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Abstract 29 
 30 
Million tons of riverine plastic waste, numerically dominated by microplastics, annually enter the 31 
ocean via estuaries. Featured by strong horizontal convergence, estuarine fronts, ubiquitous coastal 32 
features, plausibly accumulate, transform and further involve microplastics into diverse processes, 33 
but have received limited attention. In this Perspective, we discuss the accumulation potential of 34 
microplastics and its subsequent interactions with physical-biological-geochemical processes at 35 
estuarine fronts. Microplastics fragmentation and transformation could be enhanced within frontal 36 
systems due to strong turbulence and interactions with sediment and biological particles, thus 37 
intensifying potential impacts on ecological and biogeochemical processes. The concurrent 38 
accumulation of microplastics and biota at fronts provides a unique chance to assess microplastics 39 
risks at high concentrations, a likely common scenario in future ocean. Transdisciplinary efforts 40 
in the mechanics of plastic dispersal, accumulation and fate in frontal zones will advance the 41 
knowledge of riverine microplastics fate, favoring the developments of mitigation policies, 42 
strategies and techniques. 43 
 44 
Introduction  45 



 46 
In 2016, an estimated 19–23 million metric tons (MT) of land-based mismanaged plastic waste 47 
entered aquatic ecosystems worldwide1. In the environment, plastic debris break into smaller 48 
pieces termed microplastics (<5 mm) via natural fragmentation processes2. Microplastics, coming 49 
in different sizes, shapes, colors and chemical matrices3, dominate the number of plastic debris 50 
and represent a planetary threat to Earth system4. As plastic load into natural environments will 51 
raise in next few decades5, their continuous fragmentation will inevitably lead to an elevated 52 
exposure of aquatic organisms to microplastics and associated chemicals. It was projected that 91% 53 
of mismanaged plastic waste generated globally was transported via watersheds (>100 km2, 54 
suggesting rivers as major pathways for plastics to the ocean6. A critical estimate of the annual 55 
riverine plastic loads into the global ocean is 0.8 to 2.7 million MT7, roughly representing up to 56 
50% of land-based plastic emissions (4.8–12.7 million MT)8.  57 
 58 
Upon reaching estuaries, microplastics, like well-studied suspended particles, are fractionated by 59 
physical, geochemical, biological, and ecological processes, and these dynamics potentially 60 
determine the fate of plastics9-11. One important hydrological feature in estuarine system is the 61 
formation of density fronts when two distinct water masses interact and present sharp density 62 
transitions12,13. In general, density fronts occur throughout the ocean at different spatial and 63 
temporal scales and are generally active in that there are a convergent flow and vertical 64 
circulations12,14-16. Their most immediate environmental effect is the occurrence of poor water 65 
quality due to the frontal circulation converging flotsam, toxins, and organisms17-20. Frontal 66 
accumulation of pollutants is of functional importance in the dispersion of oceanic pollutants. For 67 
instance, the enhanced aggregation of surface drifters by fronts in the Gulf of Mexico indicates 68 
that the convergence associated with fronts is efficient in accumulating floating pollutants, thereby 69 
possibly facilitating cleanup21. Compared to the submesoscale fronts in the open ocean, estuarine 70 
fronts usually exhibit considerably stronger horizontal convergence22-24, vertical velocities25,26, 71 
and turbulent mixing27-29 (FIG. 1), plausibly resulting in stronger convergences of flotsam and 72 
various types of organisms30,31. These, in turn, have major implications for the 73 
biological, ecological, and biogeochemical health of the estuarine ecosystem13,32. Although some 74 
observations suggest that estuarine fronts have potential influences on the redistribution and fate 75 
of riverine plastics31,33-35, these impacts, especially on microplastics, have not yet received 76 
sufficient attention36-38. 77 
 78 
The aim of this Perspective is to illustrate the potential effects of estuarine surface fronts on the 79 
accumulation, transformation and transportation of microplastics by combining insights from 80 
hydrology, biology, ecology and geochemistry. We also propose that plastic hotspots at estuarine 81 
fronts provide opportunities for the development and mobilization of mitigation strategies and 82 
collection technologies to offset riverine plastic emissions, complementing existing approaches. 83 
Finally, we suggest knowledge gaps that shall be addressed in future work to develop a better 84 
mechanistic understanding of how microplastics behave in estuarine frontal systems. 85 

Main types of estuarine fronts  86 

Due to the interaction between buoyant freshwater and dense seawater, estuaries exhibit large 87 
salinity variance and the strongest density fronts of any marine environment12,39. Estuarine surface 88 
fronts have apparent surface features allowing for easy observations of pollutant accumulation13,40; 89 



therefore, this type of fronts is emphasized in this perspective. Bottom fronts are not discussed 90 
here since they are not as easily observed as the surface fronts. However, they also have potentially 91 
important effects on riverine plastics35,41. 92 

Three most common surface fronts in estuarine systems are considered: shear fronts, tidal intrusion 93 
fronts and plume fronts (FIG. 2). These types of fronts are not mutually independent. For instance, 94 
shear fronts can produce buoyancy-driven flow structures that propagate away from the generation 95 
region as plume fronts12.  96 

Shear fronts. As one kind of the most common fronts inside the estuary40, shear fronts are usually 97 
aligned longitudinally and located at the inner edge of the shoals42, over the main channel43 or 98 
behind headlands and islands44 (FIG. 2a). They might extend for several kilometers and exist for 99 
several hours in one tidal cycle. Shear fronts are often triggered by the cross-channel shear of 100 
surface longitudinal tidal currents in the regions with sharp depth gradients or behind headlands 101 
and islands, and develop through flow convergences24,44 (FIG. 2a,b). The well-known axial 102 
convergence front is one particular case of shear fronts because it is triggered by the transverse 103 
shear of tidal currents43. Although termed as “shear front”, some other mechanisms might also 104 
contribute to the frontogenesis, such as confluence45, convergence24 and heterogeneous cross-105 
channel distribution of tidal mixing46. 106 

