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 The internet of things (IoT) environment prerequisite seamless connectivity 

for meeting real-time application requirements; thus, required efficient 

resource management techniques. Heterogeneous wireless networks 

(HWNs) have been emphasized for providing seamless connectivity with 

high quality of service (QoS) performance to provision IoT applications. 

However, the existing resource allocation scheme suffers from interference 

and fails to provide a quality experience for low-priority users. As a result, 

induce bandwidth wastage and increase handover failure. In addressing the 

research issues this paper presented the resource-optimized network 

selection (RONS) method for HWNs. The RONS method employs better 

load balancing to reduce handover failure and maximizes resource utilization 

through dynamic slot optimization. The RONS method assures tradeoffs 

between high performance to high priority users and quality of experience 

(QoE) for low priority users. The experiment outcome shows the RONS 

achieves very good performance in terms of throughput, packet loss, and 

handover failures in comparison with existing resource selection methods. 
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1. INTRODUCTION 

The world is connected with 25 billion embedded devices and 25 billion connected people 

generating 40 trillion gigabytes of data as of 2020 [1], [2]. In such an environment, wireless internet of things 

(IoT) plays a very important role in future smart applications. Nonetheless, connecting massive deployment 

of IoT device pose several research difficulties and challenges such as security, communication protocol, 

storage, and networking. Alongside, there are other challenges such as inter-operability, diversity, data and 

device management [3], [4]. In wireless Internet of Things environment, the radio resources are very limited; 

thus, resource management becomes an extremely challenging task, especially under a large density network 

where smart device content for resources. In such a network, the performance relies on how effectively the 

resource (orthogonal code, frequency, and time slots) are allocated in dynamic manner. Alongside, how 

connection fluctuation and traffic loads are handled to meet users’ high quality of service (QoS) 

prerequisites. With growth of new IoT-based applications prerequisite high throughput, bandwidth, and 

spectral efficiency, and user context; thus, resource management becomes major issues [5], [6]. 

Heterogeneous wireless networks (HWNs) have been emphasized to address resource management 

problem with good effect across research communities and industries. In particular, resource allocation plays 

a very significant part in both network-level and user-perceived performances because of tradeoff associated 

with resource partitioning and sharing [1]. The resource sharing improves the efficiency of bandwidth usage; 

https://creativecommons.org/licenses/by-sa/4.0/
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however, induce interference among adjacent network. On the other side, the resource partitioning reduces 

resource utilization by eliminating interference with adjacent network. The future HWNs is expected coexist 

with multiple networks operating in non-overlapping frequency bands while other types of wireless access 

networks share the same spectrum band. As a result, both resource sharing and partitioning are expected to 

coexist in the future HWNs. Hence, for general HWNs as shown in Figure 1, it is critical to explore efficient 

resource allocation technique. 

 

 

 
 

Figure 1. Architecture of heterogeneous wireless networks 

 

 

This section conducts survey of some recent work designed for effective network resource selection 

mechanism for HWNs. A resource management technique has been modeled requiring accurate 

measurement; nonetheless, these model prerequisite manual optimization of parameter [7]. Recent, work 

have focused in meeting QoS parameter at network level [7]–[10] and [11]–[13] focused in meeting user 

preference requirement. However, this model consumes too much energy when try to improve success rate. 

Polese et al. [14] showed the importance of reutilizing system resource aiding energy efficiency [15] and 

resource utilization as well [16]. Recently, machine learning models have been used for automated decision 

making [17]. Yan et al. [17] presented a KNN-based handover execution model for 5G cellular network with 

good target discovery performance and showed benefit of using machine learning (ML) technique for 

decision making. 

