdependency of tasks due to which, in each task model, no task is scheduled for core3. In

contrast, in hybrid scheduler, all the three cores are utilized as migration of tasks is allowed

across cores and work load is distributed among the cores which can be seen in the result Gantt

charts in Fig.6. The comparison of percentage of core utilization on three CPU cores for three

task models is shown in Fig.7.

International Journal of Embedded systems and

Fig.7 Comparison of percentage of core utilization on three models

7.2 Average response time

Task Models Partition Static Priority Scheduler

M1

M2

M3 3ms

The response time for each scheduled task within the

task from its release till completion that is:

 Response time (Rt) = ET+WT, where ET= execution time and WT= waiting time

Average response time is the sum of response times of all scheduled tasks divided

number of tasks scheduled that is:

Average	response	time

It can be observed from table 2 that,

tasks scheduled by hybrid algorithm

For task model 1, the improvement

3, higher priorities are assigned to high frequency 5ms tasks. So

not schedule for five low priority tasks

scheduled tasks. For this task model also there is an improvement in response t

hybrid scheduler. The comparison

with both the algorithms is shown in Fig.8.

0%
20%
40%
60%
80%

100%

Core1

Partition Static

Priority Scheduler

International Journal of Embedded systems and Applications(IJESA) Vol.5, No.2, June

Comparison of percentage of core utilization on three models

Average Response Time

Partition Static Priority Scheduler Hybrid Scheduler

5.1ms 3.2ms

5.7ms 2.7ms

ms with 5 tasks scheduled 3.1ms
Table.2 Average Response Time

The response time for each scheduled task within the simulation duration is the time spent by a

task from its release till completion that is:

= ET+WT, where ET= execution time and WT= waiting time

Average response time is the sum of response times of all scheduled tasks divided

number of tasks scheduled that is:

time � �∑ %&�
	
� �/', Where n= no of scheduled tasks [15]

It can be observed from table 2 that, there is a considerable improvement in response time

tasks scheduled by hybrid algorithm over the partitioned algorithm for the task models 1 and 2.

For task model 1, the improvement is of 1.9ms and for task model 2, it is of 3 ms. In

higher priorities are assigned to high frequency 5ms tasks. So partitioned static scheduler cou

low priority tasks due to which, response time is calculated only for five

scheduled tasks. For this task model also there is an improvement in response t

The comparison of average response time of tasks for the three task models

is shown in Fig.8.

Core1 Core2 Core3 Core1 Core2 Core3

Partition Static

Priority Scheduler

Hybrid Scheduler

M1

M2

M3

Applications(IJESA) Vol.5, No.2, June 2015

11

Hybrid Scheduler

simulation duration is the time spent by a

= ET+WT, where ET= execution time and WT= waiting time

Average response time is the sum of response times of all scheduled tasks divided by the

[15].

there is a considerable improvement in response time of

for the task models 1 and 2.

In task model

partitioned static scheduler could

which, response time is calculated only for five

scheduled tasks. For this task model also there is an improvement in response time with the

ks for the three task models

International Journal of Embedded systems and

Fig.8

7.3 Task deadline missing rate

Deadline of a task is not assigned as a parameter in the task model. Since all the tasks considered

are periodic, deadline of a task is

algorithms, the number of tasks missing their deadlines

duration was observed. It was observed that, as the total utilization of the CPU core exceeds 60%

for a task model, for partitioned st

deadlines or do not get scheduled. As the task model 3 has the utilization of 2.2, five of the tasks

miss their deadlines, as a remedial measure

be restricted to the range of 0.1≤

and ‘i’ varies from 1 to n. The number of tasks partitioned for a core should be

maximum 60 % work load. Experiments show that

feasible schedule for the task model

deadline missing rate is 20-40% of the waiting task as the utilization goes beyond 80%.

7.4. Migration and Preemption Overheads

As task migration is allowed in hybrid scheduling algorithm

utilize a comparatively less loaded core, it depends on the number of tasks get added to a local

ready queue by the distribution logic and the slack of the task at the end of a queue

ascending order. Since these parameters are

migrations cannot be derived. In this work, based on the task models, maximum number of task

released at any instant is four. So maximum

be total three tasks waiting in the

of the queue and looking at the load at

Since these task migrations happen prior to execution time, preemption of tasks is reduced

compared to the partitioned scheduling approach. As preemption incurs context switch overhead,

cost of preemption overhead is always more than migration overhead

algorithm implementing task migration logic has

scheduling.