Tidal intrusion fronts. Tidal intrusion fronts are often formed when denser coastal waters plunge 107 
beneath lighter estuarine waters during a flood tide into the constricted estuary mouth47 (FIG. 2a,c). 108 
Intrusion fronts will be evident in estuaries where incoming tidal water masses prevail over river 109 
discharge. They are particularly pervasive in small estuaries around the world and usually marked 110 
by a pronounced ‘V’ shape48 (FIG. 2a). In addition to the estuarine mouth, tidal intrusion fronts 111 
can also occur when tidal currents flow across constricted topographies inside the estuary49.  112 

Plume fronts. A river plume is formed when freshwater of riverine origin spreads over the coastal 113 
water. As the plume spreads offshore, it creates one or several clear frontal boundaries onto the 114 
continental shelf between the river plume and neighboring marine waters (FIG. 2a,d). These 115 
boundaries with high horizontal density gradients are termed as plume fronts (FIG. 2d). The 116 
locations of plume fronts vary in different estuarine systems, which mainly depend on the 117 
extension and pathway of the diluted water as well as some local frontogenetic mechanisms50.  The 118 
triggering mechanisms for the plume frontogenesis include the flow separation at the jetty of the 119 
estuarine mouth due to cross flow51, hydraulic response to flow over the shoal50, the seaward 120 
advection of the tidal intrusion front13, and the interactions between the coastal and plume 121 
currents16.   122 

Overall, all three types of fronts usually exhibit strong surface convergence, downwelling and 123 
turbulence (FIG. 1). In a realistic front, frontogenesis is the result of several mechanisms rather 124 
than just one. Despite complex dynamics, the three types of surface fronts are often visually 125 
observable as well as detectable through satellite images due to watercolor differences and 126 
accumulations of foam and debris (FIG. 2b,c,d). Since their occurrence is related to periodical tidal 127 
currents and topographies, their approximate occurrence locations and times in an estuary are 128 
predictable from the observations of river discharge, tidal currents, and topography. The prediction 129 
of a more precise occurrence time and location of estuarine fronts often requires high-resolution 130 



numerical modellings16,52,53, because aperiodic forcings, such as river discharge and winds can 131 
influence the generation and movement of some fronts. 132 

Microplastic accumulation 133 

Various frontal processes spanning from the coast to the open ocean are thought able to cause 134 
surface convergence, trap and retain plastic debris54-56. By converging plastic debris, fronts might 135 
offer an opportunity for focused cleanup actions in the ocean55,57. The differences in microplastics 136 
abundances between open-ocean frontal and ambient waters demonstrate the marked convergence 137 
effects along the fronts (meso58 and submeso-scale59-61) (FIG. 1b). Despite this fact, convergent 138 
features accumulating floating plastics are rarely studied in the open ocean55, and the investigation 139 
of estuarine fronts on retaining plastics is even fewer. Nevertheless, the existing studies clearly 140 
identify the enrichment of microplastics at fronts compared to ambient waters36-38 (FIG. 1b). 141 
Meanwhile, we must note that microplastics abundances (300-5000 μm; 89-2200 pieces/m3) at 142 
estuarine fronts, standardized with methods in literature62,63, are remarkedly higher than those (1.4-143 
123.2 pieces/m3) observed in the open-ocean fronts, and larger than the maximum value observed 144 
within the Great Pacific Garbage Patch (9.0 pieces/m3; FIG. 1b)64, believed to hold the greatest 145 
concentration of floating plastics of all ocean gyres65.	Modelling studies also demonstrated the 146 
occurrence of microplastics hotspots along salinity fronts66,67. Additionally, some other studies 147 
ascribed the observed distribution patterns of microplastics to the estuarine salinity fronts31,33,34. 148 
All these preliminary evidences strongly suggest that estuarine fronts, as transition zones between 149 
the input sources of land-based plastic debris and the open ocean have the capacity to accumulate 150 
extraordinarily high loads of plastics. Compared to the inner shelf and open-ocean fronts, the 151 
recurrent estuarine fronts establish more rapidly and are predicted with confidence in time and 152 
space19. Furthermore, estuarine fronts are geographically and temporally accessible and are easily 153 
recognized by environmental practitioners with a trained eye because of the accumulation of foam 154 
and flotsam and the contrasting watercolor and clarity (FIG. 2). The recurrent and cumulative 155 
features of estuarine fronts are important to retain riverine floating materials, and consequently 156 
highlight their central role in intercepting and accumulating plastic debris. Although not detailed 157 
in this context, we must note that the estuarine bottom fronts are also efficient in trapping and 158 
concentrating riverine macro-plastic debris35,41. 159 

Microplastic transformation 160 

Due to the characteristic flow convergence, floating materials are retained at fronts where the 161 
matching of physical, biological and geochemical time-space scales provides the potential to 162 
greatly modify the properties of suspended materials from rivers to the ocean48,68 (FIG. 3). 163 
Microplastics incubated in this complex reactor can be subject to major alternations (fragmentation 164 
and aggregation, FIG. 3b,c,d), largely determining their environmental fate and effects.  165 