However, the model is designed considering homogeneous network and still lack of how to 

successfully employ ML methodologies into heterogeneous cellular network [18], [17]. According to  

Majid et al. [19], emphasized XGBoost based handover execution prediction model for reducing frequent 

measurement updated and enhance overall performance for next generation network. However, are not 

efficient when dataset exhibit imbalanced behavior. In Iborra et al. [20], showed existing model fails to 

address QoS and energy efficiency factor together. They modelled a supervised-based ML based method for 

selecting efficient network to meet application real-time prerequisite. Cao et al. explained to [21] addressed 

both frequent handover and load balancing issues together in large coverage network. They modelled a deep 

reinforcement algorithm namely deep Q-networks [22] for reducing signaling overhead and maximize 

throughput with minimal handover failures. The aimed at maximizing number of user in network with 

minimal handover failures considering mobility pattern of users considering largely populated network [23]. 

They presented a prediction mechanism to identify position of user based on previous states using online 

learning algorithm. A game-theory approach [24], [25] is modelled has NP-hard deterministic problem for 

obtaining optimal solution. Magoarou [26] focused on obtaining spatial location of user through unsupervised 

learning mechanism for practical handover and resource scheduling considering impact of small-scale fading. 

Tong et al. [27] used software defined network in HWNs for addressing mobility and user resource allocation 

issues. They modelled multipath-based communication design using three phase such as prediction user 

location using echo state network, network selection using fuzzy analytic hierarchical process, and finally 

handover execution using multipath transmission protocol [28]. Multiple attribute such as bit error rate, 
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signal-to-noise-ratio, packet loss rate, moving speed, minimum delay, and maximum transmission rate are 

used for training neural network to carryout handover execution considering HWNs [28]. However, the 

resource selection is done through random manner and user priority requirement is not considered. 

Alongside, maximizing resource utilization with minimal handover failure through effective load balancing is 

not considered [29]–[33]. In addressing research challenges the following research methodology is presented. 

 

 

2. METHOD 
This work aimed at designing effective network resource selection method namely resource 

optimized network selection (RONS) method for HWNs. The RONS method is aimed at maximizing 

resource utilization maximization with minimal handover failure through effective load balancing for HWNs. 

The RONS method assure service priority and can mitigate the effect of interference for neighboring IoT 

device. Alongside, can assure high level of performance for high priority IoT device and provide decent 

performance to low priority IoT device. The significance of RONS is discussed. 

 

2.1.  Research significance 
The importance of a resource-optimized network selection model is given: i) The RONS model is 

efficient in maximizing resource utilization with minimal handover failures in comparison with existing 

network resource selection models; ii) The RONS improves overall throughput of network with less packet 

loss considering different mobility model in comparison with existing network resource selection models; iii) 

The RONS improves overall throughput with less packet loss considering varied channel size, device size, 

and device speed in comparison with existing network resource selection models. The section present 

resource optimization-based network selection model for heterogeneous wireless network. The outcome 

achieved using RONS is discussed in section 3. The research contribution, enhancement achieved, and future 

work is discussed in section 4. 

 

2.2.  Resource optimization-based network selection model for heterogeneous wireless network 

2.2.1. Analytical model 

The RONS is aimed in maximizing resource utilization with minimal handover failure by assuring 

less interference with neighboring cells. The heterogeneous wireless network is composed of different 

network as shown in Figure 1, where different IoT device such as 𝒫s (Higher priority) and 𝒰s (Lower 

priority) with different service priority connects to different network for gaining services. Here both 𝑃s and 

𝒰s IoT device can operate using same set of homogenous channels 𝑁. The parameter 𝑙 defines the total 

number of 𝒫s and identical bandwidth is given to both 𝒫s and 𝒰s. However, 𝒫s can occupy only one 

channel at a time and can reclaim the channel on arrival to network from 𝒰s. Using Poisson distribution, the 

arrival rate 𝛼𝑡  and 𝛼𝑞 of 𝒫s and 𝒰s are established, respectively. The service rate 𝜔𝑡  and 𝜔𝑞 of 𝒫s and 𝒰s 

follows negative exponential distribution, respectively. The network service provider (NSP) uses historical 

information of 𝒰s for perfect sensing. Thus, the network service provider is accountable for allocating idle 

channel to 𝒰s and perform classification of 𝒰s and channel according to resource usage. 

