

Estimation of BDS-3 Differential Code Biases with Satellite Antenna PCO Corrections Applied

Ningbo Wang*1, Yang LI1, Zishen LI1, Liang WANG1, and Zongyi LI1

1 Aerospace Information Research Institute (AIR), Chinese Academy of Sciences (CAS)

*E-mail: wangningbo@aoe.ac.cn

Agenda

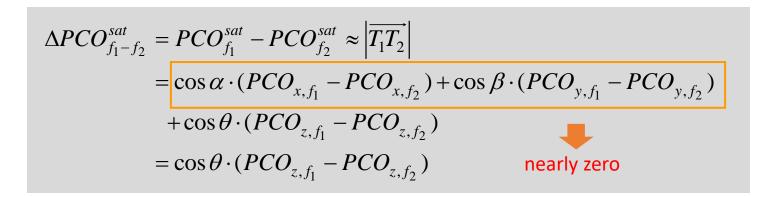
- ► PCO corrections in DCB estimation
- ► Estimated BDS-3 DCBs with/without modeled PCOs
- ► Effects of estimated DCBs on stand/precise positioning
- ► Summary and conclusions

Satellite APC corrections in DCB estimation

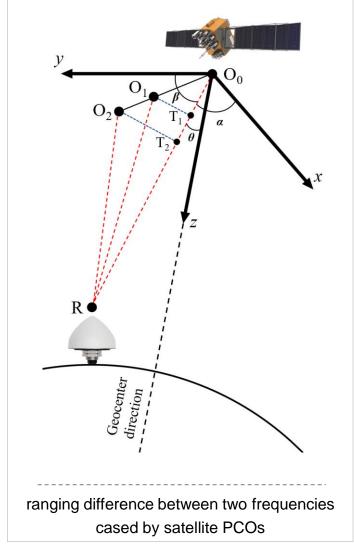
- ► z-PCO mapping on LOS: 0.97-1.0
- Z-PCO differences up to several decimeters
- satellite antenna PCOs requires to be modelled/corrected
- satellite phase center variations (PCV) can be ignored

Receiver APC corrections in DCB estimation

- ► z-PCO mapping on LOS: 0.0-1.0
- ► Z-PCO differences limited to several centimeter
- ► receiver PCO/PCV can be ignored in DCB estimation



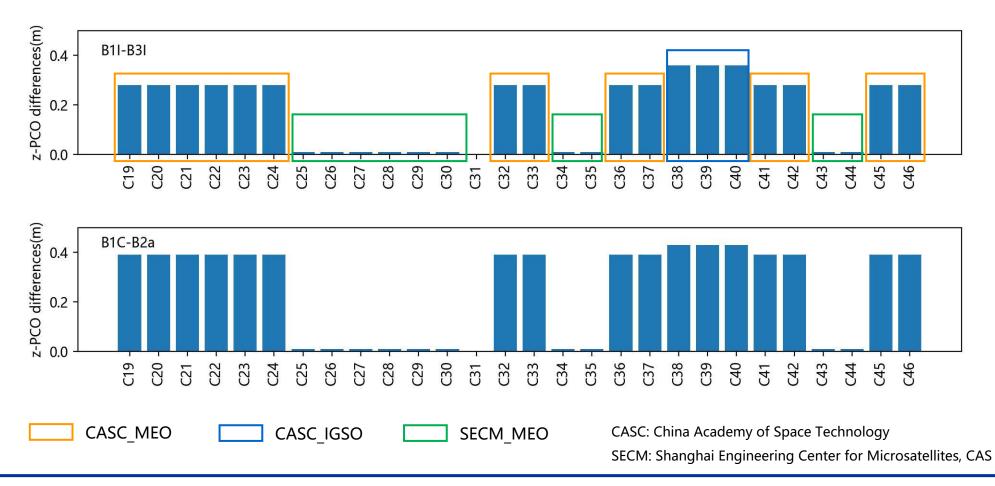
APC: Antenna Phase Center



DCB estimation with satellite PCO modeled/corrected

- ► The LOS distance is notably larger than satellite PCOs
- ► xy-PCO difference ~0.0
- z-PCO difference considered (smallest for Galileo, largest for QZSS)