Fragmentation. In the natural environment, plastics become brittle and fragment into smaller 166 
pieces under different weathering processes including photodegradation, biodegradation, thermal 167 
degradation, mechanical destruction and hydrolysis, of which photodegradation is the only notable 168 
mechanism leading to rapid environmental degradation of plastic polymers2. Exposure of plastic 169 
to ultraviolet (UV) radiation is the critical step to initiate autocatalytic thermal oxidation that 170 
principally accounts for their subsequent fragmentation69. Once initiated, oxidation reactions could 171 



result in the bulk fragmentation of plastics yielding large daughter fragments; at the same time, the 172 
surface-ablation fragmentation of plastics, which releases large amounts of microscale plastics 173 
from UV-facilitated brittle surface layer, will progress along with the bulk fragmentation. The 174 
mechanical forces such as sand grinding, collision and interaction with biotic particles, wave and 175 
wind actions, can disintegrate and detach the weathered surface layer into micro- and nanoplastics 176 
through the abrasion wear69,70. Both field and laboratory data indicated that the surface-ablative 177 
fragmentation is primarily responsible for most of secondary microplastics in the environment71-178 
75. In rivers and estuaries, microplastics at different states of degradation were widely identified, 179 
manifested by obvious rough surface textures (for instance, pits, fractures and flakes) and 180 
discoloration76-79. The wear of photo-oxidated plastics against erosive sand can efficiently generate 181 
smaller fragments, likely dominated by particles smaller than 100 μm73. After 500 hours of 182 
exposure in the UV light chamber, polypropylene plastics incubated in seawater showed strong 183 
degradation (cracks and holes) on their surfaces with missing small pieces of material in the sub-184 
micron range75. This result was attributed to the combined action of UV radiation and wave action, 185 
and the missing fragments accounted for an average 0.1% of the initial plastic weight. To better 186 
understand this surface-ablation mode of fragmentation, we calculated the theoretical amount of 187 
100 nm and 1 μm cubic particles generated from the weight loss of polypropylene plastics in REF75. 188 
The 0.1% of weight loss approximately equals to 1018 and 109 pieces of 100 nm and 1 μm particles, 189 
respectively, corresponding to 2 × 1016 pieces/liter and 2 × 107 pieces/liter. These large numbers 190 
of secondary fragments from the surface-ablation fragmentation might represent a pressing health 191 
concern for aquatic biota. The frontal zone is well known as an effective trap of the river-laden 192 
sediments (for example, the concentration could be up to 10 g/L in the Amazon frontal zone80) and 193 
biological particles12,19. Additionally, the turbulent kinetic energy dissipation rate could be about 194 
1–2 orders of magnitude greater along estuarine fronts than in the surrounding waters (FIG. 1a). 195 
Due to the stronger turbulent energy and higher concentrations of suspended particles at fronts 196 
with respect to ambient conditions, the encounter kernel rate (Collision Frequency) of suspended 197 
particles will substantially increase in estuarine frontal zones81-85 (BOX 1). Therefore, the presence 198 
of single or combined factors (high concentrations of particles and strong turbulence) in the frontal 199 
zones will considerably increase the probability of the surface-ablative fragmentation of UV-200 
weathered plastic debris (FIG. 3b). However, the surface-ablation mode of fragmentation in 201 
aquatic environments is not yet sufficiently understood74,75,86-88, and further data are required to 202 
disclose the detailed dynamics of this process. 203 
 204 
Aggregation. Besides the transport process facilitating particle collisions (BOX 1), destabilization 205 
with reducing interparticle repulsion also controls particle aggregation89. Although the 206 
destabilization mechanisms are initially assumed to cover small-sized particles (<1 μm), they also 207 
apply to the aggregation processes of millimeter-sized particles81.Upon entering rivers, particles 208 
are immediately coated with natural organic matter (mainly carboxyl and phenolic-OH90) 209 
producing a uniformly negative surface charge10. The negative charge on the particle-organic 210 
matter surface creates an electrostatic ‘double layer’, whose distance determines the range of 211 
interparticle repulsive forces and restricts particle aggregation81. As approaching the estuaries, 212 
counter ions (especially cations Ca2+ and Mg2+) are attracted by electrostatic forces, which will 213 
screen the electrostatic repulsive force and compress the distance of the double layer. The 214 
compression of double layer allows the short-range attractive van der Waals forces to occur, 215 
permitting particles to approach more closely10,81. Due to the raising ionic strength, the 216 
enhancement of river-borne particle aggregations in estuaries has been widely acknowledged10,91,92.  217 



Although the charge neutralization is the major destabilization process, some other mechanisms 218 
also come into play: an example is the hydrophobic character of particles which provides 219 
appreciable attraction between particles through the so-called ‘hydrophobic bonding81. The 220 
resulting attractive force between particles and hydrophobic segments is unexpectedly large and 221 
promotes considerable aggregation93,94. The hydrophobic interaction is particularly true when 222 
considering the higher hydrophobicity of plastic particles in the aquatic environment compared to 223 
naturally suspended particles.  224 

Apart from the physical and geochemical mechanisms of particles coagulation, biologically-225 
generated organic compounds like extracellular polymeric substances (EPS)95, also play an 226 
important role in holding the particles together85,96. EPS exuded by phytoplankton and bacteria in 227 
aquatic systems is constituted of sugars, proteins, nucleic acids and lipids. EPS also serves as the 228 
biological glue which controls coagulation efficiencies and enhances the formation of particle 229 
aggregations97,98. The sticky nature of EPS is usually attributed to its polyanionic nature, such as 230 
carboxylic and sulfate half-ester groups99,100. For example, the stickiness of the diatom-derived 231 
transparent exopolymer particles (TEP), one type of EPS, was observed as generally 2–4 orders of 232 
magnitude higher than that of most other particles101,102. Laboratory experiments showed that 233 
biogenic particles could intensively interact with microplastics and generate more pronounced 234 
aggregates and TEP with respect to treatments without plastic addition103-105. Furthermore, TEP 235 
stickiness appears to increase along the salinity gradient, implying a seaward enhancement in 236 
particle aggregation106. The production of TEP could also be enhanced by high cell abundances102 237 
and high turbulence intensity107. These evidences indicate that the secretion of EPS by 238 
microorganisms in estuarine fronts could be particularly elevated. For instance, TEP from 239 
organisms at fronts created mucilaginous foams and gels at the water surface108, and condensed 240 
gelatinous aggregates along frontal systems were observed in the northern Adriatic Sea109. 241 
Additionally, particles can be ingested by organisms and expelled in their feces or pseudo-242 
feces110,111.  The bio-deposits of many aquatic animals are generally mucus-bounded112 and can 243 
trap other particles, further aggregating riverine particles113. These biogenic compounds determine 244 
the stability and particle size of aggregates and thus are essential to maintain the steady-state 245 
population of aggregate sizes in the presence of the turbulent forces114. The high abundance of 246 
organisms and biological activities, combined with the increased particle collision frequency due 247 
to turbulent forces (BOX 1) and geochemical conditions at estuarine fronts, will enhance the 248 
aggregation of microplastics (FIG. 3d). 249 