 

2.2.2. Standard resource selection method 

In standard resource allocation model, the 𝒰s are divided into 𝑚 service classes with different 

priority where 𝑘𝑚 defines the size of 𝒰s of class (𝑚 = 1,2). The resources are allocated in random manner 

employing continuous time Markov model. The Markov states is defined as 𝑇(𝑗, 𝑘1, 𝑘2), where 𝑗, 𝑘1 and 𝑘2 

signifies the number of resources engaged by 𝒫s, higher priority type-1 𝒰s (𝒰s-1) and lower priority type-2 

𝒰s (𝒰s-2), respectively. The parameter 𝑁 defines the total channel available, 𝐷𝑦  defines the total channel 

that is occupied at any given instance of time, and 𝑂𝑖𝑑𝑙𝑒  defines the total idle channel at any given instance of 

time. The 𝐷𝑦  is computed as shown in (1). 

 

𝐷𝑦 = (𝑗 + 𝑘1 + 𝑘2) (1) 

 

The 𝑂𝑖𝑑𝑙𝑒  is computed as shown in (2). 

 

𝑂𝑖𝑑𝑙𝑒 = 𝑁 − 𝐷𝑦  (2) 

 

In accordance to arrival or departure 𝒫s and 𝒰s from network, the Markov state 𝑇(𝑗, 𝑘1, 𝑘2) is changed to 

new state 𝑇′(𝑗, 𝑘1, 𝑘2). The probability vector 𝛿 considering steady state is computed through linear equation 

𝛿𝑅 = 0 with constraint 𝛿𝑒 = 1 utilizing [34], where 𝑒 defines column vector with all 1s and 𝑅 defines the 

state transition matrix. 
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2.2.3. Proposed resource selection method 

The major drawback of standard resource allocation model is that the low-prioritized 𝒰s-2 will 

attain deficient service in comparison with other high prioritized 𝒰s-1 or 𝒫s. However, the proposed resource 

selection addresses the QoE issues of 𝒰s-2 and maintain high performance of high prioritized IoT device. 

This is done by giving more channels to 𝒰s-2 with minimum resource starvation time through improved 

channel allocation (reservation and aggregation) design; here the channels are clustered and utilized for 𝒰s-2. 

Alongside, the improved resource selection model can improve performance of 𝒰s-1, by giving connection 

right after being dropped; here the 𝒰s is classified into different classes according to its priority requirement. 

The modified states of channel reservation mechanism is defined as 𝐴(𝑗, 𝑘1
′ , 𝑘1, 𝑘𝑛, 𝑘𝑜), where 𝑗 signifies 

channel occupied by high priority IoT devices 𝒫s, 𝑘1
′ , 𝑘1, 𝑘𝑛 and 𝑘𝑜 defines the number of returned-type-1 

(𝒰s-𝑆1), urgent data 𝒰s who resumed connection immediately after being dropped, the total 𝒰s-1, real-time 

information 𝒰s, the number of 𝒰s-2, non-real-time information 𝒰s who aggregate 𝑛 and 𝑜 channels, 

respectively. The parameter 𝑛 defines maximum amount of aggregation channels and 𝑜 defines minimum 

amount of aggregation channels. Accordingly, the total 𝒰s-2 are measured through following equation. 

 

𝑘2 = (𝑘𝑛 + 𝑘𝑜) (3) 

 

The IoT device 𝒫 is given higher priority and will occupy the channel 𝑁𝑠𝑞 that are designated (i.e., 

allocated) to 𝒫s. After that, the 𝒫s will look out for unallocated channel in random manner. Let consider that 

𝒰s-𝑆1 only has capability for utilizing 𝑁1
′channels. Conversely, 𝒰s-1 can use these channels, if 𝒰s-

𝑆1 doesn’t present. The parameter 𝑁2
′ defines the total channels that is only reserved for 𝒰s-2. Therefore, the 

total accessible channels for 𝒰s-1 is measured as shown in (4). 