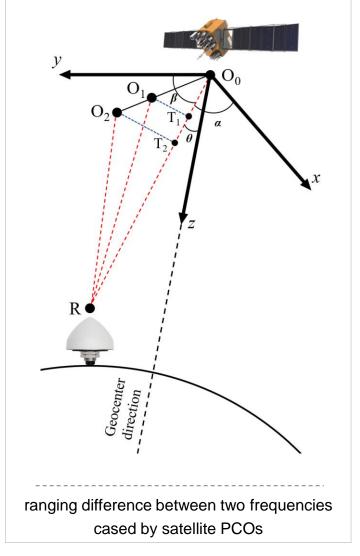
CAST_C19	x-PCO	y-PCO	z-PCO	SECM_C25	x-PCO	y-PCO	z-PCO
B1I	-200.0	0.0	1460.0	B1I	40.0	-10.0	1100.0
B3I	-200.0	0.0	1180.0	B3I	40.0	-10.0	1090.0



DCB estimation with satellite PCO modeled/corrected

▶ BDS-3 z-PCO differences of B1I-B3I and B1C-B2a GF combinations (from igs14_2196.atx)

DCB estimation with satellite PCO modeled (PCO-modeled DCB¹)


$$P_{4} = (I_{f_{1}} - I_{f_{2}}) + (B_{f_{1}} - B_{f_{2}}) + (\varepsilon_{f_{1}} - \varepsilon_{f_{2}}) + (PCO_{f_{1}}^{sat} - PCO_{f_{2}}^{sat})$$

$$\approx 40.3 \cdot (\frac{1}{f_{1}^{2}} - \frac{1}{f_{2}^{2}}) \cdot sTEC + DCB_{f_{1} - f_{2}}^{sat + rec} + \Delta PCO_{f_{1} - f_{2}}^{sat}$$

$$\Delta PCO_{f_{1} - f_{2}}^{sat} \approx \left| \overrightarrow{T_{1}T_{2}} \right|$$

- forming GF combination with satellite PCO modeled.
- ▶ using a local ionospheric VTEC modeling method for the jointly estimation of ionospheric and satellite-plus-receiver DCB parameters.
- ▶ applying a zero-constellation-mean constrict for the generation of satellite- and receiver-specific DCBs.

(Wang et al. JoGE, 2016, 2020)

DCB estimation with satellite PCO modeled (PCO-modeled DCB¹)

► CASDCB method for jointly local ionosphere and bias estimation

$$\begin{cases} P_{r,4}^{*,s} = c \cdot \mathbf{SPR}_{r}^{s} + 40.3 \cdot (f_{2}^{2} - f_{1}^{2}) \cdot \mathbf{STEC}_{r}^{s} / f_{1}^{2} f_{2}^{2} \\ P_{r,4}^{*,s} = P_{r,4}^{s} - \cos \theta \cdot \Delta PCO_{z}, & \cos \theta \in [0.97, 1.00] \\ \mathbf{SPR}_{r}^{s} = b_{r,4} - b_{4}^{s} \end{cases}$$

VTEC model
$$\begin{aligned} \mathbf{VTEC}_r^s(\varphi_d,\lambda_d,h) &= \sum_{n=0}^{n_{\max}} \sum_{m=0}^{m_{\max}} \left\{ E_{nm} \cdot \varphi_d^n \cdot \lambda_d^m \right\} \\ &+ \sum_{k=0}^{k_{\max}} \left\{ C_k \cos(k \cdot h) + S_k \sin(k \cdot h) \right\} \end{aligned}$$
 satellite- and

satellite- and receiver-specific DCBs

$$\hat{\mathbf{X}}_{dcb} = (\mathbf{F}^{\mathrm{T}}\mathbf{F} + \mathbf{H}^{\mathrm{T}}\mathbf{H})^{-1}\mathbf{F}^{\mathrm{T}}\mathbf{Z}_{\mathbf{SPR}}$$

(Wang et al. JoGE, 2016, 2020)

ΔPCO absorbed in the estimated DCBs

 $\Delta \mathbf{DCB}_{pco} = (\mathbf{F}^{\mathrm{T}}\mathbf{F} + \mathbf{H}^{\mathrm{T}}\mathbf{H})^{-1}\mathbf{F}^{\mathrm{T}} \cdot \Delta \mathbf{PCO}_{z}$

DCB estimation with satellite PCO corrected (PCO-corrected DCB²)

▶ ignoring the time-varying z-PCO ($\cos \theta$ =1)