Microplastic transport  250 

Once plastics are entrapped in the frontal systems, transport mechanisms become more complex 251 
because numerous physical and biological processes interact as waters of different densities come 252 
into contact19. Considering the enhanced cross-frontal vertical circulations and biological factors, 253 
a marked three-dimensional transport of microplastics might be expected at the front.  254 

Physical transport. Horizontally, fronts generally tend to converge materials in the cross-front 255 
direction and transport them mainly in the along-front direction15. Once fronts fragment or 256 
dissipate, the convergent materials (including microplastics) are likely dispersed into the 257 
surrounding waters, resulting in a single large pulse of plastic68. Vertically, estuarine fronts usually 258 
feature strong downwelling velocities and turbulent mixing (FIG. 1a). Results from models have 259 



clarified that strong downwelling currents and turbulence at fronts can subduct surface particles 260 
into the water column116,117 (FIG. 3a). In combination with the enhanced aggregation, the sinking 261 
rates of microplastics in frontal zones will considerably increase, speeding up their removal from 262 
the surface. Experiments and field observations demonstrate that aggregates are an efficient vector 263 
for vertical transport of microplastics in the water column through increasing settling velocities by 264 
orders of magnitudes105,118-120. Lastly, smaller microplastics trapped in mucilaginous foams along 265 
the fronts might be lifted into the air by breaking waves and winds. Although studies in this respect 266 
are limited, both microplastic fragments (≤300 µm) and microfibers (up to 750 μm) have been 267 
widely detected in the wet121-124 and dry atmospheric depositions, suggesting longer-range 268 
transport125. Furthermore, models and observations agree in the possible transfer of microplastics 269 
from surface seawater to atmospheric aerosols through wind and wave actions126-128, substantially 270 
contributing to the atmospheric microplastics load. As such, 11% of atmospheric microplastics in 271 
the western United States derive from the secondary re-emission of floating plastic marine 272 
debris128. These evidences suggest that microplastics accumulation zones in aquatic environments 273 
represent important potential sources of atmospheric microplastics, and this particularly applies to 274 
the 3-D transport of microplastics at fronts.  275 
 276 
Bio-transport. The elevated plankton biomass in estuarine fronts creates feeding “hotspots” for 277 
planktivorous fishes (for example anchovy, herring and juvenile salmonids), which subsequently 278 
attract piscivorous fishes, birds, and mammals and enhance the energy and pollutants transfer to 279 
higher trophic levels129,130. If the swimming speeds of these organisms overcome the convergent 280 
current velocity, the advection and diffusion of organisms as well as the associated pollutants are 281 
likely to occur131.The bio-transport of persistent organic pollutants (POPs), such as 282 
polychlorinated biphenyls and dichlorodiphenyltrichloroethane in migrating birds, marine 283 
mammals and fishes has been observed132-134. It is therefore expected that microplastics could 284 
experience a similar transport pattern via being mistaken by or attached to aquatic organisms in 285 
fronts (like seaward juvenile salmonids and seabirds130,135) (FIG. 3a).  286 
 287 
Modelling microplastic transport. Numerical modeling is one of the most effective tools to 288 
simulate and study estuarine fronts and microplastics transport. Although the number of 289 
observations of estuarine surface fronts has massively increased since the 1970s (REFS12,13,19,40), 290 
numerical simulations in realistic estuaries only concentrate in the 21st century, benefiting from 291 
the increasing resolution and performance of three-dimensional baroclinic hydrodynamic models. 292 
To date, some numerical models have been applied successfully in a few estuaries to simulate 293 
frontal dynamics, including the occurrence time and locations of fronts, frontogenesis, three-294 
dimensional velocities at fronts and frontal instabilities (Supplementary Table 1). Based on the 295 
hydrodynamic fields generated from these models, the transport and fate of microplastics in 296 
estuaries can be further simulated, and thus help predict microplastics hotspots66,67. 297 
 298 
Numerical simulations of the transport and fate of microplastics in the coastal and open ocean were 299 
generally carried out based on the Eulerian or Lagrangian frameworks. In the Lagrangian 300 
framework, microplastics are represented by individual virtual particles, which are allowed to 301 
move through the time-evolving velocity fields136,137. The effect of turbulence is sometimes 302 
included as ad hoc random motions137,138. In addition to the extensive applied Lagrangian particle-303 
tracking oceanic models summarized in REF137, some other particle-tracking models have also 304 
been applied to microplastic transport simulations in coastal and estuarine regions, for instance the 305 