0

2

4

6

M1

International Journal of Embedded systems and Applications(IJESA) Vol.5, No.2, June

Fig.8 Average response time comparison

rate

Deadline of a task is not assigned as a parameter in the task model. Since all the tasks considered

are periodic, deadline of a task is assumed as equal to its period. For each of the scheduling

number of tasks missing their deadlines on every task model within the simulation

It was observed that, as the total utilization of the CPU core exceeds 60%

for a task model, for partitioned static priority scheduling, lower priority tasks miss their

deadlines or do not get scheduled. As the task model 3 has the utilization of 2.2, five of the tasks

, as a remedial measure for which, the average utilization of the tasks

≤ [1/n(∑ Ci/Pi)] ≤ 0.2 where n is the number of tasks under test

he number of tasks partitioned for a core should be restricted

Experiments show that, hybrid scheduling algorithm provi

task models with 80% utilization of each core at any given time

40% of the waiting task as the utilization goes beyond 80%.

reemption Overheads

in hybrid scheduling algorithm either to meet the deadline or to

utilize a comparatively less loaded core, it depends on the number of tasks get added to a local

ready queue by the distribution logic and the slack of the task at the end of a queue after so

Since these parameters are independent of each other, a definite number of task

In this work, based on the task models, maximum number of task

released at any instant is four. So maximum two tasks could be added to a queue and there could

in the queue. In this consequence, after comparison of slack at the end

looking at the load at other cores, maximum 30% of the tasks could migrate

rations happen prior to execution time, preemption of tasks is reduced

compared to the partitioned scheduling approach. As preemption incurs context switch overhead,

cost of preemption overhead is always more than migration overhead. So hybrid scheduling

lgorithm implementing task migration logic has response time improvements over partitioned

M2 M3

Avg Rt (ms) Partition

Avg Rt (ms) Hybrid

Applications(IJESA) Vol.5, No.2, June 2015

12

Deadline of a task is not assigned as a parameter in the task model. Since all the tasks considered

For each of the scheduling

within the simulation

It was observed that, as the total utilization of the CPU core exceeds 60%

priority tasks miss their

deadlines or do not get scheduled. As the task model 3 has the utilization of 2.2, five of the tasks

utilization of the tasks should

 0.2 where n is the number of tasks under test

restricted to have

, hybrid scheduling algorithm provides a

at any given time and

40% of the waiting task as the utilization goes beyond 80%.

either to meet the deadline or to

utilize a comparatively less loaded core, it depends on the number of tasks get added to a local

after sorting in

independent of each other, a definite number of task

In this work, based on the task models, maximum number of task

added to a queue and there could

queue. In this consequence, after comparison of slack at the end

tasks could migrate.

rations happen prior to execution time, preemption of tasks is reduced

compared to the partitioned scheduling approach. As preemption incurs context switch overhead,

. So hybrid scheduling

improvements over partitioned

International Journal of Embedded systems and Applications(IJESA) Vol.5, No.2, June 2015

13

8.CONCLUSION

In this paper, a hybrid scheduling algorithm is proposed along with a scheduler model for

multicore automotive ECUs. The existing algorithm used in this domain is the partition static

priority scheduling wherein one core is utilized upto 60% of its capabilities and others remain idle

in normal working condition of the vehicle. When load increases, it gets transferred to other

cores. So two cores are underutilized in normal running conditions. In this paper, both the

algorithms have been tested for three task models, each comprising of ten numbers of tasks

representatives of Engine Control ECU functionalities. It has been verified that, this proposed

algorithm has considerable improvements over the existing partitioned static priority scheduler

based on the performance parameters such as: CPU core utilization, average response time of

tasks and deadline missing rate. Each of these parameters is calculated based on theoretical

knowledge. The main motive behind developing this hybrid scheduling algorithm was to

distribute the tasks among the available cores instead of strict partitioning according to the task

periods and executing at one core all through in normal working conditions of the vehicle. In the

proposed algorithm, tasks were allowed to migrate from one queue to another, hence able to

reduce the response time and meet the deadlines. As all the cores share the workload, higher

utilization of the cores has been achieved when the work load increases. The algorithm is yet to

be tested in different contingency conditions, could be considered as the future work.

9.REFERENCES

[1] ”Multicore Scheduling in Automotive ECUs” By Aurelien Monot, Nicolas Navet, Francoise Simonot,

Bernard Bavoux, Embedded Real Time Software and Systems- ERTSS May 2010.

[2] AUTOSAR version 4.2.1, www.autosar.org

[3] “Parallel Real Time Scheduling of DAGs”, By Saifullah A; Ferry D; Jing Li; Agarwal K, Parallel

and Distributed Systems, IEEE Transactions. Jan 2014.

