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 Dissolved gas analysis (DGA) is widely accepted as an effective method to 

detect incipient faults within power transformers. Gases such as hydrogen, 

methane, acetylene, ethylene and ethane are normally utilized to identify the 

transformer fault conditions. Several techniques have been developed to 

interpret DGA results such as the key gas method, Doernenburg, Rogers, 

International Electro Technical Commission (IEC) ratio-based methods, 

Duval triangles, and the latest Duval pentagon methods. However, each of 

these approaches depends on the experts' shared knowledge and experience 

rather than quantitative scientific methods, therefore different diagnoses may 

be reported for the same oil sample. To overcome these shortcomings, this 

paper proposed the use of decision tree method to interpret the transformer 

health condition based on DGA results. The proposed decision tree model 

employed three main fault gases; methane, acetylene, ethylene as inputs, and 

classified the transformer into eight fault conditions. The J48 algorithm is 

used to train and developed the decision tree model. The performance of the 

proposed model is validated with the pre-known condition of transformers 

and compared with the Duval triangle method (DTM). Results show that the 

proposed model delivers better precision and accuracy in predicting 

transformer fault conditions compared to DTM with 81% and 69% 

respectively. 
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1. INTRODUCTION 

Dissolved gas analysis (DGA) has been used extensively to assess the power transformer condition. 

The decomposition of paper and oil occurs due to high thermal and electrical stress on the transformer insulation 

system, producing gases that dissolve in the oil and decrease its dielectric strength [1]. The subsequent paper 

decomposition yields carbon monoxide (CO) and carbon dioxide (CO2). Hydrogen (H2), methane (CH4), 

acetylene (C2H2), ethylene (C2H4), and ethane (C2H6), on the other hand, are produced as a result of oil 

decomposition and the formation of faults [2], [3]. Every fault produces unique characteristic gasses that can be 

used to identify the faults and measure their severity [4], [5]. The low energy level, partial discharge, produces 

H2 and CH4 gases while the high energy level, arcing, can produce all gases including C2H2. On the other hand, 

high thermal fault produces gases C2H4 and C2H6 [1]. Thus, the nature of the fault can be determined based on 

https://creativecommons.org/licenses/by-sa/4.0/


Int J Artif Intell  ISSN: 2252-8938  

 

Improvement of transformer dissolved gas analysis interpretation using … (Norazhar Abu Bakar) 

49 

the type of gas generates. However, the analysis is not always straightforward because at the same time there is 

a possibility of more than one fault occurred [6]. 

On the basis of the DGA findings, various interpretation methods such as key gas method (KGM), 

Doernenburg ratio method (DRM), Rogers ratio method (RRM), International Electro Technical Commission 

(IEC) ratio method (IRM), Duval triangle method (DTM) [7], and Duval pentagon method (DPM) [8] have 

been established to determine the transformer's state. However, most of the aforementioned approaches use the 

DGA test statistics used by professionals to provide knowledge-based diagnostic recommendations, while other 

approaches are based on the theory of thermodynamics, which may not necessarily lead to the same conclusion 

for the same oil sample [9]. Several soft computing methods were suggested to remove these limitations in order 

to overcome those problems. 

To eradicate these shortcomings, artificial neural networks (ANN) [10]–[12], support vector machine 

(SVM) [13], [14] and fuzzy logic (FL) [15]–[17] were introduced. However, each of these methods also has 

some limitations. ANN is time-consuming, requires a large number of data samples to train the network 

properly to achieve consistent efficiency, requires a lot of time to learn and is prone to overfitting [18]. On the 

other hand, developing fuzzy rules and membership functions is tedious, and fuzzy outputs can be interpreted in 

a variety of ways that make analysis become complicated. In addition to being computationally expensive and 

complex, the key issue with SVM is the selection of the right function kernel [19]. Various kernel functions give 

different effects. This paper proposed another machine learning method, J48 decision tree to interpret DGA 

findings which offers a relatively quicker and less complex algorithm compared to SVM. Additionally, the 

structure of J48 decision tree is more comprehensible compared to ANN architecture. 