three dimensional hydrodynamic and suspended sediment transport model (HYDROTAM-3D)139, 306 
Track Marine Plastic Debris (TrackMPD)140, Delft3D-Water Quality Particle tracking module (D-307 
WAQ PART)141, and Ichthyoplankton (Ichthyop)142. Unlike the Lagrangian approach, Eulerian 308 
models simulate microplastics as passive tracers in terms of their mass or volume concentrations, 309 
which are advected by the velocity fields and diffused by the parameterized turbulence67.    310 
 311 
Besides the hydrodynamic fields, which are considered in the common oceanic particle-tracking 312 
models, some other important factors also have effects on microplastics movements, such as the 313 
physical properties of plastic particles (density, shape, size), windage, beaching, sedimentation, 314 
resuspension, fragmentation, biofouling, and ingestion by animals. As an example, the difference 315 
between the densities of plastic particles and ambient waters affects the vertical movements of 316 
microplastics143, whereas the fragmentation-facilitated decrease in particle size and biofouling 317 
influence plastic transport144,145. Therefore, modeling the transport trajectories of oceanic 318 
microplastics is challenging and all of the current numerical models employ certain simplifying 319 
assumptions. Two most frequently used assumptions are considering microplastics as positively 320 
buoyant particles and tracking microplastics under the effects of ocean surface currents, without 321 
including additional mechanisms of sinking, ingestion or other removal from the ocean surface. 322 
Such simplified models have been strikingly successful in explaining the hotspots of microplastics 323 
in the coastal- and open-ocean surface waters66,146,147. However, there is still a large gap between 324 
masses of floating plastics in the ocean and the land-based fluxes of plastic debris to the ocean, 325 
sparing discussions about “missing plastics”8,148,149. To better understand the final sinks of these 326 
“missing plastics”, some modeling efforts have also simulated or parameterized more mechanisms, 327 
including the vertical movement due to buoyancy143 and mixing138, beaching and re-328 
suspension150,151, sedimentation152, fragmentation153, and biofouling144,154. 329 
 330 
As stated above, although the accuracies of the hydrodynamic and plastic-tracking models are 331 
waiting for future improvements, their successful applications in previous studies have shed light 332 
on microplastic dynamics at estuarine fronts. By simulating estuarine dynamics and microplastic 333 
transport, Cohan et al. (2019)66 and Bermurdez et al. (2021)67 found that microplastics accumulate 334 
at the fronts of the Delaware and Guadalquivir estuaries, respectively. With the development of 335 
the hydrodynamic and microplastic-tracking models, the simulations of microplastic dynamics in 336 
estuaries are worthy of efforts, especially the processes related to accumulation, redistribution and 337 
residence time at fronts. 338 
 339 
Ecological impacts  340 

The concurrence of pollutants and organisms at fronts through advectively-imposed matching or 341 
behavioral movement inevitably threatens the estuarine ecosystem health and biogeochemical 342 
processes18,19. High levels of microplastics at fronts resulting from convergent circulations are 343 
likely common in the future as the annual plastic waste entering aquatic ecosystems is expected to 344 
increase in the coming decades5,155. Therefore, estuarine frontal regions are key environments, 345 
where the understanding of the ecological consequences of microplastics is critical to develop 346 
ecological and biogeochemical models for future predictions.  347 

Ecotoxicological risk. Biological enrichment at estuarine fronts is prevalent in a wide range of 348 
neuston and planktonic organisms, such as phytoplankton, planktonic copepods, fish eggs, larval 349 



fishes and insects131,156. The concentrated biomass coupled to high abundances of microplastics 350 
raises the probability of encounter and ingestion of microplastics for aquatic organisms in frontal 351 
zones. Gove et al. (2019)59 found that the plastic-to-larval fish ratio (7:1) in the coastal ocean 352 
convergence along the coast of Hawaii Island was 14 times that in the ambient waters. Moreover, 353 
they identified that plastic ingestion by larval fishes in the oceanic fronts was 2.3-fold higher than 354 
in ambient waters. Compared to adult fishes, larval fishes were more vulnerable to the consequence 355 
of microplastics ingestion because of their underdeveloped organs157. A wide range of aquatic 356 
organisms at the bottom of the food chain can ingest microplastics158,159, showing a positive 357 
correlation between the bio-uptake rates and microplastics abundances160,161. Microplastics can 358 
substitute the food in the diets of zooplankton and thus decrease their natural food consumption, 359 
subsequently lowering the carbon export efficiency through an impaired fecal pellet sinking rates 360 
and the biological pump120,162. Smaller microparticles (<150 μm) can translocate across biological 361 
membranes and become entrapped in organisms’ tissues, potentially leading to bioaccumulation 362 
and biomagnification through the entire food web4,163. Small sized particles can also accelerate the 363 
release of chemicals inherent in plastic polymers (for instance, carbon and additives)164. Some 364 
contrasting evidences exist as well: one research in the Cooper River, USA found no statistically 365 
significant differences in microplastic consumption by zooplankton at the tidal fronts and in the 366 
surrounding waters, although higher abundances of microplastics were identified at the front36. 367 
Low grazing rates of microplastics by zooplankton were also observed in laboratory assays that 368 
typically employ higher plastic concentrations165,166, which was largely ascribed to the animal 369 
selective feeding behavior. Altogether, these findings suggest that microplastics consumption is a 370 
function of plastic abundances as well as size and shape, while other factors related to plastics 371 
(such as biofouling, aggregation, chemical sorption and release), and the aquatic biota feeding 372 
mechanisms, also play a key role167-170. In frontal systems, the synergic effects of high particles 373 
abundances, small particle size, enhanced plastic incorporation into biological aggregates 374 
expectedly increase microplastics bioavailability. This higher bioavailability can enhance the 375 
accessibility of smaller microplastics to biological tissues, accelerate additive leaching rates, and 376 
consequently expose different trophic organisms in frontal habitats to the threats of plastic 377 
pollution4. The shorter and more efficient path length of food webs in frontal systems171 has a 378 
great potential to rapidly channel a sufficient proportion of ingested microplastics to higher trophic 379 
levels. Besides resulting in the elevated ratio of microplastic-to-prey particles, the convergence of 380 
both plastic and biological particles at fronts also has the potential to dilute the concentrations of 381 
microplastics, hence making microplastic bioavailability become more difficult to model and 382 
deserving further attention, since microplastic dilution in frontal systems has not been verified yet.  383 