 

𝑁1 = (𝑁 − 𝑁𝑠𝑞 − 𝑁2
′) (4) 

 

and the total accessible channels for 𝒰s-2 is measured as shown in (5). 

 

𝑁2 = (𝑁 − 𝑁𝑠𝑞 − 𝑁1
′) (5) 

 

The parameter 𝑁𝑦 defines the total channel that is occupied at any given instance of time and is 

measured asashown in (6). 

 

𝑁𝑦 = [𝑗 + 𝑘1
′ + 𝑛𝑘𝑛 + 𝑜𝑘𝑜] (6) 

 

and 𝑁𝑖𝑑𝑙𝑒  defines the total channel that is occupied at any given instance of time and is measured as shown in (7). 

 

𝑁𝑖𝑑𝑙𝑒 = (𝑁 − 𝑁𝑦) (7) 

 

In accordance to arrival or departure 𝒫s and 𝒰s from network, the Markov state𝐴(𝑗, 𝑘1
′ , 𝑘1, 𝑘𝑛, 𝑘𝑜) is 

transformed to new state𝐴′(𝑗, 𝑘1
′ , 𝑘1, 𝑘𝑛 , 𝑘𝑜). The probability vector 𝛿 considering steady state is computed 

through linear equation 𝛿𝑄 = 0 with constraint 𝛿𝑒 = 1 utilizing [34], where 𝑒 defines column vector with all 

1s and 𝑄 defines the state transition matrix. 

 

2.2.4. Resource utilization 

The standard resource utilization method 𝑉 is measured through ratio among average engaged slots 

with respect to total slots of corresponding network as described in (8). 

 

𝑉 = ∑
𝐷𝑦

𝑁
𝛿𝑡𝑡∈𝑇 . (8) 

 

where 𝐷𝑦  total engaged slots and 𝑁 represent total slots available considering steady state probability𝛿𝑡. The 

modified resource utilization method 𝑉′ is measured as shown in (9). 

 

𝑉′ = ∑
𝑁𝑦

𝑁
𝛿𝑎𝑡∈𝑇 . (9) 

 

where 𝑁𝑦 defines total amount of occupied slot at any given instance of times with steady state probability 𝛿𝑎 

considering presence of obstacle in line of sight [35], [36]. 
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2.2.5. Load balancing 

If the complete network is busy, the new user 𝒰 joining the network will be blocked from accessing the 

resource. The congestion probability of aforementioned case is computed as: 

 

𝑄𝑐 =
Total 𝒰 congestion rate

total IoT device arrival rate
=

𝛼𝑡𝛿

(𝑙−𝑗)𝛼𝑞+𝛼𝑡
. (10) 

 

The standard resource allocation method congestion probability 𝑄𝑐1 and 𝑄𝑐2 of 𝒰1 and𝒰2, respectively is 

measured by (11) and (12). The modified resource allocation model congestion probability 𝑄𝑐1 and 𝑄𝑐2 of 𝒰1 

and𝒰2, respectively is measured by (13)-(15). 