 

 

2. DECISION TREE 

Decision trees are one of the most effective methods in data mining for creating multiple covariates 

classification systems or for designing predictive algorithms for a target variable. This method is frequently 

used in numerous applications since it is user-friendly, straightforward, and stable even when missing values 

are present. In the decision tree method, a population will be classified into branch-like segments that create 

an inverted tree with a root node, internal nodes, and leaf nodes as shown in Figure 1 [20]. 

 

 

 
 

Figure 1. Decision tree model 

 

 

A root node, also called a decision node represents a decision that will allow all records to be 

subdivided into two or more mutually exclusive subsets. The output of those decisions which do not contain 

any further branches is known as leaf nodes. Each leaf node symbolizes the mark of the particular class. On 

the other hand, several possible decisions available in the tree structure which connected between the root 

node and leaf nodes are called internal nodes. 

Several decision tree algorithms like ID3, J48, CART, C5.0, SLIQ, SPRINT, random forest, and 

random tree have been developed for classification [21]. ID3, J48, and C5.0 algorithms implemented the top-

down decision tree construction concept to obtain the output, while the CART algorithm is based on binary 

decision tree construction [22]. In this work, the J48 decision tree algorithm is chosen to classify the fault 

types of the transformer. 

J48 decision tree or C4.5 algorithm developed by Ross Quinlan is an expansion of ID3 algorithm 

which allowed the target value of new test data to be decided with respect to the different attribute values of 

training data [20]. It improves the ID3 algorithm by dealing with both continuous and discrete attributes, 

missing values and pruning trees after construction. The J48 algorithm exploited a top-down greedy search 

through the given sets to test each attribute at every tree node [23]. 
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As a supervised learning algorithm, a set of example data that consists of relationships between 

input objects and the desired output value is required to develop the J48 decision tree model [24]. This 

dataset will be used for training purposes. J48 decision tree induction methods begin with a root node 

representing the entire data set and separating the data into smaller subsets recursively by checking at each 

node for a given attribute. A root node is picked based on the highest gain values obtained among all 

attributes, while the splitting process is executed by considering the characteristics that are related to the 

degree of ‘purity’ in the dataset. This process is repeated until the subsets are “pure”, whereas, all instances 

in the subset fall within the same class, at which time the tree growing is terminated. In the cases, where the 

stopping rules do not work well, then, the pruning process is conducted to decrease the classification errors 

[25]. Pruning is a process of removing the unnecessary nodes from a tree in order to get the optimal decision 

tree and also prevent the overfitting or underfitting rules been developed. The process of decision tree 

development using J48 algorithm is summarized in Figure 2. 

 

 

 
 

Figure 2. Flowchart of J48 (C4.5) algorithm 
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3. J48 DECISION TREE MODEL 

To establish a DGA interpretation model, a total of 500 data collected from various operating 

transformers under different operating, age and health conditions were used to train by the J48 decision tree 

algorithm. Instead of using all fault gases, the proposed model only concentrated on the three main gases; 

CH4, C2H2, and C2H4 as inputs attribute to interpret the transformer condition. These three gases are the same 

gases used in the DTM method. On the other hand, the output variable of the model that represents the 

transformer health conditions are classified into eight (8) categories as in Table 1. 

The process of developing a DGA interpretation model is summarized in Figure 3. The process 

began by training a set of 500 transformers data with the known fault condition using J48 algorithm to obtain 

the decision tree model. These 500 datasets consist of all fault categories stated in Table 1. This training was 

performed using cross-validation with 10 folds procedure to increase the effectiveness of the proposed 

interpretation model. 

 

 

Table 1. Proposed transformer fault classifications 
Fault id Fault description 

NF No fault 
PD Partial discharge 
D1 Low energy discharge 
D2 Arching 
DT Electrical-thermal 
T1 Low thermal fault 
T2 Medium thermal fault 
T3 High thermal fault 

 

 

 
 

Figure 3. Process of developing the proposed interpretation model 

 

 

The result of decision tree model generated with the J48 algorithm shows that the main attribute for 

the transformer faults among these three gases is C2H2, hence being selected as the root node in the model. 

The tree size of the developed model is 139 and consists of 70 leaves (leaf nodes). In the meantime, the 

developed decision tree model achieved 83.8% of correctness classified the transformer fault types whereas 

about 419 out of 500 datasets with 0.0619 and 0.1759 of mean absolute error (MAE) and root mean squared 
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error (RMSE) respectively. Detail prediction results are tabulated in the matrix as in Table 2. It can be seen 

that the proposed interpretation model developed was successfully classified each transformer fault type at an 

average of more than 80% except for D1, which a bit lower. 