Biogeochemical influences. Aside from increased ecotoxicological threats through microplastics 384 
ingestion, the accumulation of these particles at fronts can also impose substantial impacts on 385 
biogeochemical elements’ cycling. Enhanced particle fragmentation and strong turbulence in 386 
frontal regions, as well as photo-oxidation, can increase the leaching rate of plastic-related 387 
chemicals through the deterioration and disruption of polymeric structures164,172. The leaching rate 388 
of one-half additives from a plastic fragment increases exponentially with a decrease in size164. 389 
Under controlled turbulent conditions, leaching rates of additives and polymer oligomers from 390 
microplastics are considerably enhanced. In these settings, the rate of chemical release from 391 
microplastics in turbulent conditions can be up to 190-fold higher than that from plastics in the 392 
non-turbulent conditions172. Therefore, the leaching of both fossil-based carbon in the polymer 393 
backbone173,174 and chemical additives (at least 906 different types175) could be speeded up in 394 



estuarine frontal environments. Controlled experiments documented that microplastic leachates 395 
apparently changed the microbial communities and nitrogen cycling processes by transforming 396 
metabolic intermediates and enzymes activities of microbes176,177. Furthermore, the enhanced 397 
microplastics ingestion in frontal systems could potentially change the water biogeochemistry. It 398 
was predicted that consumption of microplastics by zooplankton in the open ocean could reduce 399 
the grazing on phytoplankton and thus result in the elevated organic carbon export, which upon 400 
remineralization decreases the oxygen and returns nutrients to the water column178. Zobell (1943) 401 
found that trace nutrients could concentrate on solid surfaces in the water column, thereby 402 
becoming more bioavailable and stimulating bacterial respiration179. Elevated nutrients on plastic 403 
surface can strengthen the metabolism and interactions of both autotrophic and heterotrophic 404 
bacteria and enhance the production of EPS and the formation of particulate aggregates104,180. 405 
Similar to what has been proposed for the open ocean178, predictably increased consumption of 406 
microplastics by zooplankton might also accelerating deoxygenation of these environments178. In 407 
shallow estuarine systems, a rapid aggregation and consequent sedimentation of microplastics 408 
embedded into biogenic material can enhance benthic oxygen respiration creating anoxic 409 
sediments conditions; this process can have large impacts on coastal nutrient cycling and large-410 
scale geochemical dynamics that involve chemical exchanges at the interface between seawater 411 
and sediments.  412 
 413 
Implications for pollution mitigation 414 
Based on a high-resolution global map showing the probability for land-based plastics to enter the 415 
ocean, Meijer et al. (2021) predicted an annual flux of riverine plastic ranging from 0.8 to 2.7 MT7. 416 
Contrary to previous estimates, those reported a few large rivers (47 and 5 rivers181,182) holding 417 
responsible for the vast majority of annual plastic load to the ocean, the results by Meijer and 418 
colleagues showed that 1656 rivers accounted for 80% of the global plastic emissions. Of these 419 
1656 rivers, small and medium-sized rivers contributed 96% of the plastic load, whereas large 420 
rivers made up only 4.0%. The urban rivers in South East Asia and West Africa were identified as 421 
the principal contributors7. Understanding the mechanisms behind the transport and transformation 422 
of plastics in estuaries is a prerequisite to inform environmental stakeholders and policy makers, 423 
and for developing efficient solutions at or near the source of these debris before they reach the 424 
oceanic environment. However, progress-based observations of plastics in rivers and estuaries are 425 
still few183,184. Furthermore, there is an uneven distribution of studies on the world’s estuarine 426 
fronts and the rivers presumably responsible for the majority of the plastic load into the world’s 427 
ocean7. To date, knowledge on estuarine fronts is mostly derived from studies in North America 428 
and Europe, where rivers’ contribution to the global plastic export is limited (FIG. 4). 429 
Contrastingly, estuarine fronts are largely understudied in Asia, where rivers account for the 430 
majority (>60%) of the total flux of plastic debris into the ocean7. This mismatch impedes an 431 
efficient control and mitigation of plastic pollution at these predicted hotspots, and indicates that 432 
international collaboration and common agreements on plastic management are required185. 433 
Despite cross-border research on estuaries in Asia is still limited, it is encouraging to note that 434 
some internal groups (for instance, the Ocean Cleanup and ‘The National Geographic Society’s 435 
Sea to Source: Ganges Expedition’) have started to study riverine plastics in these hotspots186-190. 436 
In light of the substantial influence of estuarine fronts on riverine plastics, the hydrodynamics, 437 
biological and geochemical processes at fronts merit in-depth investigation when monitoring 438 
plastic pollution.  439 
 440 



Simultaneously, lots of technologies such as net-based sampling, remote sensing, and camera 441 
technologies have been developed to monitor and reduce plastic waste in global rivers183. With 442 
respect to riverine plastic cleanup, the implantation of different infrastructures in river channels to 443 
extract plastic appear to be the most efficient approaches. For instance, floating booms (n=26) 444 
were employed to collect debris in the Seine River in France191. In 2014, a trash interceptor driven 445 
by the combination of solar and hydro power, known as Mr. Trash Wheel, was installed in the 446 
Jones Falls192 (Maryland, USA) and has collected over 2000 tons of debris as of May 2022. By 447 
employing a similar technique, the Ocean Cleanup advocated to tackle these 1000 most polluting 448 
rivers. Estuarine fronts, as natural barriers for floating materials, can play a complementary role in 449 
intercepting plastics in all size fractions before making their way into the ocean. The main types 450 
of surface fronts are temporally recurrent, and easily predictable in time and space by making use 451 
of available data of river discharge, tidal currents, topography and perfectioned by numerical 452 
models. In the field, these fronts often show pronounced differences in watercolor, accumulations 453 
of foam and debris (FIG. 2), and enhanced surface roughness which can be detected by ship-454 
mounted radars193. Therefore, recovering plastics along estuarine fronts can be reasonably practical 455 
and provide a complementary way to the currently available cleanup strategies, which can be more 456 
efficient by coupling the newly affordable collection techniques such as unmanned aerial vehicles 457 
(UAVs187,194,195). For example, a specifically designed UAVs, automatically locating the recurrent 458 
estuarine frontal zones, can be promising to leverage the plastic convergence at fronts and achieve 459 
considerable recovery of plastic debris. Additionally, it must be noted that estuarine fronts are 460 
regions of high ecological significance, where animals (adults and larvae) concentrate for 461 
spawning, feeding and nursing196. Sustainable strategies that minimally disturb ecosystems’ 462 
functioning are required to mitigate plastic pollution in frontal zones. As suggested in Sherman 463 
and van Sebille (2016)197, models that predict the dynamics of both plastics and marine life in 464 
frontal systems, should be considered to guide the development and operation of clean-up 465 
techniques and devices. 466 