 

𝑄𝑐1 = ∑ ∑
𝛼𝑡𝛿𝑡

(𝑙−𝑗)𝛼𝑞+𝛼𝑡

𝑁
𝑗1=0,𝑗2=0;𝑂𝑖𝑑𝑙𝑒=0

𝑁
𝑗=0,𝑡∈𝑇 . (11) 

 

𝑄𝑐2 = ∑ ∑
𝛼𝑡𝛿𝑡

(𝑙−𝑗)𝛼𝑞+𝛼𝑡

𝑁−(𝑗+𝑗2)

𝑗1=0,𝑂𝑖𝑑𝑙𝑒=0
𝑁
𝑗=0,𝑡∈𝑇 . (12) 

 

𝑄𝑐𝑆1
′ = ∑

𝛼𝑡𝛿𝑎

(𝑙−𝑗)𝛼𝑞+𝛼𝑡

𝑁
𝑗=0,𝑎∈𝐴;𝑘1

′ =𝑁1
′ . (13) 

 

𝑄𝑐𝑆1
′ = ∑ ∑

𝛼𝑡𝛿𝑎

(𝑙−𝑗)𝛼𝑞+𝛼𝑡      
 

𝑁1

𝑘1=0,𝑘1
′ +𝑘1=𝑁1;

𝑗+𝑘1
′ +𝑘1≥𝑁−𝑁2

𝑁
𝑗=0,𝑎∈𝐴  (14) 

 

𝑄𝑐𝑆2
′ = ∑ ∑

𝛼𝑡𝛿𝑎

(𝑙−𝑗)𝛼𝑞+𝛼𝑡

𝑁1
𝑘1=0,𝑘𝑜=𝑁2,𝑘𝑛;

𝑘1
′ +𝑘1+𝑘𝑛=𝑁2,𝑘𝑛=0

𝑁
𝑗=0,𝑎∈𝐴   (15) 

 

2.2.6. Handover probability 

The handover probability: the handover probability of prioritized user 𝒫 arrives at respective 

frequency slot occupied by 𝒰 while idle slots are accessible, 𝒰 will be handoff to idle channel for carrying 

out communication. The handover probability of aforementioned scenarios is computed using (16). 

 

𝑄𝑖 =
Total 𝒰 transition rate

Total user association rate
=

𝑓(𝑘)

𝑁−𝑗
(𝑙−𝑗)𝛼𝑡𝛿

𝑓(𝑄𝑐)((𝑙−𝑗)𝛼𝑞+𝛼𝑡)
. (16) 

 

where parameter 𝑓(𝑘) relies on the size of 𝒰 at the state and 𝑓(𝑄𝑐) relies on the size of 𝒰 in congestion 

probability; thus, there values are dynamic in nature with respect to 𝒰. The standard resource allocation 

scheme handover probability 𝑄𝑖1 and 𝑄𝑖2 of 𝒰1 and 𝒰2, respectively is computed using (17) and (18). 

 

𝑄𝑖1 = ∑ ∑
𝑘1

𝑁−𝑗
(𝑙−𝑗)𝛼𝑞𝛿𝑡

(1−𝑄𝑐1)((𝑙−𝑗)𝛼𝑞+𝛼𝑡)

𝑁−(𝑗+𝑘2+1)

𝑘1=1,𝑂𝑖𝑑𝑙𝑒>0
𝑁
𝑗=0,𝑡∈𝑇  (17) 

 

𝑄𝑖2 = ∑ ∑
𝑘1+𝑘2

𝑁−𝑗
(𝑙−𝑗)𝛼𝑞𝛿𝑡

(1−𝑄𝑐2)((𝑙−𝑗)𝛼𝑞+𝛼𝑡)

𝑁−(𝑗+𝑘1+1)

𝑘2=1,𝑂𝑖𝑑𝑙𝑒>0
𝑁
𝑗=0,𝑡∈𝑇  (18) 

 

The modified resource allocation scheme handover probability 𝑄𝑖1 and 𝑄𝑖2 of 𝒰1 and 𝒰2, respectively is 

computed using (19) to (21). 