 

 

Table 2. Training results of J48 decision tree model 

 J48 decision tree prediction 

D1’ D2’ DT’ NF’ PD’ T1’ T2’ T3’ 

A
ct

u
al

 

D1 32 16 0 1 1 1 0 0 

D2 3 138 0 4 1 1 1 2 
DT 0 1 8 1 0 0 0 0 

NF 0 0 1 39 0 2 0 0 
PD 1 2 0 1 30 3 0 0 

T1 3 0 0 3 3 93 1 7 

T2 1 1 0 0 0 3 13 4 

T3 0 2 2 0 0 7 1 66 

 

 

After the best possible decision tree model has been achieved, an additional 100 datasets of known 

transformer fault types are used to evaluate further the performance of the proposed model. The proposed 

interpretation model must succeed at least 80% accuracy in classifying the overall transformer fault types 

before its ready to be used. Otherwise, the model will be modified and the training process is repeated until it 

succeeds 80% of prediction accuracy. From 100 datasets, the proposed model is able to correctly classified 

81 of transformer faults as shown in Table 3, which equivalent to 81% of accuracy, hence surpassing the 

minimum requirement that has been agreed. 

 

 

Table 3. Validation results of the proposed j48 decision tree model 

 J48 decision tree prediction 

D1’ D2’ DT’ NF’ PD’ T1’ T2’ T3’ 

A
ct

u
al

 

D1 9 2 0 0 1 0 0 0 

D2 1 12 0 1 0 0 0 0 

DT 0 1 8 1 1 0 0 1 
NF 1 0 0 10 1 0 0 0 

PD 0 0 0 0 12 0 0 0 

T1 0 0 0 0 0 13 1 0 
T2 0 0 0 0 0 1 8 3 

T3 0 0 1 0 0 2 0 9 

 

 

4. RESULTS AND DISCUSSION 

In this section, the performance of the proposed interpretation model is compared with the DTM (as 

shown in Figure 4), which recognized as the best interpretation technique by industries so far. Although the 

latest improvement of DTM method is available, DPM, however its only works as a complementary to 

existing DTM, and does not replace it [8]. To evaluate the performance of both methods, another set of 65 

transformers data with known fault conditions were used to examine the prediction accuracy. The confusion 

matrix is employed to analyze the performance of both methods in classifying the fault types. The confusion 

matrix is a table that reports the number of True positive (TP), True negative (TN), False positive (FP), and 

False negative (FN) which permits the visualization of classification accuracy and the performance of the 

method. The following are definitions of those terms: 

i)  TP: Cases in which correctly predicted Yes 

ii)  TN: Cases in which correctly predicted No 

iii)  FP: Cases in which predicted Yes, but actually is No 

iv)  FN: Cases in which predicted No, but actually is Yes. 

The precision, recall, and F-measure are performed to examine the classification performance. The 

precision is to quantify the number of positive class predictions that actually belong to the positive class, 

while the recall will quantify the number of positive class predictions out of all positive examples in the 

dataset. On the other hand, F-measure provides a single score that balances both the concerns of precision 

and recall in one number. In the meantime, the accuracy of a classifier is referred to the probability of the 

method correctly predicting the actual fault of the transformer. The precision, recall, F-measure, and accuracy 

can be computed as: 
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𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
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 (1) 
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𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁
 (4) 

 

 

 
 

Figure 4. Duval triangle method diagram 

 

 

Table 4 and Table 5 show the confusion matrix obtained for DTM and J48 Decision tree model 

respectively for 65 datasets of the transformer. According to Table 4, the DTM was successfully diagnosed 

42 out of 65 cases, while the remaining cases were wrongly classified. On the other hand, the J48 model 

gives a better prediction with 53 out of 65 cases were correctly classified as shown in Table 5. Further 

analysis is shown in Table 6, whereas the precision, recall, F-Measure, and accuracy for each fault class are 

been analyzed. 