Summary and future perspectives. As the demand of plastic products increases, the riverine 467 
plastic flux to the sea will likely follow this increasing pattern in the future1,155. Despite substantial 468 
progress in studying transport pathways and consequences of riverine plastics moving towards the 469 
ocean, and in developing mitigation strategies and technological advancements183, we still have a 470 
vague understanding of most processes involving microplastics in estuarine fronts. Due to the 471 
hydrodynamic, geochemical and biological characteristics of these estuarine fronts, we believe 472 
that there is a reasonable scientific confidence that frontal systems could have considerable 473 
influences on plastic transport, fate, and potential ecosystem impacts. The analysis in this 474 
perspective suggests that microplastics and other particles could converge at estuarine fronts (FIG. 475 
1 and FIG. 3ab), leading to an enhanced plastic fragmentation as well as leaching rate of chemicals 476 
(FIG.3b and BOX 1). Furthermore, the concurrence of both microplastics and biotic particles 477 
(phytoplankton, bacteria and TEP; FIG. 3b), would increase aggregates formation rates. 478 
Microplastics transformations (fragmentation and aggregation) by frontal processes, together with 479 
environmental (circulations and air-sea interactions) and ecological factors (bio-ingestion and 480 
trophic transfer) ultimately facilitate the transport of microplastics and their integration into the 481 
food web, posing physical and chemical threats to estuarine and coastal ecosystems. The recurrent 482 
and predictable fronts in estuaries provide unique opportunities to mitigate riverine plastic 483 
pollution and prevent plastic from reaching the ocean. We also suggest that estuarine fronts, where 484 
high abundances of microplastics are similar to those expected in future ocean conditions (FIG. 485 



1b), can be regarded as a natural laboratory setting to achieve a better understanding of future 486 
microplastics impacts on marine ecosystem, providing the opportunity to act in time. Considering 487 
the mismatch of the current knowledge on estuarine fronts and global riverine plastic emissions 488 
(FIG. 4), new research efforts should converge different disciplines to investigate microplastics in 489 
estuarine frontal zones and clarify their dispersal, fate and multifaceted interactions, aiding in 490 
developing mitigation policies, techniques and strategies. Previous studies have individuated 491 
essential research directions, crucial to a comprehensive understanding of the role of estuarine 492 
fronts in plastic pollution, such as the prediction of plastic transport trajectories in the river-493 
estuary-sea continuum198,199, plastic fragmentation183, ecotoxicological effects (especially in 494 
larvae)59, and data standardization and sharing62,63. Moreover, specific research topics that should 495 
be prioritized also include the observation and accurate prediction of estuarine fronts (locations, 496 
occurrence time and intensity), the converging capacity and turnover time of plastic debris in 497 
different estuarine fronts, as well as the development of pollution mitigation strategies on the basis 498 
of the hydrodynamic and biological characteristics of targeted environments. These actions we 499 
propose herein are not exhaustive and many challenges still exist due to the extremely complexity 500 
in both plastic debris composition and transformations, and estuarine processes. Nevertheless, we 501 
hope that this paper contributes to raise worldwide attention on interactions between plastic debris 502 
and physical-biological-geochemical mechanisms in frontal systems, and hopefully enables further 503 
collaborative, interdisciplinary, and international efforts to limit plastic influx to the ocean and to 504 
fill current knowledge gaps on wide-range environmental impacts of plastics.  505 
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 991 
Fig.1 | Comparisons of characteristics between estuarine fronts and open-ocean fronts. a | 992 
Physical characteristics of estuarine fronts and open-ocean submesoscale fronts. The convergence 993 
rate (s-1)21,22,23,24, 27,53,193,200,201, vertical velocity (m·s-1)21,22,23,25,26,202, and turbulent kinetic energy 994 
(TKE) dissipation rate (m2·s-3)22,26,27,28,29,193, are key physical factors that have important effects 995 
on the accumulation, sinking and collisions of microplastics. b | To assess the accumulation effects 996 
of frontal processes on floating microplastics in the estuaries and open ocean, published studies 997 
reporting microplastic abundances from both frontal zones and ambient waters were reviewed. 998 
According to the methods in literature62,63, all these data were standardized to obtain the particle 999 
count per unit water volume (pieces/m3) in size range of 300-5000 μm. Both estuarine fronts 1000 
(orange dots)36-38 and open-ocean fronts (blue dots)56,58-61 result in higher abundances of 1001 
microplastics in contrast to ambient waters. Microplastics in estuarine fronts are one or more orders 1002 



of magnitude larger than the maximum value of microplastics in the Great Pacific Garbage Patch 1003 
(GPGP, the red diamond)64. 1004 
 1005 
 1006 
 1007 
 1008 
 1009 
 1010 
 1011 
 1012 
 1013 
 1014 

 1015 
 1016 
Fig.2 | Schematic diagrams of the main types of estuarine surface fronts and some examples 1017 
that show their features of apparent watercolor difference and accumulation of foam and 1018 



debris. a | Schematic diagram of the locations where the three types of estuarine fronts preferably 1019 
occur. b | Longitudinal front induced by the transverse shear of tidal velocity. c | Tidal intrusion 1020 
front formed when denser coastal waters plunge beneath lighter estuarine waters during a flood 1021 
tide. d | Plume front formed when riverine freshwater of riverine origin spreads over the coastal 1022 
water. Watercolor images of the Hudson estuary and Yellow River plume are obtained from the 1023 
Landsat satellite. Watercolor image of the Tay estuary is adapted from REF203. Photograph of the 1024 
foam and debris lines in the Yellow River plume is taken by Tao Wang in August, 2021. 1025 
Photographs of the foam and debris lines in the Camel estuary and Tweed estuary are adapted from 1026 
REF13. 1027 
 1028 
 1029 
 1030 

