

WG:

wissen wohin savoir où sapere dove knowing where

swisstopo

Towards a consistent set of parameters for the definition of a new GRS

November 14-15, 2022 GGOS-Days 2022, Munich

Urs Marti

O

Current status of the GRS

- GRS80 is the conventional global reference system
- It is 42 years old (data and knowledge of the 1970ies)
- Pre-GPS era
- Permanent tide systems were not an important issue at that time
 - They are not treated at all in GRS80
- In 2015, a conventional new value for W₀ (gravity potential of mean sea level) was adopted by IAG.
 - Main purpose: Definition of the IHRS (International Height Reference System)
 - In GRS80, W₀ was a derived quantity
 - Terrestrial time is not defined on this new value (neither on the one of GRS80)

Discrepancies

- Over time, this lead to discrepancies in various applications in geodesy and related sciences (see presentation of D. Angermann)
- IERS conventions introduced new constants. Especially for:
 - Geocentric Gravitational Constant (GM)
 - Dynamic form factor J2 (flattening)
 - Semi-major axis a
 - Normal potential W₀
- Many of these constants can be "observed" by space techniques
 - Monitoring of temporal changes (long-term, seasonal)
- Inconsistent treatment of Permanent Tide

Goals of the WG

- Define a consistent set of parameters and formulas for a new GRS
- Proper treatment of the permanent tide
- taking into account relativistic effects
- Study the necessity of replacing GRS80 as the conventional system
- Study the necessity to designate a conventional global gravity field model
 - Satellite only?
 - · combined?

Definition of GRS

- 4 independent parameters
 - W₀ (mean sea level)
 - J2 ("flattening")
 - **GM**
 - ω (Earth rotation)
- All other parameters are derived quantities
 - especially semi-major axis a
- Zero-tide as the conventional tidal system
 - Transformations to tide-free and mean-tide have to be provided
- Time dependency
 - All parameters are time-dependent
 - Rigorous treatment would be too difficult and too confusing
 - Designation of a reference epoch
 - For now: 2010.0 (Epoch of adopted value of W₀)

O

Calculation of the parameters

- formulas for derived parameters are known
 - Moritz (GRS80)
 - Groten (2004)
 - newer works
 - permanent tide
 - relativistic effects
- Nice works by I. Oshchepkov
- Should we calculate a consistent set of parameters?
 - In my opinion: Yes
 - We should know the "best estimate" values

0

Replacement of GRS80?

- Should we replace GRS80 as the conventional system?
- Basically yes:
 - Consistent treatment of datasets (especially in their combination)
 - Parameters are more consistent with the "real" System Earth
 - Consistent use of numerical standards in all products
- But there are some severe disadvantages as well:
 - Danger of confusion
 - Changes in many software packages and applications
 - Change of conventions and standards (not only in Geodesy)
 - All datasets change
 - ellipsoidal coordinates and heights
 - gravity anomalies
 - geoid models (mean sea surface)
 - •

What happens if we stay with GRS80?

- In principle, we can stay with GRS80.
- We will have to live with all the inconsistencies that exist
- It is illusional to think that all users will change immediately to a new GRS as soon as it is published
- In any case, GRS80 will still be around for a long time (decades?)
- This means, we have to provide transformation methods and parameters for all quantities between GRS80 and a new GRS and probably other systems using other defining parameters (IERS conventions, EGM2008, ...)

Recommendations

- Calculate a consistent set of parameters for a new GRS based on current available data and observations
- Provide transformation methods from/to GRS80
- Check the willingness of users to adopt a new GRS
- (Perhaps) Adopt the new GRS
- In any case:
- Clear documentation of applied standards and conventions for each existing dataset

Questions

- Additional arguments for a new GRS?
- Arguments against the introduction of a new GRS and for staying with GRS80?
- Do we need a conventional Earth gravity model?

Thank you for your attention