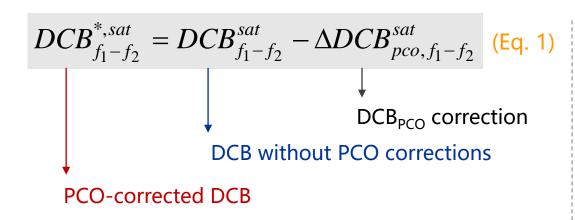
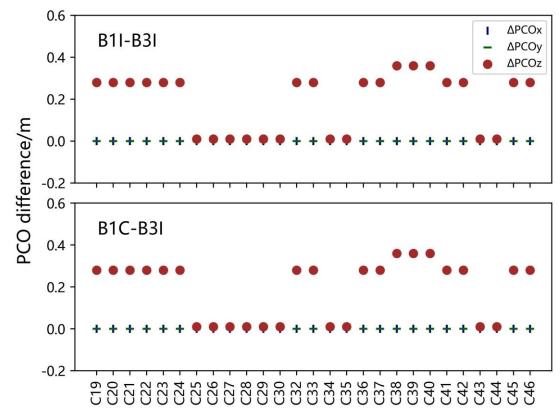
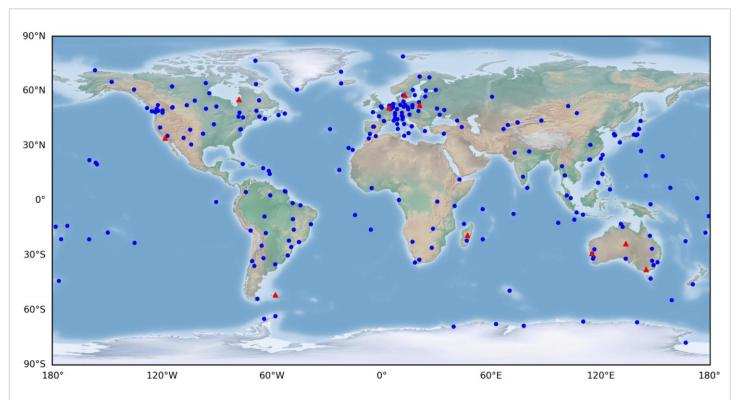



Table 1 theoretical PCO corrections for B1I/B1C-B3I DCBs

Satellite type	ΔDCB PCO (ns)
CASC_MEO	-0.304
CASC_IGSO	-0.571
SECM_MEO	0.597

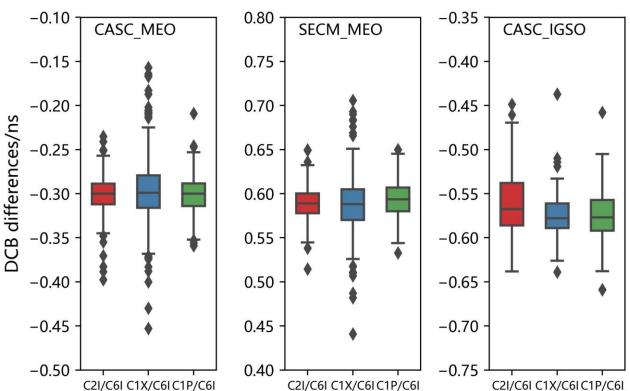

PCO differences for BDS-3 B1I-B3I and B1C-B3I GF combination (from igs14_2196.atx)

Estimated BDS-3 DCBs with/without modeled PCOs

DCB estimation using IGS-MGEX observation data

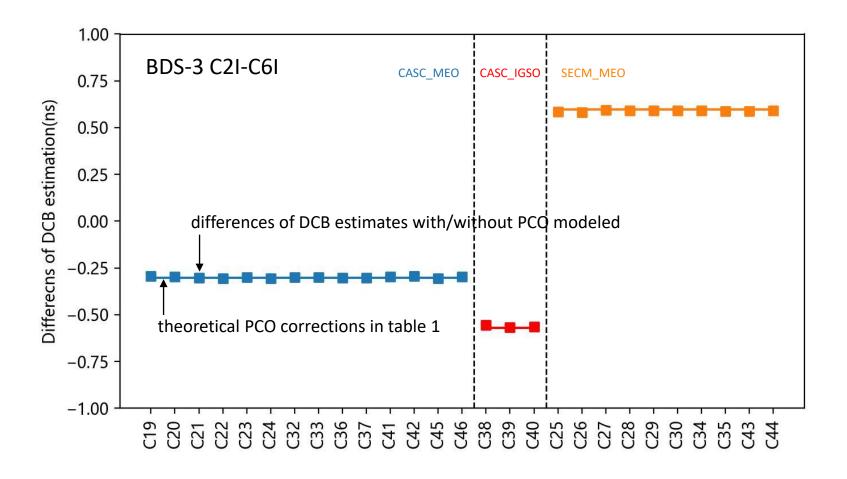
DCP	Station number			
DCB	25/04	25/05		
C2I-C6I	174	193		
C1P-C6I	83	97		
C1X-C6I	51	51		

blue circles for DCB estimation with/without PCO corrections red triangles for DCB validation in positioning