 

 

Table 4. DTM confusion matrix 

 J48 decision tree prediction 

D1’ D2’ DT’ NF’ PD’ T1’ T2’ T3’ 

A
ct

u
al

 

D1 8 0 0 0 0 0 2 0 

D2 3 8 3 0 0 0 0 1 
DT 0 0 2 0 0 0 1 0 

NF 0 0 0 0 0 1 2 1 

PD 0 0 2 0 1 0 0 1 
T1 0 0 1 0 1 6 1 2 

T2 0 0 0 0 0 0 6 0 

T3 0 0 0 0 0 0 1 11 

 

 

Based on Table 4, it is noticed that the DTM is precisely classified the actual T2 fault (correctly 

classified 6 out of 6). However, it also frequently misinterprets other faults as T2, hence reducing the recall 

and accuracy of DTM in classifying T2 fault. In contrast with T1 results, although the DTM only manage to 



                ISSN: 2252-8938 

Int J Artif Intell, Vol. 12, No. 1, March 2023: 48-56 

54 

correctly classified 6 out of 11 cases, however there is only 1 case where DTM is wrongly predicted. 

Therefore, the accuracy of DTM in classifying T1 fault is higher than T2. From results, it also noticed that 

the most truthfully classified by DTM is T3 with F-measure and accuracy are 0.79 and 0.65 respectively. The 

overall accuracy for DTM in classifying the fault types is only 40%. 

On the other hand, the proposed J48 decision tree model has an average of 81% precisely classified 

fault types. The most precise class predicted by the J48 model is NF with 100% (4 out of 4) correct and 

followed by T3 with 92% (11 out of 12). Different from DTM, the J48 model generates more consistent 

interpretation results whereas the average recall achieved about 83%. The lowest recall is given by T2 

whereas it is wrongly classified two cases as T2, which suppose to be T1 and T3. In the meantime, the 

proposed J48 model shows better accuracy compared to DTM with 69%. 

 

 

Table 5. The proposed model confusion matrix 
 J48 decision tree prediction 

D1’ D2’ DT’ NF’ PD’ T1’ T2’ T3’ 

A
ct

u
al

 

D1 8 1 0 0 1 0 0 0 
D2 2 12 0 1 0 0 0 0 

DT 0 0 2 0 0 0 0 1 

NF 0 0 0 4 0 0 0 0 
PD 1 0 0 0 3 0 0 0 

T1 0 1 0 0 0 8 1 1 

T2 0 1 0 0 0 0 5 0 

T3 0 0 0 0 0 0 1 11 

 

 

Table 6. Precision, recall, f-measure and accuracy results comparison between DTM and the proposed J48 

model 

Fault types Precision Recall F-measure Accuracy 
DTM J48 DTM J48 DTM J48 DTM J48 

D1 0.80 0.80 0.73 0.73 0.76 0.76 0.62 0.62 
D2 0.53 0.80 1.00 0.80 0.70 0.80 0.53 0.67 
DT 0.67 0.67 0.25 1.00 0.36 0.80 0.22 0.67 
NF 0.00 1.00 0.00 0.80 0.00 0.89 0.00 0.80 
PD 0.25 0.75 0.50 0.75 0.33 0.75 0.20 0.60 
T1 0.55 0.73 0.86 1.00 0.67 0.84 0.50 0.73 
T2 1.00 0.83 0.46 0.71 0.63 0.77 0.46 0.63 
T3 0.92 0.92 0.69 0.85 0.79 0.88 0.65 0.79 

Average 0.59 0.81 0.56 0.83 0.53 0.81 0.40 0.69 

 

 

5. CONCLUSION 

This paper proposes a J48 decision tree model to interpret the transformer fault types based on the 

dissolved gas analysis data. The proposed model has been developed using a set of transformer historical data 

with the pre-known health condition. Three fault gases, CH4, C2H4, and C2H2 are selected as inputs to the 

model and interpreted the transformer into eight fault classifications. The performance of the proposed model 

is evaluated using another sixty-five datasets and compared with the Duval Triangle method. Although the 

proposed model shows superior performance to DTM, however its accuracy can be improved further by 

considering more DGA samples during the training phase. Besides that, adding other fault gases such as H2 

and C2H6 also have the potential to enhance the model accuracy. However, by doing so, it may also increase 

the tree size and introduce overfitting issues if not considered carefully. 
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