 

𝑄𝑖𝑆1
′ = ∑

𝑘1
′

𝑁−𝑗
(𝑙−𝑗)𝛼𝑞𝛿𝑎

(1−𝑄𝑐𝑆1
′ )((𝑙−𝑗)𝛼𝑞+𝛼𝑡)

𝑁
𝑗=𝑁𝑠𝑞,𝑧∈𝑍;𝑘1

′ =𝑁1
′

𝑁𝑦<𝑁,𝑘𝑛>0;

𝑁𝑦<𝑁,𝑘𝑛=𝑘𝑜=0;

𝑁𝑦<𝑁,𝐾0=0

 (19) 

 

𝑄𝑖1
′ = ∑ ∑

𝑘1
′ +𝑘1
𝑁−𝑗

(𝑙−𝑗)𝛼𝑞𝛿𝑎

(1−𝑄𝑐1
′ )((𝑙−𝑗)𝛼𝑞+𝛼𝑡)

𝑁
𝑘1=1

𝑁𝑦<𝑁,𝑘𝑜=0;

𝑁𝑦=𝑁,𝑘𝑛=0;

𝑁𝑦<𝑁,𝑘𝑛=𝑘𝑜=0

𝑁
𝑗=𝑁𝑠𝑞

𝑧∈𝑍

. (20) 
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𝑄𝑖𝑆2
′ = ∑

𝑘1
′ +𝑘1+𝑘2

𝑁−𝑗
(𝑙−𝑗)𝛼𝑞𝛿𝑎

(1−𝑄𝑐2
′ )((𝑙−𝑗)𝛼𝑞+𝛼𝑡)

𝑁
𝑗=𝑁𝑠𝑞,𝑎∈𝐴

𝑁𝑦=𝑁,𝑘2≠0,𝑘𝑛>0

𝑁𝑦<𝑁,𝑘𝑜=0,𝑘𝑛≠0;

𝑁𝑦<𝑁,,𝑘𝑛=0,𝑘0≠0;

𝑁𝑦<𝑁,𝑘𝑛≠0,𝑘𝑜≠0

 (21) 

 

Once the IoT device is handoff to the new network; A channel is assigned to corresponding IoT device that 

maximize resource utilization through modified resource allocation design. The RONS model achieve better 

handover execution performance with improved resource utilization which is experimentally shown in next 

section. 
 

 

3. RESULT AND DISCUSSION 

This section method namely existing system-resource selection (ES-RS) method [17], [27]. The 

SIMITS simulator [37], [38] is used for studying the model considering dynamic mobility model [35], [36]. 

The throughput, packet loss, and handover failure are performance metrics used for studying the model 

through simulation study. The IoT device are varied from 25, 50, and 100 and are mobile in nature which is 

varied from 3, 5 and 7 cycle per frame, channel size is varied from 4, 6, and 8 and simulation study is 

conducted and result obtained are graphically shown considering aforementioned performance metric. studies 

the performance of RONS with existing resource and resource selection. 
 

3.1.  Throughput performance 
The Figure 2 shows throughput performance achieved using RONS and ES-RS methodologies under 

varied size of IoT device and keeping the speed and channel constant at 3 cycle per frame and 8, respectively. 

An average throughput enhancement of 23.58% is achieved using RONS in comparison with ES-RS under 

varied IoT device size (25, 50, and 100). The Figure 3 shows throughput performance achieved using RONS 

and ES-RS methodologies under varied mobility speed and keeping the channel and IoT device size constant 

at 3 cycle per frame and 8, respectively. An average throughput enhancement of 30.47% is achieved using 

RONS in comparison with ES-RS under varied mobility speed (3, 5, and 7). The Figure 4 shows throughput 

performance achieved using RONS and ES-RS methodologies under varied channel size (4, 6, and 8) and 

keeping the speed and IoT device size constant at 3 cycle per frame and 50, respectively. An average 

throughput enhancement of 30.83% is achieved using RONS in comparison with ES-RS under varied 

channel size. Overall result achieved shows that the RONS utilize resource more efficiently by increasing the 

throughput achieved in comparison with ES-RS under varied scenarios such as varying IoT device size, 

varying speed, and varying channel size. 
 