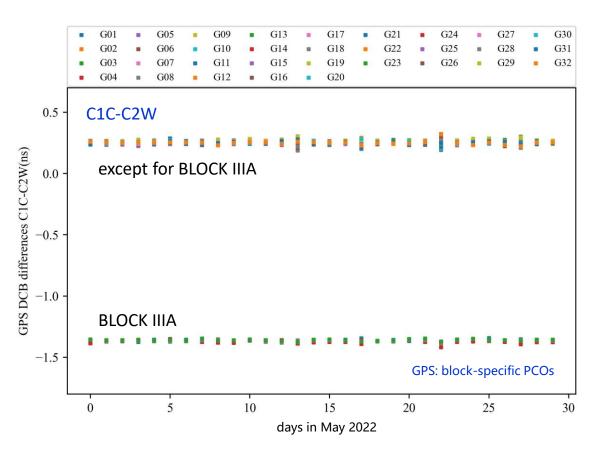
Estimated BDS-3 DCBs with/without modeled PCOs

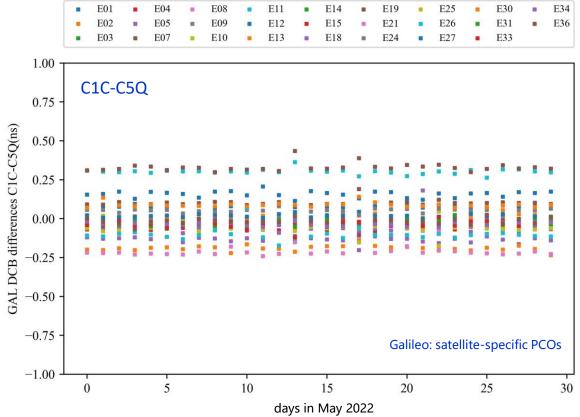
Compared to theoretical PCO corrections in Table 1 mean difference is within the range of 0.003-0.01 ns


STD of DCB difference series: 0.02-0.04 ns

Estimated BDS-3 DCBs with/without modeled PCOs

Differences of estimated DCBs with/without PCO modeled (May 2022)



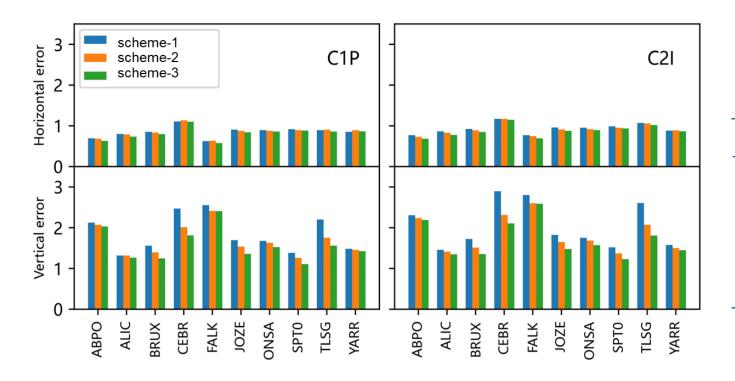


Estimated GPS/GAL DCBs with/without modeled PCOs

Differences of estimated GPS/GAL DCBs with/without PCO modeled (May 2022)

Multi-GNSS DCBs & OSBs with/without modeled PCOs

items	DCB/OSB without modeled PCOs	DCB/OSB with modeled PCOs
DCB file name	CAS0MGXRAP_yyyyddd0000_01D_01D_DCB.BSX	CAS1MGXRAP_yyyyddd0000_01D_01D_DCB.BSX
OSB file name	CAS0MGXRAP_yyyyddd0000_01D_01D_OSB.BIA	CAS1MGXRAP_yyyyddd0000_01D_01D_OSB.BIA
Satellite orbits	IGS combined broadcast ephemeris data	GBM rapid products
BDS-2 GDV model	Not applied	Not applied
Time latency	2 days	4 days
Data coverage	2013-now	August/2022-Now (January/2022)
Data archive	CAS/IGN/CDDIS	CAS (ftp.gipp.org.cn/product/dcb/mgex/yyyy/)