[4] “Improvement of Real time Multicore Schedulability with forced Non Preemption.” By Jinkyu Lee;

Shin K G , Parallel and Distributed Systems, IEEE Transactions. Jan 2014.

[5] “A High utilization Scheduling scheme of stream programs on clustered VLIW stream

Architectures.” By Guoyue Jiang; Zhaolin Li; Fang Wang; Shaojun Wei, Parallel and Distributed

Systems, IEEE Transactions, March 2013.

[6] “Dynamic Scheduling for Emergency Tasks on Distributed Imaging Satellites with Task Merging.”

By Jianjiang Wang; Xiaomin Zhu; Dishan Qiu; Yang L T, Parallel and Distributed Systems, IEEE

Transactions, June 2013.

[7] “Harmonic Aware Multicore Scheduling for fixed priority real time systems.” By Ming Fan; Geng

Quan, Parallel and Distributed Systems, IEEE Transactions. March 2013

[8] “Understanding Multitask Schedulability in Duty-Cycling Sensor Networks.” By Mo li; Zhenjang Li;

Longfei Shanguan; Shaojie Tang; et al, Parallel and Distributed Systems, IEEE Transactions. March

2013.

[9] ”A Case Study in Embedded Systems Design: An Engine Control Unit” , By Tullio Cuatto, Claudio

Passerone, Claudio Sanso E, Francesco Gregoretti, Attila JuresKa, Alberto Sangiovanni, Design

Automation for Embedded Systems, Vol, 6, 2000.

[10] “An Efficient Hierarchical Scheduling Framework for the Automotive Domain” By Mike

Holenderski, Reinder J. Bril and Johan J. Lukkien, Real-Time Systems, Architecture, Scheduling, and

Application, www.intechopen.com.

[11] N. Navet, A. Monot, B. Bavoux, and F. Simonot-Lion. “Multi-source and multicore automotive ecus:

Os protection mechanisms and scheduling”. In Proc. of IEEE Int’l Symposium on Industrial

Electronics, Jul. 2010.

International Journal of Embedded systems and Applications(IJESA) Vol.5, No.2, June 2015

14

[12] “Dynamic Task Scheduling on Multicore Automotive ECUs” By Geetishree Mishra, K S

Gurumurthy, International Journal of VLSI design & Communication Systems (VLSICS) Vol.5,

No.6, December 2014.

[13] “Hyperbolic Utilization Bounds for Rate Monotonic Scheduling on Homogeneous Multiprocessors.”

By Hongya Wang; Lihchyun Shu; Wei Yin; Yingyuan Xiao, Jiao Cao ,Parallel and Distributed

Systems, IEEE Transactions. August 2013

[14] “Real Time Scheduling Theory: A Historical Perspective” By Lui Sha, Tarek Abdelzaher, Karl Erik

Arzen, Anton Cervin, Theodore Baker, Alan Burns, Giorgio Buttazzo, Marco Caccamo, John

Lehoczky, Aloysios K.Mok; Real-Time Systems , Vol 28, PP-101-155, 2004.

[15] “Real-Time Scheduling Models: an Experimental Approach” By Antonio J Pessoa de Magalhaes,

Carlos J.A. Costa, Technical report Controlo Nov 2000.

[16] ”Scheduling Hard Real-Time Systems: A Review” By A Burns- Software Engineering Journal, Vol 6,

May1991, DOI: 10.1049/sej.1991.0015 IET.

[17] “Task Scheduling of Real-time Systems on Multi-Core Architectures” By Pengliu Tan, 2009 Second

International Symposium on Electronic Commerce and Security IEEE, DOI

10.1109/ISECS.2009.161.

[18] ”Demand-based Schedulability Analysis for Real Time Multicore Scheduling” By Jinkyu Lee, Insik

Shin, Journal of Systems and Software ELSEVIER October 2013.

[19] “An Experimental Comparison of Real Time Schedulers on Multicore Systems” By Juri lelli, Dario

Faggioli, Tommaso Cusinotta, Giuseppe Lipari, Journal of Systems and Software ELSEVIER June

2012.

[20] “Load-prediction Scheduling Algorithm for Computer Simulation of Electrocardiogram in Hybrid

Environments” By Wenfeng Shen, Zhaokai Luo, Daming Wei, Weimin Xu, Xin Zhu, Journal of

Systems and Software ELSEVIER January 2015.

[21] “Performance Analysis of EDF Scheduling in a Multi priority Preemptive M/G/1 Queue” By Gamini

Abhaya V; Tari Z; Zeeplongsekul P; Zomaya A Y , Parallel and Distributed Systems, IEEE

Transactions. July 2013.