 1031 
FIG | 3 Transport and transformation of microplastics in the frontal zone. a | The concurrent 1032 
accumulation of organisms and microplastics due to the combination of passive convergent 1033 
transport and bio-behavioral movement in response to frontal structures19. The convergence of 1034 
phytoplankton biomass ultimately attracts animals of higher trophic levels. These animals interact 1035 
with microplastics and subsequently lead to plastic redistribution. Microplastics and fibers trapped 1036 
in mucilaginous foams along the fronts could be lofted into the air by breaking waves and winds, 1037 
which facilitate microplastics atmospheric transport123,126-128. The strong downwelling currents and 1038 
turbulence at fronts are able to subduct microplastics into the water column116,117. b | Interactions 1039 
between microplastics and other particles (both biotic and abiotic particles) in frontal systems. c | 1040 



The processes of microplastic fragmentation. The enhanced collision frequency of particles in 1041 
frontal systems results in the accelerated disintegration of microplastics through the detachment 1042 
mechanism84. Simultaneously, the leaching of plastic-derived carbon (for example, monomer, 1043 
trimer and oligomer) and chemical additives could also be enhanced by plastic fragmentation and 1044 
strong turbulence occurring at fronts164,172. The abundances of secondary microplastics and 1045 
leaching rates of chemicals increase exponentially with the decrease of particle size164. d | 1046 
Microplastics aggregation with non-living and living particles at fronts. Besides the increased 1047 
collision rates that bring particles together (BOX 1), the increased cations toward the sea11,89 and 1048 
the hydrophobicity of plastic particles81 facilitate the attractions between particles. Additionally, 1049 
the expectedly high concentrations of extracellular polymeric substances (EPS) exuded by the 1050 
microorganisms, can glue these particles together and enhance aggregation98,103,105.  1051 
 1052 

 1053 
Fig.4 | Global research of estuarine fronts and riverine plastic flux. a | The global map with 1054 
each country shaded according to the number out of 1656 rivers for 80% of the total plastic flux 1055 
to the ocean. The annual plastic emission into the ocean emitted by 1656 rivers in total is ~0.8 1056 
million metric tons (MT)7. Countries not included any of the 1656 rivers are shaded green. Blue 1057 
dots indicate the locations of estuaries (n=126) where the fronts have been studied in 172 1058 
publications (Supplementary Table 2). b | The number of estuaries where estuarine fronts are 1059 
reported (n=126; blue bars) and annual plastic emission into the ocean emitted by 1656 rivers (pink 1060 
bars) in each continent (Europe, EU; North American, NA; Asia, AS; South America, SA; Africa, 1061 
AF; Oceania, OA). Currently, research of estuarine fronts is mainly conducted in Europe and North 1062 
America (blue bars). Annually, the largest contributing continent is Asia with 1278 rivers emitting 1063 
60,542 MT, followed by Africa with 60,542 MT through 145 rivers, South America with 39,572 1064 
MT through 108 rivers, North America with 22,468 MT through 85 rivers, Europe with 9436 MT 1065 
through 46 rivers, and Oceania with 445 MT through 2 rivers. The striking mismatch between the 1066 
geographical location of studies on estuarine fronts and main rivers responsible for plastic loads 1067 
into the ocean suggests that urgent efforts on understanding processes in estuarine front are 1068 
required for the mitigation of riverine plastic debris in ‘hotspots’ like the Asian and African 1069 
continents. 1070 
 1071 
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Box 1 | Encounter kernel rate of particles in aquatic systems  

Collision of particles in turbulent flow fields is a physical process bringing particles into contact with each 
other84. The encounter kernel rate of particles determines the rate of collision between particles, which 
generally depends on three transport processes81,85, including Brownian diffusion (𝛽!"), fluid shear (𝛽#$) 
and differential sedimentation (𝛽%#). Brownian diffusion is the random motion that brings particles together 
through thermal effects. Fluid shear in which velocity gradients occur, induces interparticle contact among 
the particles carried by the fluid. Collision by differential sedimentation occurs when two particles have 
different settling velocities due to the gravity effects204. The total encounter kernel rate (𝛽&') between two 
particles of size 𝑖 and 𝑗 is their sum4:  

 𝛽&' = 𝛽!"(𝑖, 𝑗) + 𝛽#$(𝑖, 𝑗)) + 𝛽%#(𝑖, 𝑗)  

𝛽!"(𝑖, 𝑗) =
()*+"!,""-

#

./	+"!⋅""-
; 	𝛽#$(𝑖, 𝑗) = 1.3.𝜀 𝜈⁄

# ⋅ (𝑟& + 𝑟').;		𝛽%#(𝑖, 𝑗) = 𝜋(𝑟& + 𝑟')(5𝜔& −𝜔'5 

where 𝑘  is Boltzman constant; 𝑇  is the absolute temperature; 𝜇  and 𝜈  are the dynamic and kinematic 
viscosities, respectively; 𝜀 is the turbulent kinetic energy dissipation rate, and 𝜔& is the settling velocity of 
a particle with radius 𝑟&. 

These encounter kernel rates by three mechanisms vary with particle sizes. The kernel rate by Brownian 
motion plays a minor role in bringing particles (>1 μm) together81, thus it is not included to explain the 
collision rate of microplastics. As particle size increases, collisions arising from shear (either turbulent or 
laminar) and differential sedimentation, become more important82. Shear-induced collision is known to be 
stronger than other transport mechanisms83, and was demonstrated to be important in the high particle 
concentration and high shear environment of the boundary layer82. Therefore, strong turbulent energy and 
high particle load at estuarine fronts can facilitate higher collision rates between plastic and other particles, 
leading to particle aggregation and/or plastic fragmentation through the surface ablation mode69,70 (FIG. 
3b). 