 

 
 

Figure 2. Throughput performance for varied IoT device 
 
 

 
 

Figure 3. Throughput performance for varied speed 
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Figure 4. Throughput performance for varied channel size 

 

 

3.2.  Packet loss 

The Figure 5 shows packet loss performance achieved using RONS and ES-RS methodologies 

under varied size of IoT device and keeping the speed and channel constant at 3 cycle per frame and 8, 

respectively. An average packet loss reduction of 40.34% is achieved using RONS in comparison with ES-

RS under varied IoT device size (25, 50, and 100). The Figure 6 shows packet loss performance achieved 

using RONS and ES-RS methodologies under varied mobility speed and keeping the channel and IoT device 

size constant at 3 cycle per frame and 8, respectively. An average packet loss reduction of 24.5% is achieved 

using RONS in comparison with ES-RS under varied mobility speed (3, 5, and 7). The Figure 7 shows packet 

loss performance achieved using RONS and ES-RS methodologies under varied channel size (4, 6, and 8) 

and keeping the speed and IoT device size constant at 3 cycle per frame and 50, respectively. An average 

packet loss reduction of 74.1% is achieved using RONS in comparison with ES-RS under varied channel 

size. Overall result achieved shows that the RONS aid in reducing resource wastages efficiently by reducing 

packet loss in comparison with ES-RS under varied scenarios such as varying IoT device size, varying speed, 

and varying channel size. 

 

 

 
 

Figure 5. Packet loss performance for varied IoT device 

 

 

 
 

Figure 6. Packet loss performance for varied speed 

 

 

3.3.  Handover failure 

The Figure 8 shows handover failure performance achieved using RONS and ES-RS methodologies 

under varied size of IoT device and keeping the speed and channel constant at 3 cycle per frame and 8, 

respectively. An average handover failure reduction of 32.33% is achieved using RONS in comparison with 
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ES-RS under varied IoT device size (25, 50, and 100). The Figure 9 shows handover failure performance 

achieved using RONS and ES-RS methodologies under varied mobility speed and keeping the channel and 

IoT device size constant at 3 cycle per frame and 8, respectively. An average handover failure reduction of 

34.66% is achieved using RONS in comparison with ES-RS under varied mobility speed (3, 5, and 7). The 

Figure 10 shows handover failure performance achieved using RONS and ES-RS methodologies under 

varied channel size (4, 6, and 8) and keeping the speed and IoT device size constant at 3 cycle per frame and 

50, respectively. An average handover failure reduction of 30.09% is achieved using RONS in comparison 

with ES-RS under varied channel size. Overall result achieved shows that the RONS aid in reducing network 

overhead by minimizing handover failure in comparison with ES-RS under varied scenarios such as varying 

IoT device size, varying speed, and varying channel size. 

 

 

 
 

Figure 7. Packet loss performance for varied channel size 

 

 

 
 

Figure 8. Handover failure performance for varied IoT device 

 

 

 
 

Figure 9. Handover failure performance for varied speed 
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Figure 10. Handover failure performance for varied channel size 

 

 

4. CONCLUSION 
Here we studied challenges involved in performing resource selection optimization in heterogeneous 

wireless communication environment. Existing model induce resource wastage and fails to assure quality of 

experience for low priority user. However, this work presented an effective resource selection model namely 

RONS, which assures high level performance to prioritized user and optimal level resource is allocated to 

low priority user without degradation of quality of experience. Further, the proposed model assures effective 

load balancing model to reduce handoff failure and utilize resource more efficiently. No prior work has 

modeled such kind of resource allocation model. Experiment is conducted considering diverse network 

scenarios that resemble the real-time environment. The outcome achieved show the proposed RONS achieves 

much better throughput with less packet loss and handover failures in comparison with existing resource 

selection model, ES-RS. Future work would study the model under more diverse mobility condition and also 

study the impact of blocking resource by high priority user with respect to performance experienced by low 

prioritized users. 
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