Effects of estimated DCBs on stand/precise positioning

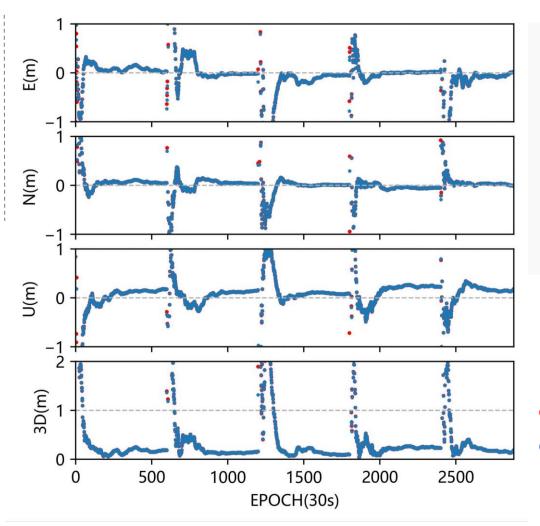
BDS-3 C1P/C2I "precise" single-frequency positioning (GFZ rapid orbits and clocks)

- scheme-1: estimated DCBs without PCO correction applied (i.e. CAS MGEX DCBs)
- ► scheme-2: PCO-corrected DCBs² following Eq. (1)
- ▶ scheme-3: PCO-modeled DCBs¹

positioning improvement compared to scheme-1 (S-1, 95% percentile)

		C1P	C2I
S-2	H_95%	0.2%	3.0%
	V_95%	8.0%	9.5%
S-3	H_95%	4.8%	6.8%
	V_95%	14.2%	15.6%

Effects of estimated DCBs on stand/precise positioning


BDS-3 B1I single-frequency PPP (GFZ rapid orbits and clocks)

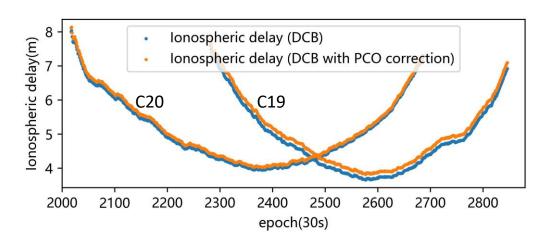
station: FFMJ

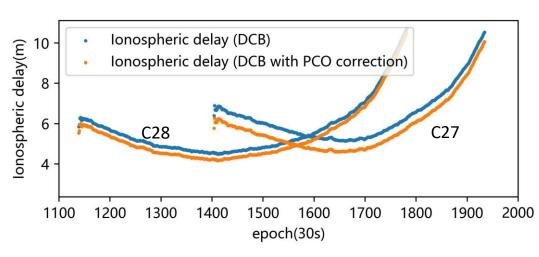
year : 2022

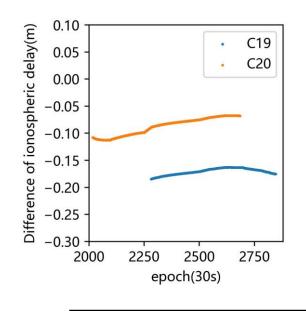
doy : 220

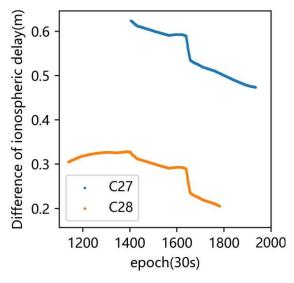
signal : BDS-3 B1I

- For SF-PPP, positioning parameters not affected by PCO errors in DCBs (i.e., ΔDCB_{pco})
- ➤ Such errors absorbed in receiver clock (common part), ambiguity and ionosphere parameters (satellite-specific part)


- DCB estimates without modeled PCOs
- DCB estimates with modeled PCOs




Effects of estimated DCBs on stand/precise positioning



BDS-3 B1I single-frequency PPP (GFZ rapid orbits and clocks)

selected satellites	mean difference(m)
C19 (CASC_MEO)	-0.169
C20 (CASC_MEO)	-0.087
C27 (SECM_MEO)	0.532
C28 (SECM_MEO)	0.263

Summary and conclusions

- ► Effects of satellite PCOs on the estimated DCBs were analyzed for BDS, GPS and Galileo (PCO-modeled DCBs vs. PCO-corrected DCBs).
- ► The analysis of BDS-3 B1I/B1C-B3I DCB estimates with/without modeled PCOs proofs the consistent modeling of PCOs in the estimated DCBs.
- ▶ BDS-3 C1P/C2I "precise" standard positioning further verifies the good consistency between the estimated DCBs with modeled PCOs and precise orbit/clock products.
- ▶ When extracting ionosphere information from SF-PPP, the largest difference caused by DCBs with/without modeled PCOs reaches ~0.5 m (from BDS-3 B1I SF-PPP analysis).
- ► Multi-GNSS DCB/OSB products with modeled PCOs are publicly accessible from CAS ftp site (data coverage: August/2022-now, ftp://ftp.gipp.org.cn/product/dcb/mgex/yyyy/)

